1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
  
     | 
    
      #include "Stress.h"
#include "CauchyBorn.h"
#include "CBLattice.h"
#include "CbLjCut.h" 
#include "CbLjSmoothLinear.h" 
#include "CbEam.h" 
#include "ATC_Error.h"
#include "LammpsInterface.h"
#include "VoigtOperations.h"
#include <iostream>
using ATC_Utility::command_line;
using ATC_Utility::str2dbl;
using voigt3::voigt_idx1;
using voigt3::voigt_idx2;
using voigt3::to_voigt_unsymmetric;
using voigt3::from_voigt_unsymmetric;
using voigt3::to_voigt;
using voigt3::from_voigt;
using std::stringstream;
using std::vector;
using std::string;
using std::fstream;
namespace ATC {
//=============================================================================
// extracts a stress at an integration point 
// Note: Utility function: not in header
//=============================================================================
DENS_MAT extract_stress(const DENS_MAT_VEC &sigma, INDEX ip=0)
{
  DENS_MAT s(3,3,false);
  for (int j=0; j<3; j++) for (int i=0; i<3; i++) s(i,j) = sigma[i](ip,j);
  return s;
}
//=============================================================================
// computes the pressure from the stress at the first quadrature point (in atm)
// Note: Utility function: not in header
//=============================================================================
double compute_pressure(const DENS_MAT_VEC &sigma, const DENS_MAT &F)
{
  // pressure in units (mass-velocity^2)/Volume (LAMMPS real)
  double p = (sigma[0](0,0) + sigma[1](0,1) + sigma[2](0,2)) * (1.0/3.0);
  p *= 1.0e14/6.0221415;            // convert from units real to Pa 
  p *= 1.0/101235.0;                // convert from Pa to ATM
  return p * pow(det(F), -1.0/3.0); // convert from PK2 to Cauchy stress
}
//=============================================================================
// extracts the deformation gradient at a quadrature point, q
// Note: Utility function: not in header
//=============================================================================
void deformation_gradient(const DENS_MAT_VEC &du, INDEX q, MATRIX &F)
{
  F.reset(du.size(), du.size(), false);
  for (INDEX j=0; j<F.nCols(); j++) {
    for (INDEX i=0; i<F.nRows(); i++) F(i,j) = du[j](q,i);
    F(j,j) += 1.0;
  } 
}
//=============================================================================
// E = 1/2 stress*strain for linear elastic models
//=============================================================================
void Stress::elastic_energy(const FIELD_MATS &fields,
                            const GRAD_FIELD_MATS &gradFields,
                            DENS_MAT &energy) const
{
 int nRows = ( ((gradFields.find(DISPLACEMENT))->second)[0]).nRows();
 energy.reset(nRows,1);
 ATC::LammpsInterface::instance()->print_msg("WARNING: returning dummy elastic energy");
 
}
//=============================================================================
// isotropic linear elastic
//=============================================================================
StressLinearElastic::StressLinearElastic(fstream &fileId) 
  : StressCubicElastic(), E_(0), nu_(0), mu_(0), lambda_(0)
{
  if (!fileId.is_open()) throw ATC_Error("cannot open material file");
  vector<string> line;
  while(fileId.good()) {
    command_line(fileId, line);
    if (line[0] == "end") {
      mu_ = E_/(2.0+2.0*nu_);
      lambda_ = mu_*nu_ / (0.5 - nu_);
      StressCubicElastic::c11_ = E_*(1-nu_)/(1+nu_)/(1-2*nu_);
      StressCubicElastic::c12_ = E_*nu_    /(1+nu_)/(1-2*nu_);
      StressCubicElastic::c44_ = E_/(1+nu_)/2;
      if (nu_ < 0.0 || nu_ > 1.0) 
        throw ATC_Error("bad linear elastic constants");   
      if (lambda_ < 0.0 || mu_ < 0.0)
        throw ATC_Error("bad continuum material parameter");
      return;
    }
    else if (line[0]=="modulus")        E_ = str2dbl(line[1]);
    else if (line[0]=="possions_ratio") nu_ = str2dbl(line[1]);
    else throw ATC_Error( "unrecognized material function");
  }
}
//=============================================================================
// compute the stress at N integration points from the displacement gradient
// T_{ij} = 1/2*C_{ijkl}* (u_{k,l} + u_{l,k})
//=============================================================================
void StressLinearElastic::stress(const FIELD_MATS      &fields,
                                 const GRAD_FIELD_MATS &gradFields,
                                 DENS_MAT_VEC &sigma)
{
  GRAD_FIELD_MATS::const_iterator du_itr = gradFields.find(DISPLACEMENT);
  const DENS_MAT_VEC &du = du_itr->second;
  CLON_VEC uxx(du[0],CLONE_COL,0);
  CLON_VEC uxy(du[1],CLONE_COL,0);
  CLON_VEC uxz(du[2],CLONE_COL,0);
  CLON_VEC uyx(du[0],CLONE_COL,1);
  CLON_VEC uyy(du[1],CLONE_COL,1);
  CLON_VEC uyz(du[2],CLONE_COL,1);
  CLON_VEC uzx(du[0],CLONE_COL,2);
  CLON_VEC uzy(du[1],CLONE_COL,2);
  CLON_VEC uzz(du[2],CLONE_COL,2);
  const INDEX N = uxx.size();          // # of integration pts
  sigma.assign(3, DENS_MAT(N,3));
  // precompute the pressure and copy to the diagonal
  column(sigma[0],0) = (uxx + uyy + uzz)*(-lambda_);
  column(sigma[1],1) = column(sigma[0],0);
  column(sigma[2],2) = column(sigma[0],0);
  column(sigma[0],0) -= 2.0*mu_*uxx;
  column(sigma[0],1) = (uxy + uyx)*(-mu_);
  column(sigma[0],2) = (uxz + uzx)*(-mu_);
  column(sigma[1],0) = column(sigma[0],1);
  column(sigma[1],1) -= 2.0*mu_*uyy;
  column(sigma[1],2) = (uyz + uzy)*(-mu_);
  column(sigma[2],0) = column(sigma[0],2);
  column(sigma[2],1) = column(sigma[1],2);
  column(sigma[2],2) -= 2.0*mu_*uzz;
}
//=============================================================================
// cubic elastic
//=============================================================================
StressCubicElastic::StressCubicElastic(fstream &fileId) 
  : c11_(0), c12_(0), c44_(0)
{
  if (!fileId.is_open()) throw ATC_Error("cannot open material file");
  vector<string> line;
  while(fileId.good()) {
    command_line(fileId, line);
    if      (line[0]=="end") return;
    else if (line[0]=="c11") c11_ = str2dbl(line[1]);
    else if (line[0]=="c12") c12_ = str2dbl(line[1]);
    else if (line[0]=="c44") c44_ = str2dbl(line[1]);
    else throw ATC_Error( "unrecognized material function"); 
  }
}
//---------------------------------------------------------------------------
// compute the stress at N integration points from the displacement gradient
// T_{ij} = 1/2*C_{ijkl}*(u_{k,l} + u_{l,k}) 
//---------------------------------------------------------------------------
void StressCubicElastic::stress(const FIELD_MATS      &fields,
                                const GRAD_FIELD_MATS &gradFields,
                                DENS_MAT_VEC  &sigma)  
{
  GRAD_FIELD_MATS::const_iterator du_itr = gradFields.find(DISPLACEMENT);
  const DENS_MAT_VEC &du = du_itr->second;
  CLON_VEC uxx(du[0],CLONE_COL,0);
  CLON_VEC uxy(du[1],CLONE_COL,0);
  CLON_VEC uxz(du[2],CLONE_COL,0);
  CLON_VEC uyx(du[0],CLONE_COL,1);
  CLON_VEC uyy(du[1],CLONE_COL,1);
  CLON_VEC uyz(du[2],CLONE_COL,1);
  CLON_VEC uzx(du[0],CLONE_COL,2);
  CLON_VEC uzy(du[1],CLONE_COL,2);
  CLON_VEC uzz(du[2],CLONE_COL,2);
  const INDEX N = uxx.size();          // # of integration pts
  sigma.assign(3, DENS_MAT(N,3));
  const double c12 = c12_;
  const double c11 = c11_;
  const double c44 = c44_;
  // scaling: stress must return (-) stress
  column(sigma[0],0) = -c11*uxx - c12*(uyy+uzz);
  column(sigma[1],1) = -c11*uyy - c12*(uxx+uzz);
  column(sigma[2],2) = -c11*uzz - c12*(uxx+uyy);
  column(sigma[0],1) = -c44*(uxy+uyx);
  column(sigma[1],0) = column(sigma[0],1);
  column(sigma[0],2) = -c44*(uxz+uzx);
  column(sigma[2],0) = column(sigma[0],2);
  column(sigma[1],2) = -c44*(uyz+uzy);
  column(sigma[2],1) = column(sigma[1],2);
}
//---------------------------------------------------------------------------
// compute the elastic energy at N integration points from displacement gradient
// E = 1/8*C_{ijkl}* (u_{k,l} + u_{l,k})* (u_{i,j} + u_{j,i})*rho ?
//   = 1/2 (4 c44 (u12^2 + u13^2 + u23^2) + 2 c12 (u11 u22 + u11 u33 + u22 u33) 
//        + c11 (u11^2 + u22^2 + u33^2))
//---------------------------------------------------------------------------
void StressCubicElastic::elastic_energy(const FIELD_MATS      &fields,
                                        const GRAD_FIELD_MATS &gradFields,
                                        DENS_MAT  &energy) const
{
  GRAD_FIELD_MATS::const_iterator du_itr = gradFields.find(DISPLACEMENT);
  const DENS_MAT_VEC &du = du_itr->second;
  CLON_VEC uxx(du[0],CLONE_COL,0);
  CLON_VEC uxy(du[1],CLONE_COL,0);
  CLON_VEC uxz(du[2],CLONE_COL,0);
  CLON_VEC uyx(du[0],CLONE_COL,1);
  CLON_VEC uyy(du[1],CLONE_COL,1);
  CLON_VEC uyz(du[2],CLONE_COL,1);
  CLON_VEC uzx(du[0],CLONE_COL,2);
  CLON_VEC uzy(du[1],CLONE_COL,2);
  CLON_VEC uzz(du[2],CLONE_COL,2);
  CLON_VEC E(energy,CLONE_COL,0);
  const double c12 = c12_;
  const double c11 = c11_;
  const double c44 = c44_;
  //double scale = (ATC::LammpsInterface::instance()->mvv2e());
  for (INDEX gp=0; gp<du.front().nRows(); gp++) {
    double u11 = uxx(gp); 
    double u22 = uyy(gp); 
    double u33 = uzz(gp); 
    double u12 = 0.5*(uxy(gp)+uyx(gp)); 
    double u13 = 0.5*(uxz(gp)+uzx(gp));
    double u23 = 0.5*(uyz(gp)+uzy(gp));
    double EE  = 0.5* (4.0*c44*(u12*u12 + u13*u13 + u23*u23) 
                     + 2.0*c12*(u11*u22 + u11*u33 + u22*u33) 
                         + c11*(u11*u11 + u22*u22 + u33*u33));
    
    E(gp) = EE;
  }
}
void StressCubicElastic::set_tangent(void) 
{
  C_.reset(6,6);
  C_(0,0)=C_(1,1)=C_(2,2)                        =c11_;
  C_(0,1)=C_(1,0)=C_(1,2)=C_(2,1)=C_(0,2)=C_(2,0)=c12_;
  C_(3,3)=C_(4,4)=C_(5,5)                        =c44_;
}
//=============================================================================
// damped cubic elastic
//=============================================================================
StressCubicElasticDamped::StressCubicElasticDamped(fstream &fileId) 
  : StressCubicElastic(), gamma_(0)
{
  if (!fileId.is_open()) throw ATC_Error("cannot open material file");
  vector<string> line;
  while(fileId.good()) {
    command_line(fileId, line);
    if      (line[0]=="end") return;
    else if (line[0]=="c11") StressCubicElastic::c11_ = str2dbl(line[1]);
    else if (line[0]=="c12") StressCubicElastic::c12_ = str2dbl(line[1]);
    else if (line[0]=="c44") StressCubicElastic::c44_ = str2dbl(line[1]);
    else if (line[0]=="gamma") gamma_ = str2dbl(line[1]);
    else throw ATC_Error( "unrecognized material function");
  }
}
//---------------------------------------------------------------------------
// compute the stress at N integration points 
//---------------------------------------------------------------------------
void StressCubicElasticDamped::stress(const FIELD_MATS      &fields,
                                const GRAD_FIELD_MATS &gradFields,
                                DENS_MAT_VEC  &sigma)  
{
  StressCubicElastic::stress(fields,gradFields,sigma);
  GRAD_FIELD_MATS::const_iterator dv_itr = gradFields.find(VELOCITY);
  const DENS_MAT_VEC &dv = dv_itr->second;
  CLON_VEC vxx(dv[0],CLONE_COL,0);
  CLON_VEC vxy(dv[1],CLONE_COL,0);
  CLON_VEC vxz(dv[2],CLONE_COL,0);
  CLON_VEC vyx(dv[0],CLONE_COL,1);
  CLON_VEC vyy(dv[1],CLONE_COL,1);
  CLON_VEC vyz(dv[2],CLONE_COL,1);
  CLON_VEC vzx(dv[0],CLONE_COL,2);
  CLON_VEC vzy(dv[1],CLONE_COL,2);
  CLON_VEC vzz(dv[2],CLONE_COL,2);
  // scaling: stress must return (-) stress
  column(sigma[0],0) += -gamma_*vxx;
  column(sigma[1],1) += -gamma_*vyy;
  column(sigma[2],2) += -gamma_*vzz;
  column(sigma[0],1) += -0.5*gamma_*(vxy+vyx);
  column(sigma[1],0) += column(sigma[0],1);
  column(sigma[0],2) += -0.5*gamma_*(vxz+vzx);
  column(sigma[2],0) += column(sigma[0],2);
  column(sigma[1],2) += -0.5*gamma_*(vyz+vzy);
  column(sigma[2],1) += column(sigma[1],2);
}
//==============================================================================
// cauchy born model
//==============================================================================
StressCauchyBorn::StressCauchyBorn(fstream &fileId, CbData &cb)
  :  cblattice_(NULL),
     potential_(NULL),
     makeLinear_(false),
     cubicMat_(NULL),
     initialized_(false),
     fixed_temperature_(0.),
     cbdata_(cb)
{
  if (!fileId.is_open()) throw ATC_Error("cannot open material file"); 
  while(fileId.good()) {
    // reads a line from the material file
    vector<string> line;
    command_line(fileId, line);
    if (line.empty()) continue;   // skip blank lines
    else if (line[0]=="end") {
      delete cblattice_;
      if (!potential_) throw ATC_Error( "no potential defined"); 
      cblattice_ = new CBLattice(cbdata_.cell_vectors, cbdata_.basis_vectors); 
      return;
    }
    else if (line[0] == "pair_style") {
      if (line[1] == "lj/cut") {      // Lennard-Jones w/ cutoff radius
        if (line.size()<3) throw(ATC_Error("no lj/cut cutoff radius"));
        const double rc = str2dbl(line[2]);
        while (!fileId.eof()) { // find next pair_coeff command
          command_line(fileId, line); 
          if (line.size() && line[0]=="pair_coeff") break;
        }
        if (line[0] != "pair_coeff" || line.size() != 3) {
          throw(ATC_Error("lj/cut needs 2 coefficents"));
        }
        delete potential_;
        potential_ = new CbLjCut(str2dbl(line[1]), str2dbl(line[2]), rc);
      }
      else if (line[1] == "lj/smooth/linear") { // Lennard-Jones w/ cutoff radius and smoothed
        if (line.size()<3) throw(ATC_Error("no lj/smooth/linear cutoff radius"));
        const double rc = str2dbl(line[2]);
        while (!fileId.eof()) { // find next pair_coeff command
          command_line(fileId, line);
          if (line.size() && line[0]=="pair_coeff") break;
        }
        if (line[0] != "pair_coeff" || line.size() != 3) {
          throw(ATC_Error("lj/smooth/linear needs 2 coefficents"));
        }
        delete potential_;
        potential_ = new CbLjSmoothLinear(str2dbl(line[1]), str2dbl(line[2]), rc);
      }
      else if (line[1] == "eam") {      // Embedded atom method potential 
        delete potential_;
        potential_ = new CbEam();
      }
      else throw (ATC_Error("Invalid pair style"));
    }
    else if (line[0] == "linear") makeLinear_ = true;
    else if (line[0] == "temperature" && line.size() == 2) {
      fixed_temperature_ = str2dbl(line[1]);
    }
    else if (line[0]=="material" || line[0]=="stress") /* ignore this */; 
    else throw ATC_Error( "Unrecognized Cauchy-Born parameter: "+line[0]+".");
  }
}
//==============================================================================
//* default destructor - delete potential and lattice
//==============================================================================
StressCauchyBorn::~StressCauchyBorn()
{
  if (potential_) delete potential_;
  if (cblattice_) delete cblattice_;
  if (cubicMat_) delete cubicMat_;
}
//==============================================================================
// initialize
//==============================================================================
void StressCauchyBorn::initialize(void) 
{
  if (!initialized_) {
    if (makeLinear_) linearize();
    stringstream ss;
    double k = stiffness()*cbdata_.e2mvv; 
    double m = cbdata_.atom_mass;
    double w0 = sqrt(k*m);
    ss << "CB stiffness: " << stiffness() << " Einstein freq: " << w0;
    ATC::LammpsInterface::instance()->print_msg_once(ss.str());
    initialized_ = true;
  }
}
//==============================================================================
// compute the bond stiffness consistent with the einstein freq
//==============================================================================
double StressCauchyBorn::stiffness(void) const
{
  AtomCluster vac;
  cblattice_->atom_cluster(eye<double>(3,3), potential_->cutoff_radius(), vac);
  DENS_MAT k = vac.force_constants(0,potential_);
  return k(0,0);
}
//==============================================================================
// compute the stress at N integration points from the displacement gradient
//==============================================================================
void StressCauchyBorn::stress(const FIELD_MATS &fields, 
                              const GRAD_FIELD_MATS &gradFields, 
                              DENS_MAT_VEC &sigma)
{
  if (cubicMat_) {
    cubicMat_->stress(fields, gradFields, sigma);
    return;
  }
  FIELD_MATS::const_iterator               temp = fields.find(TEMPERATURE);
  GRAD_FIELD_MATS::const_iterator disp_gradient = gradFields.find(DISPLACEMENT);
  // Scaling factor - scale by atomic volume and energy conversion.
  // negative because stress must return (-) stress
  const double fact = -cbdata_.inv_atom_volume * cbdata_.e2mvv;
  const DENS_MAT_VEC &du(disp_gradient->second);
  const INDEX num_integration_pts = du.front().nRows(); 
  const INDEX nsd = du.size();
  DENS_MAT F(nsd,nsd);                // displacement gradient 
  bool temp_varies = (temp != fields.end());
  sigma.assign(nsd, DENS_MAT(num_integration_pts, nsd));
  StressAtIP S(sigma); // wrapper for quadrature points.
  AtomCluster vac;
  for (INDEX gp=0; gp<num_integration_pts; gp++) {
    // Sets the quadrature point to be computed.
    S.set_quadrature_point(gp);
    // Get displacement gradient and construct a virtual atom cluster.
    deformation_gradient(du, gp, F);
    // Generates the atom cluster, given the deformation gradient.
    cblattice_->atom_cluster(F, potential_->cutoff_radius(), vac);
    // Get temperature (assume 0K if no temperature field is present).
    const double T = (temp_varies ? temp->second[gp] : fixed_temperature_);
    // Computes the cauchy-born stresses.
    const StressArgs args(vac, potential_, cbdata_.boltzmann, cbdata_.hbar, T);
    cb_stress(args, S);
    // copy symmetric part of stress and scale by V0
    for (INDEX i=0; i<nsd; i++) { 
      S(i,i) *= fact;  
      for (INDEX j=i+1; j<nsd; j++)  S(j,i)=(S(i,j)*=fact);
    }
  }
}
//==============================================================================
// Computes free (T>0)/potential(T=0) energy density.  [mvv/L^3]
//==============================================================================
void StressCauchyBorn::elastic_energy(const FIELD_MATS &fields, 
                                      const GRAD_FIELD_MATS &gradFields,
                                      DENS_MAT &energy) const
{
  if (cubicMat_) {
    cubicMat_->elastic_energy(fields, gradFields, energy);
    return;
  }
  FIELD_MATS::const_iterator               temp = fields.find(TEMPERATURE);
  GRAD_FIELD_MATS::const_iterator disp_gradient = gradFields.find(DISPLACEMENT);
  const DENS_MAT_VEC &du(disp_gradient->second);
  DENS_MAT F(du.size(),du.size());
  AtomCluster vac;
  for (INDEX gp=0; gp<du.front().nRows(); gp++) {
    deformation_gradient(du, gp, F);
    cblattice_->atom_cluster(F, potential_->cutoff_radius(), vac);
    double T = (temp!=fields.end() ? temp->second[gp] : fixed_temperature_);
    energy[gp] = cb_energy(StressArgs(vac, potential_, cbdata_.boltzmann, cbdata_.hbar, T));
  }
  // Scaling factor - scale by atomic volume and energy conversion.
  
  energy *= cbdata_.inv_atom_volume * cbdata_.e2mvv;
}
//==============================================================================
// Computes entropic energy density.  [mvv/L^3]
//==============================================================================
void StressCauchyBorn::entropic_energy(const FIELD_MATS &fields, 
                                       const GRAD_FIELD_MATS &gradFields,
                                       DENS_MAT &energy) const
{
  FIELD_MATS::const_iterator               temp = fields.find(TEMPERATURE);
  GRAD_FIELD_MATS::const_iterator disp_gradient = gradFields.find(DISPLACEMENT);
  const DENS_MAT_VEC &du(disp_gradient->second);
  DENS_MAT F(du.size(),du.size());
  AtomCluster vac;
  for (INDEX gp=0; gp<du.front().nRows(); gp++) {
    deformation_gradient(du, gp, F);
    cblattice_->atom_cluster(F, potential_->cutoff_radius(), vac);
    double T = (temp!=fields.end() ? temp->second[gp] : fixed_temperature_);
    energy[gp] = cb_entropic_energy(StressArgs(vac, potential_, cbdata_.boltzmann, cbdata_.hbar, T));
  }
  // Scaling factor - scale by atomic volume and energy conversion.
  energy *= cbdata_.inv_atom_volume * cbdata_.e2mvv;
}
//==============================================================================
// creates a linearization for a deformation gradient
//==============================================================================
void StressCauchyBorn::linearize(MATRIX *F)
{
  if (cubicMat_) delete cubicMat_;
  DENS_MAT C;   
  if (F) tangent(*F, C);
  else   tangent(eye<double>(3,3), C);
  cubicMat_ = new StressCubicElastic(C(0,0), C(0,1), C(3,3));
  stringstream ss;
  double c11 = C(0,0)/cbdata_.e2mvv;
  double c12 = C(0,1)/cbdata_.e2mvv;
  double c44 = C(3,3)/cbdata_.e2mvv;
  ss << "created cubic stress function:"
     << "\n   lammps         ATC units" 
     << "\n   c11=" << c11 << " " << C(0,0)
     << "\n   c12=" << c12 << " " << C(0,1)
     << "\n   c44=" << c44 << " " << C(3,3);
  ATC::LammpsInterface::instance()->print_msg_once(ss.str());
}
//==============================================================================
// sets C as the material tangent modulus, given deformation gradient F
//==============================================================================
// Note: C is dS/dC which is 1/2 dS/dF_sym
void StressCauchyBorn::tangent(const MATRIX &F, MATRIX &C)  const
{
  if (cubicMat_) {
    cubicMat_->tangent(F,C);
    return;
  }
  elasticity_tensor(F,C);
}
//==============================================================================
// 1st elasticity tensor : B = dP/dF = C F F + S I ( 9 x 9 in Voigt notation)
// 2nd elasticity tensor : C = dS/dE ( 6 x 6 in Voigt notation)
//==============================================================================
DENS_VEC StressCauchyBorn::elasticity_tensor(const VECTOR &Fv, MATRIX &C, const ElasticityTensorType type)  const
{
   DENS_MAT F;
   if (Fv.nRows()==9) { F = from_voigt_unsymmetric(Fv); }
   else               { F = from_voigt(Fv); }
   return elasticity_tensor(F, C,type);
}
DENS_VEC StressCauchyBorn::elasticity_tensor(const MATRIX &F, MATRIX &C, const ElasticityTensorType type)  const
{
  double T = 0; 
  AtomCluster vac;
  cblattice_->atom_cluster(F, potential_->cutoff_radius(), vac);
  if (vac.size() < 4) throw ATC_Error("StressCauchyBorn::second_elasticity_tensor cluster does not have sufficient atoms");
  const StressArgs args(vac, potential_, cbdata_.boltzmann, cbdata_.hbar, T);
  // if using EAM potential, calculate embedding function and derivatives
  bool hasEAM = potential_->terms.embedding;
  double embed_p  = 0;
  double embed_pp = 0;
  if (hasEAM) {
    double e_density = cb_electron_density(args);
    embed_p  = potential_->F_p(e_density); // "F" in usual EAM symbology
    embed_pp = potential_->F_pp(e_density);
  }
  int size = 6;
  if (type == FIRST_ELASTICITY_TENSOR) { size = 9; }
  DENS_VEC Z(size), S(size), Zfp(size);
  Zfp = 0;
  C.reset(size,size);
  for (INDEX a=0; a<vac.size(); a++) {
    const DENS_VEC &Ra = vac.R(a);
    if (type == FIRST_ELASTICITY_TENSOR) { 
      DENS_VEC ra = F*Ra;
      for (INDEX i=0; i<size; i++) { Z(i)=ra(voigt_idx1[i])*Ra(voigt_idx2[i]); }
    }
    else {
      for (INDEX i=0; i<size; i++) { Z(i)=Ra(voigt_idx1[i])*Ra(voigt_idx2[i]); }
    }
    double d = vac.bond_length(a);
    double rinv   = 1.0/d;
    double phi_r  = potential_->phi_r(d);  // computes phi'
    double phi_rr = potential_->phi_rr(d); // computes phi''
    double fact1 = 0.5*phi_r*rinv;  // 1/2 see Philips
    double fact2 = 0.5*(phi_rr - phi_r*rinv) * rinv*rinv; 
    if (hasEAM) {
      double rho_r  = potential_->rho_r(d);  // computes rho'
      double rho_rr = potential_->rho_rr(d); // computes rho''
      fact1 += embed_p*rho_r*rinv;
      fact2 += embed_p*(rho_rr - rho_r*rinv) * rinv*rinv; 
      Zfp += Z*(rho_r*rinv);
    }
    for (INDEX i=0; i<size; i++) {
      S(i) += fact1*Z(i);
      for (INDEX j=0; j<size; j++) { 
        C(i,j) += fact2*Z(i)*Z(j); 
      }
    }
    if (type == FIRST_ELASTICITY_TENSOR) { 
      for (INDEX i=0; i<9; i++) {
        for (INDEX j=0; j<9; j++) { 
          if ( voigt_idx1[i] == voigt_idx1[j] )  { // \delta_ik S_JL
            C(i,j) += fact1*Ra(voigt_idx2[i])*Ra(voigt_idx2[j]);
          }
        }
      }
    }
  }
  if (hasEAM) {
    for (INDEX i=0; i<6; i++) {
      for (INDEX j=0; j<6; j++) { 
        C(i,j) += embed_pp*Zfp(i)*Zfp(j);  
      }
    }
  }
  double s = cbdata_.inv_atom_volume * cbdata_.e2mvv;  
  S *= s;
  C *= s;
  return S;
}
}// end atc namespace
 
     |