File: replicate.cpp

package info (click to toggle)
lammps 0~20120615.gite442279-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 128,448 kB
  • sloc: cpp: 321,874; fortran: 15,187; ansic: 11,007; python: 7,889; perl: 2,915; sh: 2,088; makefile: 924; f90: 374; objc: 238; lisp: 169; csh: 16; tcl: 6
file content (403 lines) | stat: -rw-r--r-- 13,477 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/* ----------------------------------------------------------------------
   LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
   http://lammps.sandia.gov, Sandia National Laboratories
   Steve Plimpton, sjplimp@sandia.gov

   Copyright (2003) Sandia Corporation.  Under the terms of Contract
   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
   certain rights in this software.  This software is distributed under
   the GNU General Public License.

   See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */

#include "stdlib.h"
#include "string.h"
#include "replicate.h"
#include "atom.h"
#include "atom_vec.h"
#include "atom_vec_hybrid.h"
#include "force.h"
#include "domain.h"
#include "comm.h"
#include "special.h"
#include "memory.h"
#include "error.h"

using namespace LAMMPS_NS;

#define LB_FACTOR 1.1
#define EPSILON   1.0e-6

/* ---------------------------------------------------------------------- */

Replicate::Replicate(LAMMPS *lmp) : Pointers(lmp) {}

/* ---------------------------------------------------------------------- */

void Replicate::command(int narg, char **arg)
{
  int i,j,m,n;

  if (domain->box_exist == 0)
    error->all(FLERR,"Replicate command before simulation box is defined");
  if (narg != 3) error->all(FLERR,"Illegal replicate command");

  int me = comm->me;
  int nprocs = comm->nprocs;

  if (me == 0 && screen) fprintf(screen,"Replicating atoms ...\n");

  // nrep = total # of replications

  int nx = atoi(arg[0]);
  int ny = atoi(arg[1]);
  int nz = atoi(arg[2]);
  int nrep = nx*ny*nz;

  // error and warning checks

  if (nx <= 0 || ny <= 0 || nz <= 0)
    error->all(FLERR,"Illegal replicate command");
  if (domain->dimension == 2 && nz != 1)
    error->all(FLERR,"Cannot replicate 2d simulation in z dimension");
  if ((nx > 1 && domain->xperiodic == 0) ||
      (ny > 1 && domain->yperiodic == 0) ||
      (nz > 1 && domain->zperiodic == 0)) {
    if (comm->me == 0)
      error->warning(FLERR,"Replicating in a non-periodic dimension");
  }

  if (atom->nextra_grow || atom->nextra_restart || atom->nextra_store)
    error->all(FLERR,"Cannot replicate with fixes that store atom quantities");

  // maxtag = largest atom tag across all existing atoms

  int maxtag = 0;
  for (i = 0; i < atom->nlocal; i++) maxtag = MAX(atom->tag[i],maxtag);
  int maxtag_all;
  MPI_Allreduce(&maxtag,&maxtag_all,1,MPI_INT,MPI_MAX,world);
  maxtag = maxtag_all;

  // maxmol = largest molecule tag across all existing atoms

  int maxmol = 0;
  if (atom->molecular) {
    for (i = 0; i < atom->nlocal; i++) maxmol = MAX(atom->molecule[i],maxmol);
    int maxmol_all;
    MPI_Allreduce(&maxmol,&maxmol_all,1,MPI_INT,MPI_MAX,world);
    maxmol = maxmol_all;
  }

  // unmap existing atoms via image flags

  for (i = 0; i < atom->nlocal; i++)
    domain->unmap(atom->x[i],atom->image[i]);

  // communication buffer for all my atom's info
  // max_size = largest buffer needed by any proc
  // must do before new Atom class created,
  //   since size_restart() uses atom->nlocal

  int max_size;
  int send_size = atom->avec->size_restart();
  MPI_Allreduce(&send_size,&max_size,1,MPI_INT,MPI_MAX,world);

  double *buf;
  memory->create(buf,max_size,"replicate:buf");

  // old = original atom class
  // atom = new replicated atom class
  // if old atom style was hybrid, pass sub-style names to create_avec

  Atom *old = atom;
  atom = new Atom(lmp);
  atom->settings(old);

  int nstyles = 0;
  char **keywords = NULL;
  if (strcmp(old->atom_style,"hybrid") == 0) {
    AtomVecHybrid *avec_hybrid = (AtomVecHybrid *) old->avec;
    nstyles = avec_hybrid->nstyles;
    keywords = avec_hybrid->keywords;
  }
  atom->create_avec(old->atom_style,nstyles,keywords);

  // check that new system will not be too large
  // if molecular and N > MAXTAGINT, error
  // if atomic and new N > MAXTAGINT, turn off tags for existing and new atoms
  // new system cannot exceed MAXBIGINT

  if (atom->molecular && (nrep*old->natoms < 0 || nrep*old->natoms > MAXTAGINT))
    error->all(FLERR,"Replicated molecular system atom IDs are too big");
  if (nrep*old->natoms < 0 || nrep*old->natoms > MAXTAGINT)
    atom->tag_enable = 0;
  if (atom->tag_enable == 0)
    for (int i = 0; i < atom->nlocal; i++)
      atom->tag[i] = 0;

  if (nrep*old->natoms < 0 || nrep*old->natoms > MAXBIGINT ||
      nrep*old->nbonds < 0 || nrep*old->nbonds > MAXBIGINT ||
      nrep*old->nangles < 0 || nrep*old->nangles > MAXBIGINT ||
      nrep*old->ndihedrals < 0 || nrep*old->ndihedrals > MAXBIGINT ||
      nrep*old->nimpropers < 0 || nrep*old->nimpropers > MAXBIGINT)
    error->all(FLERR,"Replicated system is too big");

  // assign atom and topology counts in new class from old one

  atom->natoms = old->natoms * nrep;
  atom->nbonds = old->nbonds * nrep;
  atom->nangles = old->nangles * nrep;
  atom->ndihedrals = old->ndihedrals * nrep;
  atom->nimpropers = old->nimpropers * nrep;

  atom->ntypes = old->ntypes;
  atom->nbondtypes = old->nbondtypes;
  atom->nangletypes = old->nangletypes;
  atom->ndihedraltypes = old->ndihedraltypes;
  atom->nimpropertypes = old->nimpropertypes;

  atom->bond_per_atom = old->bond_per_atom;
  atom->angle_per_atom = old->angle_per_atom;
  atom->dihedral_per_atom = old->dihedral_per_atom;
  atom->improper_per_atom = old->improper_per_atom;

  // store old simulation box

  int triclinic = domain->triclinic;
  double old_xprd = domain->xprd;
  double old_yprd = domain->yprd;
  double old_zprd = domain->zprd;
  double old_xy = domain->xy;
  double old_xz = domain->xz;
  double old_yz = domain->yz;

  // setup new simulation box

  domain->boxhi[0] = domain->boxlo[0] + nx*old_xprd;
  domain->boxhi[1] = domain->boxlo[1] + ny*old_yprd;
  domain->boxhi[2] = domain->boxlo[2] + nz*old_zprd;
  if (triclinic) {
    domain->xy *= ny;
    domain->xz *= nz;
    domain->yz *= nz;
  }

  // new problem setup using new box boundaries

  if (nprocs == 1) n = static_cast<int> (atom->natoms);
  else n = static_cast<int> (LB_FACTOR * atom->natoms / nprocs);

  atom->allocate_type_arrays();
  atom->avec->grow(n);
  n = atom->nmax;

  domain->print_box("  ");
  domain->set_initial_box();
  domain->set_global_box();
  comm->set_proc_grid();
  domain->set_local_box();

  // copy type arrays to new atom class

  if (atom->mass) {
    for (int itype = 1; itype <= atom->ntypes; itype++) {
      atom->mass_setflag[itype] = old->mass_setflag[itype];
      if (atom->mass_setflag[itype]) atom->mass[itype] = old->mass[itype];
    }
  }

  // set bounds for my proc
  // if periodic and I am lo/hi proc, adjust bounds by EPSILON
  // insures all replicated atoms will be owned even with round-off

  double epsilon[3];
  if (triclinic) epsilon[0] = epsilon[1] = epsilon[2] = EPSILON;
  else {
    epsilon[0] = domain->prd[0] * EPSILON;
    epsilon[1] = domain->prd[1] * EPSILON;
    epsilon[2] = domain->prd[2] * EPSILON;
  }

  double sublo[3],subhi[3];
  if (triclinic == 0) {
    sublo[0] = domain->sublo[0]; subhi[0] = domain->subhi[0];
    sublo[1] = domain->sublo[1]; subhi[1] = domain->subhi[1];
    sublo[2] = domain->sublo[2]; subhi[2] = domain->subhi[2];
  } else {
    sublo[0] = domain->sublo_lamda[0]; subhi[0] = domain->subhi_lamda[0];
    sublo[1] = domain->sublo_lamda[1]; subhi[1] = domain->subhi_lamda[1];
    sublo[2] = domain->sublo_lamda[2]; subhi[2] = domain->subhi_lamda[2];
  }

  if (domain->xperiodic) {
    if (comm->myloc[0] == 0) sublo[0] -= epsilon[0];
    if (comm->myloc[0] == comm->procgrid[0]-1) subhi[0] += epsilon[0];
  }
  if (domain->yperiodic) {
    if (comm->myloc[1] == 0) sublo[1] -= epsilon[1];
    if (comm->myloc[1] == comm->procgrid[1]-1) subhi[1] += epsilon[1];
  }
  if (domain->zperiodic) {
    if (comm->myloc[2] == 0) sublo[2] -= epsilon[2];
    if (comm->myloc[2] == comm->procgrid[2]-1) subhi[2] += epsilon[2];
  }

  // loop over all procs
  // if this iteration of loop is me:
  //   pack my unmapped atom data into buf
  //   bcast it to all other procs
  // performs 3d replicate loop with while loop over atoms in buf
  //   x = new replicated position, remapped into simulation box
  //   unpack atom into new atom class from buf if I own it
  //   adjust tag, mol #, coord, topology info as needed

  AtomVec *old_avec = old->avec;
  AtomVec *avec = atom->avec;

  int ix,iy,iz,image,atom_offset,mol_offset;
  double x[3],lamda[3];
  double *coord;
  int tag_enable = atom->tag_enable;

  for (int iproc = 0; iproc < nprocs; iproc++) {
    if (me == iproc) {
      n = 0;
      for (i = 0; i < old->nlocal; i++) n += old_avec->pack_restart(i,&buf[n]);
    }
    MPI_Bcast(&n,1,MPI_INT,iproc,world);
    MPI_Bcast(buf,n,MPI_DOUBLE,iproc,world);

    for (ix = 0; ix < nx; ix++) {
      for (iy = 0; iy < ny; iy++) {
        for (iz = 0; iz < nz; iz++) {

          // while loop over one proc's atom list

          m = 0;
          while (m < n) {
            image = (512 << 20) | (512 << 10) | 512;
            if (triclinic == 0) {
              x[0] = buf[m+1] + ix*old_xprd;
              x[1] = buf[m+2] + iy*old_yprd;
              x[2] = buf[m+3] + iz*old_zprd;
            } else {
              x[0] = buf[m+1] + ix*old_xprd + iy*old_xy + iz*old_xz;
              x[1] = buf[m+2] + iy*old_yprd + iz*old_yz;
              x[2] = buf[m+3] + iz*old_zprd;
            }
            domain->remap(x,image);
            if (triclinic) {
              domain->x2lamda(x,lamda);
              coord = lamda;
            } else coord = x;

            if (coord[0] >= sublo[0] && coord[0] < subhi[0] &&
                coord[1] >= sublo[1] && coord[1] < subhi[1] &&
                coord[2] >= sublo[2] && coord[2] < subhi[2]) {

              m += avec->unpack_restart(&buf[m]);

              i = atom->nlocal - 1;
              if (tag_enable)
                atom_offset = iz*ny*nx*maxtag + iy*nx*maxtag + ix*maxtag;
              else atom_offset = 0;
              mol_offset = iz*ny*nx*maxmol + iy*nx*maxmol + ix*maxmol;

              atom->x[i][0] = x[0];
              atom->x[i][1] = x[1];
              atom->x[i][2] = x[2];

              atom->tag[i] += atom_offset;
              atom->image[i] = image;

              if (atom->molecular) {
                if (atom->molecule[i] > 0)
                  atom->molecule[i] += mol_offset;
                if (atom->avec->bonds_allow)
                  for (j = 0; j < atom->num_bond[i]; j++)
                    atom->bond_atom[i][j] += atom_offset;
                if (atom->avec->angles_allow)
                  for (j = 0; j < atom->num_angle[i]; j++) {
                    atom->angle_atom1[i][j] += atom_offset;
                    atom->angle_atom2[i][j] += atom_offset;
                    atom->angle_atom3[i][j] += atom_offset;
                  }
                if (atom->avec->dihedrals_allow)
                  for (j = 0; j < atom->num_dihedral[i]; j++) {
                    atom->dihedral_atom1[i][j] += atom_offset;
                    atom->dihedral_atom2[i][j] += atom_offset;
                    atom->dihedral_atom3[i][j] += atom_offset;
                    atom->dihedral_atom4[i][j] += atom_offset;
                  }
                if (atom->avec->impropers_allow)
                  for (j = 0; j < atom->num_improper[i]; j++) {
                    atom->improper_atom1[i][j] += atom_offset;
                    atom->improper_atom2[i][j] += atom_offset;
                    atom->improper_atom3[i][j] += atom_offset;
                    atom->improper_atom4[i][j] += atom_offset;
                  }
              }
            } else m += static_cast<int> (buf[m]);
          }
        }
      }
    }
  }

  // free communication buffer and old atom class

  memory->destroy(buf);
  delete old;

  // check that all atoms were assigned to procs

  bigint natoms;
  bigint nblocal = atom->nlocal;
  MPI_Allreduce(&nblocal,&natoms,1,MPI_LMP_BIGINT,MPI_SUM,world);

  if (me == 0) {
    if (screen) fprintf(screen,"  " BIGINT_FORMAT " atoms\n",natoms);
    if (logfile) fprintf(logfile,"  " BIGINT_FORMAT " atoms\n",natoms);
  }

  if (natoms != atom->natoms)
    error->all(FLERR,"Replicate did not assign all atoms correctly");

  if (me == 0) {
    if (atom->nbonds) {
      if (screen) fprintf(screen,"  " BIGINT_FORMAT " bonds\n",atom->nbonds);
      if (logfile) fprintf(logfile,"  " BIGINT_FORMAT " bonds\n",atom->nbonds);
    }
    if (atom->nangles) {
      if (screen) fprintf(screen,"  " BIGINT_FORMAT " angles\n",
                          atom->nangles);
      if (logfile) fprintf(logfile,"  " BIGINT_FORMAT " angles\n",
                           atom->nangles);
    }
    if (atom->ndihedrals) {
      if (screen) fprintf(screen,"  " BIGINT_FORMAT " dihedrals\n",
                          atom->ndihedrals);
      if (logfile) fprintf(logfile,"  " BIGINT_FORMAT " dihedrals\n",
                           atom->ndihedrals);
    }
    if (atom->nimpropers) {
      if (screen) fprintf(screen,"  " BIGINT_FORMAT " impropers\n",
                          atom->nimpropers);
      if (logfile) fprintf(logfile,"  " BIGINT_FORMAT " impropers\n",
                           atom->nimpropers);
    }
  }

  // create global mapping and bond topology now that system is defined

  if (atom->map_style) {
    atom->nghost = 0;
    atom->map_init();
    atom->map_set();
  }
  if (atom->molecular) {
    Special special(lmp);
    special.build();
  }
}