File: compute_gyration.html

package info (click to toggle)
lammps 0~20120615.gite442279-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 128,448 kB
  • sloc: cpp: 321,874; fortran: 15,187; ansic: 11,007; python: 7,889; perl: 2,915; sh: 2,088; makefile: 924; f90: 374; objc: 238; lisp: 169; csh: 16; tcl: 6
file content (75 lines) | stat: -rw-r--r-- 2,578 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
</CENTER>






<HR>

<H3>compute gyration command 
</H3>
<P><B>Syntax:</B>
</P>
<PRE>compute ID group-ID gyration 
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "compute.html">compute</A> command
<LI>gyration = style name of this compute command 
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute 1 molecule gyration 
</PRE>
<P><B>Description:</B>
</P>
<P>Define a computation that calculates the radius of gyration Rg of the
group of atoms, including all effects due to atoms passing thru
periodic boundaries.
</P>
<P>Rg is a measure of the size of the group of atoms, and is computed by
this formula
</P>
<CENTER><IMG SRC = "Eqs/compute_gyration.jpg">
</CENTER>
<P>where M is the total mass of the group, Rcm is the center-of-mass
position of the group, and the sum is over all atoms in the group.
</P>
<P>A Rg tensor, stored as a 6-element vector, is also calculated by this
compute.  The formula for the components of the tensor is the same as
the above formula, except that (Ri - Rcm)^2 is replaced by (Rix -
Rcmx) * (Riy - Rcmy) for the xy component, etc.  The 6 components of
the vector are ordered xx, yy, zz, xy, xz, yz.
</P>
<P>IMPORTANT NOTE: The coordinates of an atom contribute to Rg in
"unwrapped" form, by using the image flags associated with each atom.
See the <A HREF = "dump.html">dump custom</A> command for a discussion of
"unwrapped" coordinates.  See the Atoms section of the
<A HREF = "read_data.html">read_data</A> command for a discussion of image flags and
how they are set for each atom.  You can reset the image flags
(e.g. to 0) before invoking this compute by using the <A HREF = "set.html">set
image</A> command.
</P>
<P><B>Output info:</B>
</P>
<P>This compute calculates a global scalar (Rg) and a global vector of
length 6 (Rg tensor), which can be accessed by indices 1-6.  These
values can be used by any command that uses a global scalar value or
vector values from a compute as input.  See <A HREF = "Section_howto.html#howto_15">Section_howto
15</A> for an overview of LAMMPS output
options.
</P>
<P>The scalar and vector values calculated by this compute are
"intensive".  The scalar and vector values will be in distance
<A HREF = "units.html">units</A>.
</P>
<P><B>Restrictions:</B> none
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "compute_gyration_molecule.html">compute gyration/molecule</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>