File: cerf.h

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (240 lines) | stat: -rw-r--r-- 7,036 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# ifndef CERF_H
# define CERF_H

# include <complex>
# include <cmath>
/*

Copyright (C) 1998, 1999 John Smith

This file is part of Octave.
Or it might be one day....

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/

// Put together by John Smith john at arrows dot demon dot co dot uk, 
// using ideas by others.
//
// Calculate erf(z) for complex z.
// Three methods are implemented; which one is used depends on z.
//
// The code includes some hard coded constants that are intended to
// give about 14 decimal places of accuracy. This is appropriate for
// 64-bit floating point numbers. 
//
// Oct 1999: Fixed a typo that in
//     const Complex cerf_continued_fraction( const Complex z )
// that caused erroneous answers for erf(z) where real(z) negative
//


//
// Abramowitz and Stegun: (eqn: 7.1.14) gives this continued
// fraction for erfc(z)
//
// erfc(z) = sqrt(pi).exp(-z^2).  1   1/2   1   3/2   2   5/2  
//                               ---  ---  ---  ---  ---  --- ...
//                               z +  z +  z +  z +  z +  z +
//
// This is evaluated using Lentz's method, as described in the narative
// of Numerical Recipes in C.
//
// The continued fraction is true providing real(z)>0. In practice we 
// like real(z) to be significantly greater than 0, say greater than 0.5.
//
template< class Complex>
const Complex cerfc_continued_fraction( const Complex z )
{
  double tiny = 1e-20 ;     // a small number, large enough to calculate 1/tiny
  double eps = 1e-15 ;      // large enough so that 1.0+eps > 1.0, when using
                            // the floating point arithmetic
  //
  // first calculate z+ 1/2   1 
  //                    ---  --- ...
  //                    z +  z + 
  Complex f(z) ;
  Complex C(f) ;
  Complex D(0.0) ;
  Complex delta ;
  double a ;

  a = 0.0 ;
  do
    {
      a = a + 0.5 ;
      D = z + a*D ;
      C = z + a/C ;

      if (D.real() == 0.0 && D.imag() ==  0.0)
	D = tiny ;

      D = 1.0 / D ;

      delta = (C * D) ;

      f = f * delta ;

    } while (abs(1.0-delta) > eps ) ;

  //
  // Do the first term of the continued fraction
  //
  f = 1.0 / f ;

  //
  // and do the final scaling
  //
  f = f * exp(-z*z)/ sqrt(M_PI) ;

  return f ;
}

template< class Complex>
const Complex cerf_continued_fraction( const Complex z )
{
  //  warning("cerf_continued_fraction:");
  if (z.real() > 0)
    return 1.0 - cerfc_continued_fraction( z ) ;
  else
    return -1.0 + cerfc_continued_fraction( -z ) ;
}

//
// Abramawitz and Stegun, Eqn. 7.1.5 gives a series for erf(z)
// good for all z, but converges faster for smallish abs(z), say abs(z)<2.
//
template< class Complex>
const Complex cerf_series( const Complex z )
{
  double tiny = 1e-20 ;       // a small number compared with 1.
  // warning("cerf_series:");
  Complex sum(0.0) ;
  Complex term(z) ;
  Complex z2(z*z) ;

  for (int n=0; n<3 || abs(term) > abs(sum)*tiny; n++)
    {
      sum = sum + term / (2*n+1) ;
      term = -term * z2 / (n+1) ;
    }

  return sum * 2.0 / sqrt(M_PI) ;
}
  
//
// Numerical Recipes quotes a formula due to Rybicki for evaluating 
// Dawson's Integral:
//
// exp(-x^2) integral  exp(t^2).dt = 1/sqrt(pi) lim   sum  exp(-(z-n.h)^2) / n
//            0 to x                            h->0 n odd
//
// This can be adapted to erf(z).
//
template< class Complex>
const Complex cerf_rybicki( const Complex z )
{
  // warning("cerf_rybicki:");
  double h = 0.2 ;        // numerical experiment suggests this is small enough

  //
  // choose an even n0, and then shift z->z-n0.h and n->n-h. 
  // n0 is chosen so that real((z-n0.h)^2) is as small as possible. 
  // 
  int n0 = 2*(int) (floor( z.imag()/(2*h) + 0.5 )) ;

  Complex z0( 0.0, n0*h ) ;
  Complex zp(z-z0) ;
  Complex sum(0.0,0.0) ;
  //
  // limits of sum chosen so that the end sums of the sum are
  // fairly small. In this case exp(-(35.h)^2)=5e-22 
  //
  //
  for (int np=-35; np<=35; np+=2)
    {
      Complex t( zp.real(), zp.imag()-np*h) ;
      Complex b( exp(t*t) / (np+n0) ) ;
      sum += b ; 
    }

  sum = sum * 2 * exp(-z*z) / M_PI ;

  return Complex(-sum.imag(), sum.real()) ;
}

template< class Complex>
const Complex cerf( const Complex z )
{
  //
  // Use the method appropriate to size of z - 
  // there probably ought to be an extra option for NaN z, or infinite z
  //
  //
  if (abs(z) < 2.0)
    return cerf_series( z ) ;
  else if (abs(z.real()) < 0.5)
    return cerf_rybicki( z ) ;
  else
    return cerf_continued_fraction( z ) ;
}

//
// Footnote:
// 
// Using the definitions from Abramowitz and Stegun (7.3.1, 7.3.2)
// The fresnel intgerals defined as:
//
//         / t=x
// C(x) = |      cos(pi/2 t^2) dt
//        /
//         t=0 
//
// and
//         / t=x
// S(x) = |      sin(pi/2 t^2) dt
//        /
//         t=0 
//
// These can be derived from erf(x) using 7.3.22
//
// C(z) +iS(z) = (1+i)  erf( sqrt(pi)/2 (1-i) z )
//               -----
//                 2
//
// --------------------------------------------------------------------------
// Some test examples - 
// comparative data taken from Abramowitz and Stegun table 7.9. 
// Table 7.9 tabulates w(z), where w(z) = exp(-z*z) erfc(iz)
// I have copied twelve values of w(z) from the table, and separately
// calculated them using this code. The results are identical.
//
//  x    y   Abramowitz & Stegun |             Octave Calculations
//                  w(x+iy)      |          w(x+iy)          cerf ( i.(x+iy))
// 0.2  0.2   0.783538+0.157403i |   0.783538 +0.157403    0.23154672 -0.219516
// 0.2  0.7   0.515991+0.077275i |   0.515991 +0.077275    0.69741968 -0.138277
// 0.2  1.7   0.289309+0.027154i |   0.289309 +0.027154    0.98797507 -0.011744
// 0.2  2.7   0.196050+0.013002i |   0.196050 +0.013002    0.99994252 -0.000127
// 1.2  0.2   0.270928+0.469488i |   0.270928 +0.469488    0.90465623 -2.196064
// 1.2  0.7   0.280740+0.291851i |   0.280740 +0.291851    1.82926135 -0.639343
// 1.2  1.7   0.222436+0.129684i |   0.222436 +0.129684    1.00630308 +0.060067
// 1.2  2.7   0.170538+0.068617i |   0.170538 +0.068617    0.99955699 -0.000290
// 2.2  0.2   0.041927+0.287771i |   0.041927 +0.287771   24.70460755-26.205981
// 2.2  0.7   0.099943+0.242947i |   0.099943 +0.242947    9.88734713+18.310797
// 2.2  1.7   0.135021+0.153161i |   0.135021 +0.153161    1.65541359 -1.276707
// 2.2  2.7   0.127900+0.096330i |   0.127900 +0.096330    0.98619434 +0.000564

# endif