1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
# ifndef CERF_H
# define CERF_H
# include <complex>
# include <cmath>
/*
Copyright (C) 1998, 1999 John Smith
This file is part of Octave.
Or it might be one day....
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// Put together by John Smith john at arrows dot demon dot co dot uk,
// using ideas by others.
//
// Calculate erf(z) for complex z.
// Three methods are implemented; which one is used depends on z.
//
// The code includes some hard coded constants that are intended to
// give about 14 decimal places of accuracy. This is appropriate for
// 64-bit floating point numbers.
//
// Oct 1999: Fixed a typo that in
// const Complex cerf_continued_fraction( const Complex z )
// that caused erroneous answers for erf(z) where real(z) negative
//
//
// Abramowitz and Stegun: (eqn: 7.1.14) gives this continued
// fraction for erfc(z)
//
// erfc(z) = sqrt(pi).exp(-z^2). 1 1/2 1 3/2 2 5/2
// --- --- --- --- --- --- ...
// z + z + z + z + z + z +
//
// This is evaluated using Lentz's method, as described in the narative
// of Numerical Recipes in C.
//
// The continued fraction is true providing real(z)>0. In practice we
// like real(z) to be significantly greater than 0, say greater than 0.5.
//
template< class Complex>
const Complex cerfc_continued_fraction( const Complex z )
{
double tiny = 1e-20 ; // a small number, large enough to calculate 1/tiny
double eps = 1e-15 ; // large enough so that 1.0+eps > 1.0, when using
// the floating point arithmetic
//
// first calculate z+ 1/2 1
// --- --- ...
// z + z +
Complex f(z) ;
Complex C(f) ;
Complex D(0.0) ;
Complex delta ;
double a ;
a = 0.0 ;
do
{
a = a + 0.5 ;
D = z + a*D ;
C = z + a/C ;
if (D.real() == 0.0 && D.imag() == 0.0)
D = tiny ;
D = 1.0 / D ;
delta = (C * D) ;
f = f * delta ;
} while (abs(1.0-delta) > eps ) ;
//
// Do the first term of the continued fraction
//
f = 1.0 / f ;
//
// and do the final scaling
//
f = f * exp(-z*z)/ sqrt(M_PI) ;
return f ;
}
template< class Complex>
const Complex cerf_continued_fraction( const Complex z )
{
// warning("cerf_continued_fraction:");
if (z.real() > 0)
return 1.0 - cerfc_continued_fraction( z ) ;
else
return -1.0 + cerfc_continued_fraction( -z ) ;
}
//
// Abramawitz and Stegun, Eqn. 7.1.5 gives a series for erf(z)
// good for all z, but converges faster for smallish abs(z), say abs(z)<2.
//
template< class Complex>
const Complex cerf_series( const Complex z )
{
double tiny = 1e-20 ; // a small number compared with 1.
// warning("cerf_series:");
Complex sum(0.0) ;
Complex term(z) ;
Complex z2(z*z) ;
for (int n=0; n<3 || abs(term) > abs(sum)*tiny; n++)
{
sum = sum + term / (2*n+1) ;
term = -term * z2 / (n+1) ;
}
return sum * 2.0 / sqrt(M_PI) ;
}
//
// Numerical Recipes quotes a formula due to Rybicki for evaluating
// Dawson's Integral:
//
// exp(-x^2) integral exp(t^2).dt = 1/sqrt(pi) lim sum exp(-(z-n.h)^2) / n
// 0 to x h->0 n odd
//
// This can be adapted to erf(z).
//
template< class Complex>
const Complex cerf_rybicki( const Complex z )
{
// warning("cerf_rybicki:");
double h = 0.2 ; // numerical experiment suggests this is small enough
//
// choose an even n0, and then shift z->z-n0.h and n->n-h.
// n0 is chosen so that real((z-n0.h)^2) is as small as possible.
//
int n0 = 2*(int) (floor( z.imag()/(2*h) + 0.5 )) ;
Complex z0( 0.0, n0*h ) ;
Complex zp(z-z0) ;
Complex sum(0.0,0.0) ;
//
// limits of sum chosen so that the end sums of the sum are
// fairly small. In this case exp(-(35.h)^2)=5e-22
//
//
for (int np=-35; np<=35; np+=2)
{
Complex t( zp.real(), zp.imag()-np*h) ;
Complex b( exp(t*t) / (np+n0) ) ;
sum += b ;
}
sum = sum * 2 * exp(-z*z) / M_PI ;
return Complex(-sum.imag(), sum.real()) ;
}
template< class Complex>
const Complex cerf( const Complex z )
{
//
// Use the method appropriate to size of z -
// there probably ought to be an extra option for NaN z, or infinite z
//
//
if (abs(z) < 2.0)
return cerf_series( z ) ;
else if (abs(z.real()) < 0.5)
return cerf_rybicki( z ) ;
else
return cerf_continued_fraction( z ) ;
}
//
// Footnote:
//
// Using the definitions from Abramowitz and Stegun (7.3.1, 7.3.2)
// The fresnel intgerals defined as:
//
// / t=x
// C(x) = | cos(pi/2 t^2) dt
// /
// t=0
//
// and
// / t=x
// S(x) = | sin(pi/2 t^2) dt
// /
// t=0
//
// These can be derived from erf(x) using 7.3.22
//
// C(z) +iS(z) = (1+i) erf( sqrt(pi)/2 (1-i) z )
// -----
// 2
//
// --------------------------------------------------------------------------
// Some test examples -
// comparative data taken from Abramowitz and Stegun table 7.9.
// Table 7.9 tabulates w(z), where w(z) = exp(-z*z) erfc(iz)
// I have copied twelve values of w(z) from the table, and separately
// calculated them using this code. The results are identical.
//
// x y Abramowitz & Stegun | Octave Calculations
// w(x+iy) | w(x+iy) cerf ( i.(x+iy))
// 0.2 0.2 0.783538+0.157403i | 0.783538 +0.157403 0.23154672 -0.219516
// 0.2 0.7 0.515991+0.077275i | 0.515991 +0.077275 0.69741968 -0.138277
// 0.2 1.7 0.289309+0.027154i | 0.289309 +0.027154 0.98797507 -0.011744
// 0.2 2.7 0.196050+0.013002i | 0.196050 +0.013002 0.99994252 -0.000127
// 1.2 0.2 0.270928+0.469488i | 0.270928 +0.469488 0.90465623 -2.196064
// 1.2 0.7 0.280740+0.291851i | 0.280740 +0.291851 1.82926135 -0.639343
// 1.2 1.7 0.222436+0.129684i | 0.222436 +0.129684 1.00630308 +0.060067
// 1.2 2.7 0.170538+0.068617i | 0.170538 +0.068617 0.99955699 -0.000290
// 2.2 0.2 0.041927+0.287771i | 0.041927 +0.287771 24.70460755-26.205981
// 2.2 0.7 0.099943+0.242947i | 0.099943 +0.242947 9.88734713+18.310797
// 2.2 1.7 0.135021+0.153161i | 0.135021 +0.153161 1.65541359 -1.276707
// 2.2 2.7 0.127900+0.096330i | 0.127900 +0.096330 0.98619434 +0.000564
# endif
|