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A. Introduction

Because Coulombic interactions decay very slowly, these interactions are frequently han-

dled using the Ewald (lattice) sum method.1,2 In an Ewald sum, the total Coulombic po-

tential UC is divided into a real space portion U real
C and reciprocal k-space portion U recip

C

as

UC = U real
C + U recip

C − U self
C , (1)

where U self
C is a self-correction term which must also be included (see below).

The real-space portion of the energy is calculated for r ≤ rcut as

U real
C =

1

4π ε0

∑
i,j<i

qi qjerfc (α rij)

rij
, (2)

where α is the constant that controls how the potential is divided between real and reciprocal

space.

The k-space portion of the energy is e�ciently handled using a Fourier series as

U recip
C =

1

2V ε0

∑
k 6=0

Γ(k)χ(k) , (3)

where k are the reciprocal lattice vectors, k = |k|, and Γ(k) are Fourier coe�cients given as

Γ(k) = k−2 e−k
2/4α2

. (4)

The quantity χ(k) can be de�ned as a double sum over particle positions as

χ(k) =
N∑
i=1

N∑
j=1

qi qj e
ik·rij (5)
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where N is the total number of atoms, i is the imaginary number, and rij = ri−rj. However,

the double sum in Eq. 5 is very expensive, so normally one reduces the double sum in Eq. 5

to a single sum as

χ(k) =
N∑
i=1

N∑
j=1

qi qj e
ik·rij

=
N∑
i=1

qi e
ik·ri

N∑
j=1

qj e
−ik·rj

= S(k)S(−k) , (6)

where S(k) is the structure factor:

S(k) =
N∑
i=1

qi e
ik·ri . (7)

In the traditional lattice sum, a particle interacts with itself, all periodic images of itself,

all of its neighbors, and all periodic images of its neighbors. Because a particle interacts

with itself, an energy self-correction term must be subtracted from the total energy:

U self
C =

α

4π3/2 ε0

∑
i

q2i . (8)

B. Group-Group Ewald Sum

Eq. 5 includes a double sum over particles. In order to get interactions of group A atoms

on group B atoms, one can restrict the double sum in Eq. 5 to include only groups A and B

as:

χ(k) =

NA∑
i=1

NB∑
j=1

qi qj e
ik·rij

=

NA∑
i=1

qi e
ik·ri

NB∑
j=1

qj e
−ik·rj

= SA(k)SB(−k) , (9)

where NA is the number of atoms in group A, NB is the number of atoms in group B, SA(k)

is the group A structure factor:
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SA(k) =
∑

i=typeA

qi e
ik·ri . (10)

and SB(k) is the group B structure factor:

SB(k) =
∑

j=typeB

qj e
ik·rj . (11)

One can think of this as all group A atoms and periodic images interacting with all group

B atoms and periodic images. If an atom is in both groups A and B, one must also include

the energy self-correction for that atom (see Eq. 8). One can obtain group-group forces in

a similar manner by using the same group structure factors.

C. Per-atom Ewald Sum

In a similar manner, one can think of per-atom energy as one atom interacting with a

group of all other atoms. Per-atom values can therefore be obtained by replacing χ(k) in

Eqs. 9 with a per-atom version3�5

χi(k) =
∑
i

qi qje
ik·rij (12)

= S(−k)Si(k) ,

where Si(k) is a per-atom structure factor de�ned as

Si(k) = qi e
ik·ri . (13)

One must also include a per-atom version of the self-correction term (Eq. 8).

D. PPPM

In the PPPM method, group-group energy and force can be obtained in a similar manner.

One interpolates charges for groups A and B to a mesh and then uses two forward FFTs (one

for each group) to obtain group A and B structure factors. Total energy and force are then

obtained using these group structure factors in a manner very similar to the Ewald sum.
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Because only the total force is needed, no reverse FFTs are necessary and all calculations

are performed in reciprocal space.
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