1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
#include "Matrix.h"
#include "DenseMatrix.h"
#include "PolynomialSolver.h"
namespace ATC_matrix {
//-----------------------------------------------------------------------------
//* performs a matrix-matrix multiply with optional transposes BLAS version
// C = b*C + a*A*B
//-----------------------------------------------------------------------------
void MultAB(const MATRIX &A, const MATRIX &B, DENS_MAT &C,
const bool At, const bool Bt, double a, double b)
{
static char t[2] = {'N','T'};
char *ta=t+At, *tb=t+Bt;
int sA[2] = {A.nRows(), A.nCols()}; // sizes of A
int sB[2] = {B.nRows(), B.nCols()}; // sizes of B
GCK(A, B, sA[!At]!=sB[Bt], "MultAB<double>: matrix-matrix multiply");
if (!C.is_size(sA[At],sB[!Bt]))
{
C.resize(sA[At],sB[!Bt]);
if (b != 0.0) C.zero();
}
// get pointers to the matrix sizes needed by BLAS
int *M = sA+At; // # of rows in op[A] (op[A] = A' if At='T' else A)
int *N = sB+!Bt; // # of cols in op[B]
int *K = sA+!At; // # of cols in op[A] or # of rows in op[B]
double *pa=A.ptr(), *pb=B.ptr(), *pc=C.ptr();
#ifdef COL_STORAGE
dgemm_(ta, tb, M, N, K, &a, pa, sA, pb, sB, &b, pc, M);
#else
dgemm_(tb, ta, N, M, K, &a, pb, sB+1, pa, sA+1, &b, pc, N);
#endif
}
//-----------------------------------------------------------------------------
//* returns the inverse of a double precision matrix
//-----------------------------------------------------------------------------
DenseMatrix<double> inv(const MATRIX& A)
{
SQCK(A, "DenseMatrix::inv(), matrix not square"); // check matrix is square
DENS_MAT invA(A); // Make copy of A to invert
// setup for call to BLAS
int m, info, lwork=-1;
m = invA.nRows();
int *ipiv = new int[m<<1]; // need 2m storage
int *iwork=ipiv+m;
dgetrf_(&m,&m,invA.ptr(),&m,ipiv,&info); // compute LU factorization
GCK(A,A,info<0,"DenseMatrix::inv() dgetrf error: Argument had bad value.");
GCK(A,A,info>0,"DenseMatrix::inv() dgetrf error: Matrix not invertible.");
if (info > 0) {
delete [] ipiv;
invA = 0;
return invA;
}
// LU factorization succeeded
// Compute 1-norm of original matrix for use with dgecon
char norm = '1'; // Use 1-norm
double rcond, anorm, *workc = new double[4*m];
anorm = dlange_(&norm,&m,&m,A.ptr(),&m,workc);
// Condition number estimation (warn if bad)
dgecon_(&norm,&m,invA.ptr(),&m,&anorm,&rcond,workc,iwork,&info);
GCK(A,A,info<0, "DenseMatrix::inv(): dgecon error: Argument had bad value.");
GCK(A,A,rcond<1e-14,"DenseMatrix::inv(): Matrix nearly singular, RCOND<e-14");
// Now determine optimal work size for computation of matrix inverse
double work_dummy[2] = {0.0,0.0};
dgetri_(&m, invA.ptr(), &m, ipiv, work_dummy, &lwork, &info);
GCK(A,A,info<0,"DenseMatrix::inv() dgetri error: Argument had bad value.");
GCHK(info>0,"DenseMatrix::inv() dgetri error: Matrix not invertible.");
// Work size query succeded
lwork = (int)work_dummy[0];
double *work = new double[lwork]; // Allocate vector of appropriate size
// Compute and store matrix inverse
dgetri_(&m,invA.ptr(),&m,ipiv,work,&lwork,&info);
GCK(A,A,info<0,"DenseMatrix::inv() dgetri error: Argument had bad value.");
GCHK(info>0,"DenseMatrix::inv() dgetri error: Matrix not invertible.");
// Clean-up
delete [] ipiv;
delete [] workc;
delete [] work;
return invA;
}
//-----------------------------------------------------------------------------
//* returns all eigenvalues & e-vectors of a pair of double precision matrices
//-----------------------------------------------------------------------------
DenseMatrix<double> eigensystem(const MATRIX& AA, const MATRIX & BB,
DenseMatrix<double> & eVals, bool normalize)
{
DENS_MAT A(AA); // Make copy of A
DENS_MAT B(BB);
int m = A.nRows(); // size
eVals.resize(m,1); // eigenvectors
//A.print("A");
//B.print("B");
SQCK(A, "DenseMatrix::eigensystem(), matrix not square"); // check matrix is square
SQCK(B, "DenseMatrix::eigensystem(), matrix not square"); // check matrix is square
SSCK(A, B, "DenseMatrix::eigensystem(), not same size");// check same size
// workspace
int lwork=-1; //1+(NB+6+2*NMAX)*NMAX)
double tmp[1];
double *work = tmp;
int liwork = -1; // 3+5*NMAX
int itmp[1];
int *iwork = itmp;
// Solve the generalized symmetric eigenvalue problem
// A*x = lambda*B*x (ITYPE = 1)
// only accesses upper triangle
char vectors[] = "Vectors", upper[] = "Upper";
int type = 1, info;
// query optimal sizes
dsygvd_(&type,vectors,upper,&m,A.ptr(),&m,B.ptr(),&m,
eVals.ptr(),work,&lwork,iwork,&liwork,&info);
// returns optimal sizes LWOPT = WORK(1), LIWOPT = IWORK(1)
lwork = int(work[0]);
liwork = iwork[0];
work = new double[lwork];
iwork = new int[liwork];
dsygvd_(&type,vectors,upper,&m,A.ptr(),&m,B.ptr(),&m,
eVals.ptr(),work,&lwork,iwork,&liwork,&info);
GCK(A,B,info!=0,"DenseMatrix::eigensystem(), error");
//eVals.print("e-values");
//(A.transpose()).print("e-vectors");
// normalize
if (normalize) {
for (int j = 0; j < A.nCols(); j++) {
double scale = 0.0;
for (int i = 0; i < A.nRows(); i++) {
scale += A(i,j)*A(i,j);
}
scale = 1.0/sqrt(scale);
for (int i = 0; i < A.nRows(); i++) {
A(i,j) *= scale;
}
}
//(A.transpose()).print("normalized e-vectors");
}
delete [] work;
delete [] iwork;
//return A.transpose();
return A; // column storage
}
//-----------------------------------------------------------------------------
//* returns (1-norm) condition number
//-----------------------------------------------------------------------------
double condition_number(const MATRIX& AA)
{
DenseMatrix<double> eVals, I;
I.identity(AA.nRows());
eigensystem(AA, I, eVals);
// [1] William W. Hager, "Condition Estimates," SIAM J. Sci. Stat. Comput. 5, 1984, 311-316, 1984.
// [2] Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation with an Application to 1-Norm Pseudospectra, "SIAM J. Matrix Anal. Appl., Vol. 21, 1185-1201, 2000.
double max = eVals.maxabs();
double min = eVals.minabs();
return max/min;
}
//-----------------------------------------------------------------------------
//* returns polar decomposition of a square double precision matrix via SVD
//-----------------------------------------------------------------------------
DenseMatrix<double> polar_decomposition(const MATRIX& AA,
DenseMatrix<double> & rotation,
DenseMatrix<double> & stretch,
bool leftRotation)
{
DENS_MAT A(AA); // Make copy of A
SQCK(A, "DenseMatrix::polar_decomposition(), matrix not square");
int m = A.nRows(); // size
DENS_MAT D(m,1);
DENS_MAT U(m,m), VT(m,m); // left and right SVD rotations
// workspace
int lwork=-1;
double tmp[1];
double *work = tmp;
// calculate singular value decomposition A = U D V^T
char type[] = "A"; // all columns are returned
int info;
// query optimal sizes
dgesvd_(type,type,&m,&m,A.ptr(),&m,D.ptr(),
U.ptr(),&m,VT.ptr(),&m,
work,&lwork,&info); // simple: svd, div&conq: sdd
lwork = int(work[0]); // returns optimal size LWOPT = WORK(1)
work = new double[lwork];
// compute SVD
dgesvd_(type,type,&m,&m,A.ptr(),&m,D.ptr(),
U.ptr(),&m,VT.ptr(),&m,
work,&lwork,&info);
//GCK(A,B,info!=0,"DenseMatrix::polar_decomposition(), error");
GCK(A,A,info!=0,"DenseMatrix::polar_decomposition(), error");
delete [] work;
//rotation.resize(m,m);
rotation = U*VT;
// A = R' U' = (U V^T) (V D V^T)
stretch.resize(m,m);
//if (leftRotation) { stretch = (VT.transpose())*D*VT; }
if (leftRotation) {
DENS_MAT V = VT.transpose();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < m; ++j) {
stretch(i,j) = V(i,j)*D(j,0);
}
}
stretch = stretch*VT;
}
// A = V' R' = (U D U^T) (U V^T)
//else { stretch = U*D*(U.transpose()); }
else {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < m; ++j) {
stretch(i,j) = U(i,j)*D(j,0);
}
}
stretch = stretch*(U.transpose());
}
return D;
}
//-----------------------------------------------------------------------------
//* computes the determinant of a square matrix by LU decomposition (if n>3)
//-----------------------------------------------------------------------------
double det(const MATRIX& A)
{
static const double sign[2] = {1.0, -1.0};
SQCK(A, "Matrix::det(), matrix not square"); // check matrix is square
int m = A.nRows();
switch (m) // explicit determinant for small matrix sizes
{
case 1: return A(0,0);
case 2: return A(0,0)*A(1,1)-A(0,1)*A(1,0);
case 3:
return A(0,0)*(A(1,1)*A(2,2)-A(1,2)*A(2,1))
+ A(0,1)*(A(1,2)*A(2,0)-A(1,0)*A(2,2))
+ A(0,2)*(A(1,0)*A(2,1)-A(1,1)*A(2,0));
default: break;
}
// First compute LU factorization
int info, *ipiv = new int[m];
double det = 1.0;
DENS_MAT PLUA(A);
dgetrf_(&m,&m,PLUA.ptr(),&m,ipiv,&info);
GCK(A,A,info>0,"Matrix::det() dgetrf error: Bad argument value.");
if (!info) // matrix is non-singular
{
// Compute det(A) = det(P)*det(L)*det(U) = +/-1 * det(U)
int i, OddNumPivots;
det = PLUA(0,0);
OddNumPivots = ipiv[0]!=(1);
for(i=1; i<m; i++)
{
det *= PLUA(i,i);
OddNumPivots += (ipiv[i]!=(i+1)); // # pivots even/odd
}
det *= sign[OddNumPivots&1];
}
delete [] ipiv; // Clean-up
return det;
}
//-----------------------------------------------------------------------------
//* Returns the maximum eigenvalue of a matrix.
//-----------------------------------------------------------------------------
double max_eigenvalue(const Matrix<double>& A)
{
GCK(A,A,!A.is_size(3,3), "max_eigenvalue only implimented for 3x3");
const double c0 = det(A);
const double c1 = A(1,0)*A(0,1) + A(2,0)*A(0,2) + A(1,2)*A(2,1)
- A(0,0)*A(1,1) - A(0,0)*A(2,2) - A(1,1)*A(2,2);
const double c2 = trace(A);
double c[4] = {c0, c1, c2, -1.0}, x[3];
int num_roots = ATC::solve_cubic(c, x);
double max_root = 0.0;
for (int i=0; i<num_roots; i++) max_root = std::max(x[i], max_root);
return max_root;
}
} // end namescape
|