1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
// ==========================================================================
// radix_inplace.h
// ==========================================================================
// Copyright (c) 2006-2015, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Sascha Meiers <sascha.meiers@embl.de>
// Author: Hannes Hauswedell <hannes.hauswedell @ fu-berlin.de>
// ==========================================================================
// The Radix Sort functions are adapted from Martin Frith's "last"
// tool (last.cbrc.jp), but he himself adapted the code from McIlroy, Bostic:
// "Engineering radix sort" as well as Karkkainen, Rantala: "Engineering radix
// sort for strings". Thanks to Martin for showing this to me.
// ============================================================================
#ifndef CORE_INCLUDE_SEQAN_INDEX_RADIX_INPLACE_H_
#define CORE_INCLUDE_SEQAN_INDEX_RADIX_INPLACE_H_
#if defined(_OPENMP) && defined(__GNUC__) && !defined(__clang__)
#include <parallel/algorithm>
#define SORT __gnu_parallel::sort
#else
#define SORT std::sort
#endif
//TODO(h-2): for clang use std::experimenta::parallel if available
namespace seqan
{
// ==========================================================================
// Tags
// ==========================================================================
struct RadixSortSACreateTag {};
// ==========================================================================
// Metafunctions
// ==========================================================================
template <typename TText>
struct Fibre<Index<TText, IndexSa<RadixSortSACreateTag > >, FibreTempSA>
{
typedef Index<TText, IndexSa<RadixSortSACreateTag > > TIndex_;
typedef typename SAValue<TIndex_>::Type TSAValue_;
typedef String<TSAValue_, typename DefaultIndexStringSpec<TText>::Type> Type;
};
template <typename TText>
struct DefaultIndexCreator<Index<TText, IndexSa<RadixSortSACreateTag> >, FibreSA>
{
typedef RadixSortSACreateTag Type;
};
template <typename TText, typename TConfig>
struct Fibre<Index<TText, FMIndex<RadixSortSACreateTag, TConfig> >, FibreTempSA>
{
typedef Index<TText, FMIndex<RadixSortSACreateTag, TConfig> > TIndex_;
typedef typename SAValue<TIndex_>::Type TSAValue_;
typedef String<TSAValue_, typename DefaultIndexStringSpec<TText>::Type> Type;
};
template < typename TText, typename TConfig>
struct DefaultIndexCreator<Index<TText, FMIndex<RadixSortSACreateTag, TConfig> >, FibreSA>
{
typedef RadixSortSACreateTag Type;
};
// ============================================================================
// Classes
// ============================================================================
// ----------------------------------------------------------------------------
// struct RadixTextAccessor [String]
// ----------------------------------------------------------------------------
template <
typename TSAValue, // input
typename TString, // string object that is referenced
typename TSpec = void, // Suffix modifier
typename TSize = unsigned> // return type (ordValue)
struct RadixTextAccessor;
/*
* NOTE:
* These accessors cannot resolve the correct order of out-of-bound-positions,
* i.e. when suffixes are equal up to their last character.
* All these cases get collected in a 0 bucket.
* The InplaceRadixSorter takes care of that by calling a special
* sort function on the 0 buckets.
*/
template <typename TSAValue, typename TString, typename TSize>
struct RadixTextAccessor<TSAValue, TString, void, TSize> :
public std::unary_function<TSAValue, TSize>
{
TString const & text;
typename Size<TString>::Type const L;
RadixTextAccessor(TString const &str) : text(str), L(length(str))
{}
template <typename TSize2>
inline TSize operator()(TSAValue const &x, TSize2 depth) const
{
typename Size<TString>::Type pos = x + depth;
if (pos >= L) return 0;
TSize ret = ordValue(text[pos]);
return ret+1;
}
};
// ----------------------------------------------------------------------------
// struct RadixTextAccessor [StringSet]
// ----------------------------------------------------------------------------
template <typename TSAValue, typename TString, typename TSetSpec, typename TSize>
struct RadixTextAccessor<TSAValue, StringSet<TString, TSetSpec>, void, TSize> :
public std::unary_function<TSAValue, TSize>
{
StringSet<TString, TSetSpec> const & text;
String<typename Size<TString>::Type> L;
RadixTextAccessor(StringSet<TString, TSetSpec> const &str) : text(str)
{
resize(L, length(text), Exact());
for(typename Size<TString>::Type i = 0; i < length(text); ++i)
L[i] = length(text[i]);
}
template <typename TSize2>
inline TSize operator()(TSAValue const &x, TSize2 depth) const
{
typename Size<TString>::Type pos = getSeqOffset(x) + depth;
typename Size<TString>::Type seq = getSeqNo(x);
if (pos >= L[seq]) return 0;
TSize ret = ordValue(text[seq][pos]);
return ret+1;
}
};
// ----------------------------------------------------------------------------
// struct _ZeroBucketComparator [StringSet]
// ----------------------------------------------------------------------------
// Functors to compare suffixes from 0 bucket (suffixes that are lex. equal)
// ----------------------------------------------------------------------------
template <typename TSAValue, typename TLimitsString=Nothing const>
struct _ZeroBucketComparator
{
TLimitsString const & limits;
_ZeroBucketComparator(TLimitsString const & lim) : limits(lim) { /*std::cout << "limits: " << limits << std::endl;*/ }
inline bool operator()(TSAValue const & a, TSAValue const & b) const
{
typename Size<TLimitsString>::Type lena = limits[getSeqNo(a)+1]-limits[getSeqNo(a)] - getSeqOffset(a);
typename Size<TLimitsString>::Type lenb = limits[getSeqNo(b)+1]-limits[getSeqNo(b)] - getSeqOffset(b);
if (lena == lenb)
return getSeqNo(a) > getSeqNo(b);
else
return lena < lenb;
}
};
// ----------------------------------------------------------------------------
// struct _ZeroBucketComparator [String]
// ----------------------------------------------------------------------------
template <typename TSAValue>
struct _ZeroBucketComparator<TSAValue, Nothing const>
{
_ZeroBucketComparator(Nothing const &) {}
_ZeroBucketComparator(Nothing &) {}
inline bool operator()(TSAValue const & a, TSAValue const & b) const
{
return a > b;
}
};
// ----------------------------------------------------------------------------
// struct RadixSortContext_
// ----------------------------------------------------------------------------
template <typename TSAValue,
typename TText,
typename TSize, // type of depth and bucketCount a.s.o
unsigned Q> // alph size = ValueSize + 1
struct RadixSortContext_
{
typedef typename StringSetLimits<TText const>::Type TLimitsString; // "Nothing" for Strings
typedef RadixTextAccessor<TSAValue, TText> TAccessFunctor;
typedef _ZeroBucketComparator<TSAValue, TLimitsString> TOrderFunctor;
typedef typename TAccessFunctor::result_type TOrdValue;
static_assert(Q < 256, "Alphabet size must be smaller 256!"); //TODO really?
static const unsigned ORACLESIZE = 256;
TText const & text;
TAccessFunctor textAccess;
TOrderFunctor comp;
TSize bucketSize[Q];
std::array<TSAValue*,Q> bucketEnd;
RadixSortContext_(TText const & t) :
text(t), textAccess(t), comp(stringSetLimits(t))
{}
};
template <typename TSAValue,
typename TText,
typename TSize,
unsigned Q>
inline void
clear(RadixSortContext_<TSAValue, TText, TSize, Q> & context)
{
memset(context.bucketSize, 0, sizeof(TSize)*Q);
}
// ==========================================================================
// Functions
// ==========================================================================
// ----------------------------------------------------------------------------
// Function _radixSort()
// ----------------------------------------------------------------------------
template <typename TSAValue, typename TSize,
typename TText, unsigned Q>
inline void
_radixSort(std::vector<std::tuple<TSAValue*, TSAValue*, TSize> > & stack,
RadixSortContext_<TSAValue, TText, TSize, Q> & context,
std::tuple<TSAValue*, TSAValue*, TSize> const & item)
{
typedef RadixSortContext_<TSAValue, TText, TSize, Q> TContext;
typedef typename TContext::TOrdValue TOrdValue;
clear(context);
// get bucket sizes (i.e. letter counts):
// The intermediate oracle array makes it faster (see "Engineering
// Radix Sort for Strings" by J Karkkainen & T Rantala)
for(TSAValue* i = std::get<0>(item); i < std::get<1>(item); /* noop */ )
{
// buffer for the next chars
TOrdValue oracle [TContext::ORACLESIZE];
TOrdValue* oracleEnd = oracle + std::min(static_cast<std::size_t>(TContext::ORACLESIZE),
static_cast<std::size_t>(std::get<1>(item) - i));
for(TOrdValue* j = oracle; j < oracleEnd; ++j )
*j = context.textAccess(*i++, std::get<2>(item));
for(TOrdValue* j = oracle; j < oracleEnd; ++j )
++context.bucketSize[*j];
}
// get bucket std::get<1>(item)s, and put buckets on the stack to sort within them later:
// EDIT: 0 bucket is not sorted here, but later.
TSize zeroBucketSize = context.bucketSize[0];
TSAValue* pos = std::get<0>(item) + context.bucketSize[0];
context.bucketEnd[0] = pos;
for(unsigned i = 1; i < Q; ++i )
{
TSAValue* nextPos = pos + context.bucketSize[i];
if (nextPos - pos > 1)
stack.emplace_back(pos, nextPos, std::get<2>(item)+1);
pos = nextPos;
context.bucketEnd[i] = pos;
}
// permute items into the correct buckets:
for(TSAValue* i = std::get<0>(item); i < std::get<1>(item); )
{
TOrdValue subset; // unsigned is faster than uchar!
TSAValue holdOut = *i;
while(--context.bucketEnd[subset = context.textAccess(holdOut, std::get<2>(item))] > i )
std::swap(*context.bucketEnd[subset], holdOut);
*i = holdOut;
i += context.bucketSize[subset];
context.bucketSize[subset] = 0; // reset it so we can reuse it //TODO check if we need this, since we clear already!
}
// sort the 0 bucket using std::sort
if(zeroBucketSize > 1)
std::sort(std::get<0>(item), std::get<0>(item) + zeroBucketSize, context.comp);
}
// ----------------------------------------------------------------------------
// Function _radixSortWrapper()
// ----------------------------------------------------------------------------
// switch to quicksort if the interval is sufficiently small
//TODO: play with this value
#ifndef _RADIX_SORT_SWITCH_TO_QUICKSORT_AT
#define _RADIX_SORT_SWITCH_TO_QUICKSORT_AT 100
#endif
template <typename TSAValue, typename TSize,
typename TText, unsigned Q>
inline void
_radixSortWrapper(std::vector<std::tuple<TSAValue*, TSAValue*, TSize> > & stack,
RadixSortContext_<TSAValue, TText, TSize, Q> & context,
std::tuple<TSAValue*, TSAValue*, TSize> const & i)
{
if (std::get<1>(i) - std::get<0>(i) < _RADIX_SORT_SWITCH_TO_QUICKSORT_AT)
std::sort(std::get<0>(i), std::get<1>(i), SuffixLess_<TSAValue, TText const>(context.text, std::get<2>(i)));
else if (std::get<1>(i) - std::get<0>(i) >= 2)
_radixSort(stack, context, i);
}
// ----------------------------------------------------------------------------
// Function inplaceFullRadixSort() [default]
// ----------------------------------------------------------------------------
#ifdef _OPENMP
#define N_THREADS omp_get_max_threads()
#define I_THREAD omp_get_thread_num()
#define MIN_BUCKETS 512
#else
#define N_THREADS 1
#define I_THREAD 0
#define MIN_BUCKETS 100 // for somewhat decent progress reporting
#endif
// TODO: serial version
// TODO: possibly quicksort directly on buckets in third steps, if buckets have been made small enough
// TODO: double-check the effects of the new "secondStep"
template <typename TSA, typename TText, typename TLambda>
void inPlaceRadixSort(TSA & sa, TText const & text, TLambda const & progressCallback = [] (unsigned) {})
{
typedef typename Value<typename Concatenator<TText>::Type>::Type TAlphabet;
typedef typename Value<TSA>::Type TSAValue;
typedef typename Size<TText>::Type TSize;
typedef std::tuple<TSAValue*, TSAValue*, TSize> TItem;
static const unsigned SIGMA = static_cast<unsigned>(ValueSize<TAlphabet>::VALUE) + 1;
SEQAN_ASSERT_LT_MSG(SIGMA, 1000u, "Attention: inplace radix sort is not suited for large alphabets");
typedef RadixSortContext_<TSAValue, TText, TSize, SIGMA> TContext;
if (empty(sa))
return; // otherwise access sa[0] fails
/* stacks */
std::vector<TItem> firstStack;
firstStack.reserve(SIGMA);
std::vector<TItem> secondStack;
secondStack.reserve(1000);
std::vector<std::vector<TItem>> lStack(N_THREADS); // one per thread
// reduce memory allocations in threads by reserving space
for (auto & stack : lStack)
stack.reserve(length(sa) / 1000);
/* contexts */
TContext firstSecondContext{text};
std::vector<TContext> lContext(N_THREADS, TContext{text});
// FIRST STEP
// sort by the first character
_radixSortWrapper(firstStack, firstSecondContext, TItem(&sa[0], &sa[0]+length(sa), 0));
progressCallback(5); // 5% progress guess after first char
// SECOND STEP
// sort by next n characters until the stack has reached a good size for distinct parallelization
// NOTE that for small alphabets in combination with small texts, this step might sort the entire SA
while (!firstStack.empty())
{
SEQAN_OMP_PRAGMA(parallel for schedule(dynamic))
for (unsigned j = 0; j < length(firstStack); ++j)
_radixSortWrapper(lStack[I_THREAD], lContext[I_THREAD], firstStack[j]);
// merge local stacks and clear for next round or next step
for (auto & stack : lStack)
{
secondStack.insert(secondStack.end(), stack.begin(), stack.end());
stack.clear();
}
// sort the stack by interval size so that large intervals are moved to front
// this improves parallelization of dynamic schedule
SORT(secondStack.begin(), secondStack.end(),
[] (TItem const & l, TItem const & r)
{
return (std::get<1>(l) - std::get<0>(l)) > (std::get<1>(r) - std::get<0>(r));
});
// check if largest interval "fits" in one thread efficiently
// this works independently of alphabet size and just depends on the data
// MIN_BUCKETS check additionally guarantees a degree of granularity
if ((uint64_t(std::get<1>(secondStack.front()) - std::get<0>(secondStack.front())) <= (length(sa) / N_THREADS))
&& (secondStack.size() >= MIN_BUCKETS))
break;
// switch buffers for next round
firstStack.clear();
std::swap(firstStack, secondStack);
}
progressCallback(10); // 10% progress guess after second step
// THIRD STEP
// sort the remaining intervals distinctly; here no locking and syncing is required anymore
SEQAN_OMP_PRAGMA(parallel for schedule(dynamic))
for (unsigned j = 0; j < secondStack.size(); ++j)
{
lStack[I_THREAD].push_back(secondStack[j]);
while (!lStack[I_THREAD].empty())
{
TItem i = lStack[I_THREAD].back();
lStack[I_THREAD].pop_back();
_radixSortWrapper(lStack[I_THREAD], lContext[I_THREAD], i);
}
// progressCallback must be thread safe and cope with smaller numbers after big numbers
// remaining characters alloted 90% of total progress
progressCallback(10 + (j * 90) / secondStack.size());
}
progressCallback(100); // done
}
// ----------------------------------------------------------------------------
// Function createSuffixArray
// ----------------------------------------------------------------------------
template <typename TSA,
typename TString,
typename TSSetSpec,
typename TLambda>
inline void
createSuffixArray(TSA & SA,
StringSet<TString, TSSetSpec> const & s,
RadixSortSACreateTag const &,
TLambda const & progressCallback)
{
typedef typename Size<TSA>::Type TSize;
typedef typename Iterator<TSA, Standard>::Type TIter;
// 1. Fill suffix array with a permutation (the identity)
TIter it = begin(SA, Standard());
for(unsigned j = 0; j < length(s); ++j)
{
TSize len = length(s[j]);
for(TSize i = 0; i < len; ++i, ++it)
*it = Pair<unsigned, TSize>(j, i);
}
// 2. Sort suffix array with inplace radix Sort
inPlaceRadixSort(SA, s, progressCallback);
}
template <typename TSA,
typename TString,
typename TSSetSpec>
inline void
createSuffixArray(TSA & SA,
StringSet<TString, TSSetSpec> const & s,
RadixSortSACreateTag const &)
{
createSuffixArray(SA, s, RadixSortSACreateTag(), [] (unsigned) {});
}
}
#endif // #ifndef CORE_INCLUDE_SEQAN_INDEX_RADIX_INPLACE_H_
|