File: vector_3.h

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (707 lines) | stat: -rw-r--r-- 18,897 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
/*s***************************************************************************
 *
 *   Copyright (c), Ilya Valuev 2005        All Rights Reserved.
 *
 *   Author	: Ilya Valuev, MIPT, Moscow, Russia
 *
 *   Project	: GridMD, ivutils
 *
 *****************************************************************************/

/*s****************************************************************************
 * $Log: vector_3.h,v $
 * Revision 1.2  2011/06/11 16:53:55  valuev
 * sync with LAMMPS
 *
 * Revision 1.1  2011/06/10 17:15:07  morozov
 * First Windows project with the correct directory structure
 *
 * Revision 1.22  2010/11/17 02:13:32  valuev
 * Added analysis phase, fixed some memory leaks
 *
 * Revision 1.21  2009/09/09 14:43:35  valuev
 * fixed trajreader
 *
 * Revision 1.20  2009/07/24 05:08:46  valuev
 * Sync with FDTD, added molecule setup
 *
 * Revision 1.33  2009/06/01 13:01:42  valuev
 * Added ShearBox
 *
 * Revision 1.32  2009/05/28 07:49:00  valuev
 * updated chemosensor
 *
 * Revision 1.31  2009/05/22 08:53:52  valuev
 * new uiExperiment interface
 *
 * Revision 1.30  2009/02/22 10:49:56  lesha
 * Vector_Nt constructors are modified
 *
 * Revision 1.29  2009/02/04 14:23:31  valuev
 * fixed bug in maxabscoord and minabscoord functions
 *
 * Revision 1.28  2009/02/04 10:56:30  lesha
 * SINGLE_PRECISION is recovered
 *
 * Revision 1.27  2009/02/03 00:47:35  lesha
 * *** empty log message ***
 *
 * Revision 1.26  2009/01/30 13:54:05  valuev
 * restructured as a library
 *
 * Revision 1.16  2008/08/18 21:40:09  valuev
 * added Gurski-Krasko potential
 *
 * Revision 1.15  2008/05/05 17:27:43  morozov
 * cvector_3.h is the new header for class cVector_3. Old one is moved to cvector_3old.h
 * class hmatrix is added to pairhash.h
 * wavepackets.h contains class WavePacket
 *
 * Revision 1.14  2008/04/22 12:44:17  valuev
 * made gcc 4.12 compilable
 *
 * Revision 1.13  2008/04/21 23:13:44  valuev
 * made gcc 4.12 compilable
 *
 * Revision 1.12  2008/04/21 22:42:30  valuev
 * *** empty log message ***
 *
 * Revision 1.11  2008/04/15 13:11:41  valuev
 * Added antisymmetrized wave packets
 *
 
 *
*******************************************************************************/
/*r @file vector_3.h @brief     
*/ 

# ifndef VECTOR_3_H

# define VECTOR_3_H

# define _USE_MATH_DEFINES

# include <iostream>
# include <cmath>
# include <limits>
# include <cstdlib>

// some compilers don't define PI!
# ifndef M_PI
# define M_PI 3.1415926535897932385
# endif

# ifndef fmod
//r       
# define fmod(a,b)  ((a)-((long)((a)/(b))*(b)))
# endif

using namespace std;

#ifndef SINGLE_PRECISION
typedef double vec_type;
#else
typedef float vec_type;
#endif

//e "infinitely" large number in Vector_3 sense
//r " "    Vector_3
//# ifndef SINGLE_PRECISION
//# define VEC_INFTY 1.e20
//# else
//# define VEC_INFTY 1.e20f
//# endif
#define VEC_INFTY numeric_limits<vec_type>::max()

//e "infinitely" small number in Vector_3 sense (used for vector comparisons)
//r " "    Vector_3 (  )
//# ifndef SINGLE_PRECISION
//# define VEC_ZERO 1.e-20
//# else
//# define VEC_ZERO 1.e-20f
//# endif
#define VEC_ZERO 512*numeric_limits<vec_type>::epsilon()

//r N-   T,    
template <class T, const int N=3> 
struct Vector_Nt {
  typedef T value_type;
  
  T v[N];

  Vector_Nt(const T &a=0){
    for (int i=0; i<N; i++)
      v[i]=a;
  }

  
  explicit Vector_Nt(const T &a1, const T &a2) {
    if(N>0)v[0]=a1;
    if(N>1)v[1]=a2;
    for(int i=2;i<N;i++)v[i]=0;
  }

  explicit Vector_Nt(const T &s1, const T &s2, const T& s3) {
    if(N>0)v[0]=s1;
    if(N>1)v[1]=s2;
    if(N>2)v[2]=s3;
    for(int i=3;i<N;i++)v[i]=0;
  }
  //e construct from input iterator (or array)
  template <class A>
  Vector_Nt(const A *beg) {
    for (int i=0; i<N; i++, ++beg)
      v[i]=*beg;
  }

  //e construct from another vector
  template <class A>
  Vector_Nt(const Vector_Nt<A,N>& v1) {
    for (int i=0; i<N; i++) v[i]=v1[i];
  }

  //r     it
  template <class A>
  void copy_to(A *beg) const {  
    for (int i=0; i<N; i++, ++beg)
      *beg=v[i];
  }

  //r   
  inline T& operator[](int i) const { return (T&)v[i]; };


  inline Vector_Nt& operator=(const Vector_Nt &vect){
    for (int i=0; i<N; i++)
      v[i]=vect.v[i];
    return *this;
  }

  //r     a.
  inline Vector_Nt& operator=(const T &a){
    for (int i=0; i<N; i++)
      v[i]=a;
    return *this;
  };

  //r .      VEC_ZERO   
  inline bool operator==(const Vector_Nt &vect) const{
    for (int i=0; i<N ;i++)
      if(fabs(v[i]-vect.v[i])>VEC_ZERO)return false;
    return true;
  };

  inline bool operator!=(const Vector_Nt &vect) const{
    return (!(this->operator==(vect)));
  };

  inline Vector_Nt operator+(const Vector_Nt& vect) const{
    Vector_Nt result;
    for (int i=0; i<N ;i++)
      result.v[i]=v[i]+vect.v[i];
    return result;
  }

  inline Vector_Nt operator-(const Vector_Nt &vect) const {
    Vector_Nt result;
    for (int i=0; i<N ;i++)
      result.v[i]=v[i]-vect.v[i];
    return result;
  }
 
  //r   
  inline T operator*(const Vector_Nt& vect) const {
    T result=0;
    for (int i=0; i<N; i++)
      result+=v[i]*vect.v[i];
    return result;
  }

  //r    
  inline Vector_Nt operator*(const T &coeff) const {
    Vector_Nt result;
    for (int i=0; i<N; i++)
      result[i]=coeff*v[i];
    return result;
  }

  //e vector multiplication (N=3 only)
  //r  
  inline Vector_Nt operator%(const Vector_Nt &r) const{ //reserved for N specializations
    if(N==3){
      return Vector_Nt(v[1]*r.v[2]-v[2]*r.v[1],v[2]*r.v[0]-v[0]*r.v[2],v[0]*r.v[1]-v[1]*r.v[0]);
    }
    return *this;
  }

  //r     (  ).
 //  friend Vector_Nt operator*(T coeff,const Vector_Nt& vec);

  //r    
  inline Vector_Nt operator/(const T &coeff) const {
    Vector_Nt result;
    for (int i=0; i<N; i++)
      result[i]=v[i]/coeff;
    return result;
  }

  //r    -1
  inline Vector_Nt operator-() const {
    Vector_Nt r;
    for (int i=0; i<N; i++)
      r.v[i]=-v[i];
    return r;
  }

  //r   
  inline Vector_Nt& operator+=(const Vector_Nt &vect){
    for (int i=0; i<N; i++)
      v[i]+=vect.v[i];
    return *this;
  }

  //r   
  inline Vector_Nt& operator-=(const Vector_Nt &vect){
    for (int i=0; i<N; i++)
      v[i]-=vect.v[i];
    return *this;
  }

  //r     
  inline Vector_Nt& operator*=(const T &coeff){
    for (int i=0; i<N; i++)
      v[i]*=coeff;
    return *this;
  }

  //r     
  inline Vector_Nt& operator/=(const T &coeff){
    for (int i=0; i<N; i++)
      v[i]/=coeff;
    return *this;
  }

  //r   
  T norm2() const {
    T result=0;
    for (int i=0; i<N; i++)
      result+=v[i]*v[i];
    return result; 
  }

  //r  
  T norm() const {
    return sqrt(norm2());
  }

  //r      (   norm()  newnorm). 
  T normalize(T newnorm=1.){
    T norm=this->norm();
    if(norm>=VEC_ZERO){
      T c=newnorm/norm;
      for (int i=0; i<N; i++)
        v[i]*=c;
    }
    return norm;
  }

  //e Normalizes a vector that may have infinite components
  T inormalize(T newnorm=1.){
    T result=0;
    for (int i=0; i<N; i++){
      if(fabs(v[i])>=VEC_INFTY){
        if(result>=0)
          result=0.;
        result-=1;
        v[i]=v[i]>0 ? 1 : -1;
      }
      else if(result>=0) //still summing the normal components
        result+=v[i]*v[i];
      else
        v[i]=0.;
    }
    if(fabs(result)<VEC_ZERO)
      return 0.;
    newnorm/=sqrt(fabs(result));
    for (int i=0; i<N; i++)
      v[i]*=newnorm;
    return result<0 ? VEC_INFTY : result; 
  }


  //e nearest image distance within rectangular cell (FOR DISTANCE MEASUREMENTS)
  //e assumes that each coordinate absolute value is in the range [0,cell[i]) 
  //e returned vector is in the range [-cell[i]/2,cell[i]/2)
  //e flags indicate the periodicity in specific directions: 0x1 for X, 0x2 for Y, 0x4 for Z
  //r     
  /*r ,       -   , 
     ,   rcell,     
     .  *this   ,   *this.\n
  ,  *this    3*3      ,    
  *this   .\n
  ,   . 
  */ 
  Vector_Nt rcell1(const Vector_Nt &cell,int flags=0xffff) const{
    Vector_Nt ret(*this);
    int i;
    for(i=0;i<N;i++){
      if(flags&(0x1<<i)){
        if(v[i]>cell[i]/2){
          ret[i]-=cell[i];
        }
        else if(v[i]<-cell[i]/2){
          ret[i]+=cell[i];
        }
      }
    }
    return ret;
  }

  //e @return a vector projection on a given axis
  Vector_Nt prj(int i) const {
    Vector_Nt res;
    res[i]=v[i];
    return res;
  }

  //e @return a vector projection on a given vector (k*v)*k
  Vector_Nt prj(const Vector_Nt &k) const {
    return k*(k*(*this));
  }

  //e @return a vector of length l parallel to this
  Vector_Nt unit(T l=1) const {
    Vector_Nt res(*this);
    res.normalize(l);
    return res;
  }

  //e reduction to elementary cell [0, cell[i]) (FOR REDUCTION TO ELEMENTARY CELL)
  //e flags indicate the periodicity in specific directions: 0x1 for X, 0x2 for Y, 0x4 for Z
  //r   ,   rcell1,      *this     .
  /*r       ,   .    -  
         */ 
  Vector_Nt rcell(const Vector_Nt &cell, int flags=0xffff) const {
    Vector_Nt ret(*this);
    for (int i=0, flag=1; i<N; i++, flag<<=1) {
      if(flags&flag){
        ret.v[i]=fmod(v[i],cell[i]);
        if(ret.v[i]<0)ret.v[i]+=cell[i];
//        if(ret.v[i]<0 || ret.v[i]>cell[i])
  //        printf("!");
      }
    }
    return ret;
  }

  Vector_Nt rpcell(const Vector_Nt &p1, const Vector_Nt &cell, int flags=0xfff) const {
    Vector_Nt ret(*this);
    for (int i=0, flag=1; i<N; i++, flag<<=1) {
      if(flags&flag){
        if (ret.v[i]<p1[i] || ret.v[i]>p1[i]+cell[i]) {
          ret.v[i]=fmod(v[i]-p1[i],cell[i])+p1[i];
          if (ret.v[i]<p1[i]) ret.v[i]+=cell[i];
        }
      }
    }
    return ret;
  }
  

  //r          ind 
  T maxcoord(int *ind=NULL) const {
    int im=0;
    T vv=v[0];
    for (int i=1; i<N; i++) {
      if(v[i]>vv){
        im=i;
        vv=v[i];
      }
    }
    if(ind)*ind=im;
    return vv;
  }


  //e returns the corrd having maximal absolute value
  T maxabscoord(int *ind=NULL) const {
    int im=0;
    T vv=fabs(v[0]);
    for (int i=1; i<N; i++) {
      if(fabs(v[i])>vv){
        im=i;
        vv=fabs(v[i]);
      }
    }
    if(ind)*ind=im;
    return v[im];
  }

  //e returns the corrd having minimal absolute value
  T minabscoord(int *ind=NULL) const {
    int im=0;
    T vv=fabs(v[0]);
    for (int i=1; i<N; i++) {
      if(fabs(v[i])<vv){
        im=i;
        vv=fabs(v[i]);
      }
    }
    if(ind)*ind=im;
    return v[im];
  }


  //r          ind 
  T mincoord(int *ind=NULL) const {
    int im=0;
    T vv=v[0];
    for (int i=1; i<N; i++) {
      if(v[i]<vv){
        im=i;
        vv=v[i];
      }
    }
    if(ind)*ind=im;
    return vv;
  }

  //r       ,   (x,y,z)\\n
  void print() const{
    cout<< "(";
    for(int i=0;i<N;i++){
      cout<< v[i];
      if(i!=N-1)
        cout<< ", ";
    }
    cout<< ")\n";
  }

  //e returns true if the vector has infinite components
  bool infinite() const {
    for(int i=0;i<N;i++){
      if(fabs(v[i])>=VEC_INFTY)
        return true;
    }
    return false;
  }
};

template<class T , int N>
Vector_Nt<T, N> operator*(const T &coeff,const Vector_Nt<T, N> &vec){
  return vec*coeff;
}

template<class T , int N>
Vector_Nt<T, N> operator*(int coeff,const Vector_Nt<T, N> &vec){
  return vec*coeff;
}

//template <> Vector_Nt<double, 3> operator*(const double &coeff,const Vector_Nt<double,3> &vec);

// old Vector_3 compatibility typedefs and functions
typedef Vector_Nt<vec_type, 3> Vector_3;
typedef Vector_3 *Vector_3P;
typedef Vector_Nt<vec_type, 2> Vector_2;
typedef Vector_2 *Vector_2P;

template <int N> 
class  Vector_N: public Vector_Nt<vec_type, N>{
};

//Vector_3 operator*(int coeff,const Vector_3 &vec){
//  return vec*((vec_type)coeff);
//}


//e finds the maximum distance between vector pairs
//r      va1[i], va2[i], i=1..n
/*r @param va1 -  Vector_3[n]
    @param n -   va1  va2
*/
vec_type dist_max(Vector_3 *va1,Vector_3 *va2,int n);

//e finds average distance between vector pairs
//r      va1[i], va2[i], i=1..n
vec_type dist_av(Vector_3 *va1,Vector_3 *va2,int n);

//e finds the average difference norm between two vector sets of the same length
/*e optionally gives the indexes for maximal and minimal difference
 va2 can be NULL, then the norm of va1 is used */

//r     va1[i]  va2[i],  ,  , ,    min  max 
vec_type diff_av(Vector_3 *va1,Vector_3 *va2,int n, int *minind=0, int *maxind=0);

//e finds suitable perpendicular to a vector
//r     vAB
Vector_3 FindPerp(const Vector_3 &vAB);



//e Returns the average (center) vector of the vector array
//e and cooordinates of a minimal box in which it is contained
Vector_3 GetScope(const Vector_3 *varr,long n,Vector_3* box_min,Vector_3* box_max);

//e the same with long index array
Vector_3 GetIScope(const Vector_3 *varr,long *indarr,long n,Vector_3* box_min,Vector_3* box_max);

//e the same with int index array
Vector_3 GetIScopei(const Vector_3 *varr,int *indarr,int n,Vector_3* box_min,Vector_3* box_max);

// neue Funktionen

//e clears vector array with optional integer index
//r   ,    
/*r 
  Vector_3 vec[]  n .  ind==NULL,  
  n .  ind!=NULL,   i=0..n-1
 vec[ind[i]]
. @ref indexed_calculations.
*/ 
void clear_vecarri(int n,Vector_3 *vec, int *ind=0);

//e reflects the vector ini+dir*t+0.5*force*t^2 to be inside a box limited by 0 and box sizes
//e changes dir according to the final state
//e fills crossed dir with bit flags corresponding directions along which the walls were crossed
Vector_3 Reflect(Vector_3& ini, double t,Vector_3 &dir, double *box, int flag=0x7, const Vector_3 &force=Vector_3()); 


inline vec_type vec_area(const Vector_2 &vect1, const Vector_2 &vect2) {
  return fabs(vect1[0]*vect2[1]-vect1[1]*vect2[0])/2;
}

inline vec_type vec_area(const Vector_3 &vect1, const Vector_3 &vect2) {
  return (vect1%vect2).norm()/2;
}

// remake for vec_type!

template <class num_t, class denum_t, class val_t>
denum_t acccomp(const num_t x, const denum_t y, const val_t val) {
  num_t eps_num=numeric_limits<num_t>::epsilon();
  denum_t eps_denum=numeric_limits<denum_t>::epsilon();
  return (eps_num>=eps_denum) ? acccomp(x, (num_t)y, (num_t)val) : acccomp((denum_t)x, y, (denum_t)val);
}

template <class num_t, class denum_t>
denum_t acccomp(const num_t x, const denum_t y) {
  return acccomp(x, y, num_t(1));
}

template<class T>
bool acccomp(const T x, const T y, const T val) {
  T eps=numeric_limits<T>::epsilon();
  int iexp;
  frexp(val,&iexp);
  T mult=ldexp(.5, iexp+1);
  T err=T(256)*mult*eps;
  return fabs(x-y)<=err;
}

template<class T>
bool acccomp(const T x, const T y) {
  return acccomp(x, y, T(1));
}

template <class num_t, class denum_t>
denum_t accdiv(const num_t x, const denum_t y) {
  num_t eps_num=numeric_limits<num_t>::epsilon();
  denum_t eps_denum=numeric_limits<denum_t>::epsilon();
  return (eps_num>=eps_denum) ? accdiv1(x, (num_t)y) : accdiv1((denum_t)x, y);
}


template <class T>
T accdiv1(T x, T y) {
  T result;
  T eps=numeric_limits<T>::epsilon();

  T fr=x/y;
  T ifr=floor(fr+T(.5));
//  T err=64*eps*(ifr!=0 ? fabs(ifr) : 1);
  int mult;
  if (ifr<=512)
    mult=512;
  else {
    int iexp;
    frexp(ifr,&iexp);
    mult=int(ldexp(.5, iexp+1));
  }
  T err=mult*eps;
  if (fabs(fr-ifr)<=err)
    result=ifr;
  else
    result=fr;
  return result;
}




template <class num_t, class denum_t, class P>
denum_t accdiv_rmd(const num_t x, const denum_t y, P *remainder) {
  num_t eps_num=numeric_limits<num_t>::epsilon();
  denum_t eps_denum=numeric_limits<denum_t>::epsilon();
  return (eps_num>=eps_denum) ? accdiv_rmd(x, (num_t)y, remainder) : accdiv_rmd((denum_t)x, y, remainder);
}

template <class T, class P>
T accdiv_rmd(const T x, const T y, P *remainder) {
  T result=accdiv(x, y);
  T iresult=floor(result);
  if (result-iresult>0)
    *remainder=x-iresult*y;
  else
    *remainder=0;
  return result;
}

//e returns random unit vector uniformely distributed in space (?? check this)
inline Vector_3 randdir(){
  vec_type xi1=2*((vec_type)rand())/RAND_MAX-1.;
  vec_type xi2=((vec_type)rand())/RAND_MAX;
  vec_type r1=sqrt(1.-xi1*xi1);
  return  Vector_3(r1*cos(2*M_PI*xi2),r1*sin(2*M_PI*xi2),xi1);
}

///\en Calculates extent of the vector container.
///    \return the center of the vector set, optionally
///    (if arguments are not NULL) fills the bounding box in \a box_min, \a box_max.
template<class vec_inp_it>
Vector_3 get_extent(vec_inp_it beg,vec_inp_it end, Vector_3* box_min=NULL,Vector_3* box_max=NULL){
  if(beg==end)
    return Vector_3();
  Vector_3 center(*beg++);
  Vector_3 cube1(center), cube2(center);
  size_t n=1;
  for(;beg!=end;++beg){
    Vector_3 vec=*beg;
    center+=vec;
    for(size_t j=0;j<3;j++){
      if(cube1[j]>vec[j])
        cube1[j]=vec[j];
     if(cube2[j]<vec[j])
        cube2[j]=vec[j];
    }
    n++;
  }
  if(box_min)
    *box_min=cube1;
  if(box_max)
    *box_max=cube2;
  return center/n;
}

///\en Returns \a true if absolute value of \a a is at least \a factor times less than
///    the absolute value of \a b.
template<class T>
bool much_less(const T& a, const T& b, const T &factor){
  if(fabs(a)<fabs(b))
    return fabs(a*factor/b)<1 ? true : false;
  else
    return false;
}


# endif // __VECTOR_3_H