File: units.txt

package info (click to toggle)
lammps 0~20140523.gite5e877d-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 193,012 kB
  • ctags: 48,147
  • sloc: cpp: 458,874; python: 21,769; fortran: 16,023; ansic: 12,503; perl: 3,687; sh: 3,221; makefile: 1,366; f90: 1,177; xml: 788; objc: 238; lisp: 169; tcl: 61; csh: 16; awk: 14
file content (200 lines) | stat: -rw-r--r-- 6,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c

:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)

:line

units command :h3

[Syntax:]

units style :pre

style = {lj} or {real} or {metal} or {si} or {cgs} or {electron} or {micro} or {nano} :ul

[Examples:]

units metal
units lj :pre

[Description:]

This command sets the style of units used for a simulation.  It
determines the units of all quantities specified in the input script
and data file, as well as quantities output to the screen, log file,
and dump files.  Typically, this command is used at the very beginning
of an input script.

For all units except {lj}, LAMMPS uses physical constants from
www.physics.nist.gov.  For the definition of Kcal in real units,
LAMMPS uses the thermochemical calorie = 4.184 J.

For style {lj}, all quantities are unitless.  Without loss of
generality, LAMMPS sets the fundamental quantities mass, sigma,
epsilon, and the Boltzmann constant = 1.  The masses, distances,
energies you specify are multiples of these fundamental values.  The
formulas relating the reduced or unitless quantity (with an asterisk)
to the same quantity with units is also given.  Thus you can use the
mass & sigma & epsilon values for a specific material and convert the
results from a unitless LJ simulation into physical quantities.

mass = mass or m
distance = sigma, where x* = x / sigma
time = tau, where tau = t* = t (epsilon / m / sigma^2)^1/2
energy = epsilon, where E* = E / epsilon
velocity = sigma/tau, where v* = v tau / sigma
force = epsilon/sigma, where f* = f sigma / epsilon
torque = epsilon, where t* = t / epsilon
temperature = reduced LJ temperature, where T* = T Kb / epsilon
pressure = reduced LJ pressure, where P* = P sigma^3 / epsilon
dynamic viscosity = reduced LJ viscosity, where eta* = eta sigma^3 / epsilon / tau
charge = reduced LJ charge, where q* = q / (4 pi perm0 sigma epsilon)^1/2
dipole = reduced LJ dipole, moment where *mu = mu / (4 pi perm0 sigma^3 epsilon)^1/2
electric field = force/charge, where E* = E (4 pi perm0 sigma epsilon)^1/2 sigma / epsilon 
density = mass/volume, where rho* = rho sigma^dim :ul

Note that for LJ units, the default mode of thermodyamic output via
the "thermo_style"_thermo_style.html command is to normalize energies
by the number of atoms, i.e. energy/atom.  This can be changed via the
"thermo_modify norm"_therm_modify.html command.

For style {real}, these are the units:

mass = grams/mole
distance = Angstroms
time = femtoseconds
energy = Kcal/mole 
velocity = Angstroms/femtosecond 
force = Kcal/mole-Angstrom
torque = Kcal/mole
temperature = Kelvin
pressure = atmospheres
dynamic viscosity = Poise
charge = multiple of electron charge (1.0 is a proton)
dipole = charge*Angstroms
electric field = volts/Angstrom 
density = gram/cm^dim :ul

For style {metal}, these are the units:

mass = grams/mole
distance = Angstroms
time = picoseconds
energy = eV
velocity = Angstroms/picosecond 
force = eV/Angstrom
torque = eV
temperature = Kelvin
pressure = bars
dynamic viscosity = Poise
charge = multiple of electron charge (1.0 is a proton)
dipole = charge*Angstroms
electric field = volts/Angstrom
density = gram/cm^dim :ul

For style {si}, these are the units:

mass = kilograms
distance = meters
time = seconds
energy = Joules
velocity = meters/second
force = Newtons
torque = Newton-meters
temperature = Kelvin
pressure = Pascals
dynamic viscosity = Pascal*second
charge = Coulombs (1.6021765e-19 is a proton)
dipole = Coulombs*meters
electric field = volts/meter 
density = kilograms/meter^dim :ul

For style {cgs}, these are the units:

mass = grams
distance = centimeters
time = seconds
energy = ergs
velocity = centimeters/second
force = dynes
torque = dyne-centimeters
temperature = Kelvin
pressure = dyne/cm^2 or barye = 1.0e-6 bars
dynamic viscosity = Poise
charge = statcoulombs or esu (4.8032044e-10 is a proton)
dipole = statcoul-cm = 10^18 debye
electric field = statvolt/cm or dyne/esu 
density = grams/cm^dim :ul

For style {electron}, these are the units:

mass = atomic mass units
distance = Bohr
time = femtoseconds
energy = Hartrees
velocity = Bohr/atomic time units \[1.03275e-15 seconds\]
force = Hartrees/Bohr
temperature = Kelvin
pressure = Pascals
charge = multiple of electron charge (1.0 is a proton)
dipole moment = Debye
electric field = volts/cm :ul

For style {micro}, these are the units:

mass = picograms
distance = micrometers
time = microseconds
energy = picogram-micrometer^2/microsecond^2
velocity = micrometers/microsecond
force = picogram-micrometer/microsecond^2
torque = picogram-micrometer^2/microsecond^2
temperature = Kelvin
pressure = picogram/(micrometer-microsecond^2)
dynamic viscosity = picogram/(micrometer-microsecond)
charge = picocoulombs (1.6021765e-7 is a proton)
dipole = picocoulomb-micrometer
electric field = volt/micrometer 
density = picograms/micrometer^dim :ul

For style {nano}, these are the units:

mass = attograms
distance = nanometers
time = nanoseconds
energy = attogram-nanometer^2/nanosecond^2
velocity = nanometers/nanosecond
force = attogram-nanometer/nanosecond^2
torque = attogram-nanometer^2/nanosecond^2
temperature = Kelvin
pressure = attogram/(nanometer-nanosecond^2)
dynamic viscosity = attogram/(nanometer-nanosecond)
charge = multiple of electron charge (1.0 is a proton)
dipole = charge-nanometer
electric field = volt/nanometer 
density = attograms/nanometer^dim :ul

The units command also sets the timestep size and neighbor skin
distance to default values for each style:

For style {lj} these are dt = 0.005 tau and skin = 0.3 sigma.
For style {real} these are dt = 1.0 fmsec and skin = 2.0 Angstroms.
For style {metal} these are dt = 0.001 psec and skin = 2.0 Angstroms.
For style {si} these are dt = 1.0e-8 sec and skin = 0.001 meters.
For style {cgs} these are dt = 1.0e-8 sec and skin = 0.1 cm.
For style {electron} these are dt = 0.001 fmsec and skin = 2.0 Bohr. 
For style {micro} these are dt = 2.0 microsec and skin = 0.1 micrometers.
For style {nano} these are dt = 0.00045 nanosec and skin = 0.1 nanometers. :ul

[Restrictions:]

This command cannot be used after the simulation box is defined by a
"read_data"_read_data.html or "create_box"_create_box.html command.

[Related commands:] none

[Default:]

units lj :pre