File: wpmd.cpp

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (890 lines) | stat: -rw-r--r-- 30,031 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
# include "wpmd.h"



// Calculates  derivative overlap matrix IDD
void OverlapDeriv::calc_der_overlap(bool self, cdouble cc1, cdouble c2){
  cVector_3 I3 = I1 * ((bb_4a + 2.5) / w12.a); 
  cdouble   I4 = I0 * ( bb_4a *(bb_4a + 5.) + 3.75 ) / w12.a / w12.a;

  // calculate derivatives <(phi_k)'_q_k | (phi_l)'_q_l>:
  IDD.set(0, 0, I4 - (d1.l + d2.l)*I2 + d1.l*d2.l*I0 );                // over a_k_re and a_l_re
  IDD.set(0, 1, i_unit*( I4 - (d1.l + d2.m)*I2 + d1.l*d2.m*I0 ) );   // over a_k_re and a_l_im
  if(!self) 
    IDD.set(1, 0, i_unit1*( I4 + (d1.m - d2.l)*I2 - d1.m*d2.l*I0 ) );  // over a_k_im and a_l_re
  else
    IDD.set(1,0, conj(IDD(0,1)));
  IDD.set(1, 1, I4 + (d1.m - d2.m)*I2 - d1.m*d2.m*I0 );            // over a_k_im and a_l_im

  for(int i=0;i<3;i++){
    IDD.set(0, (i+1)*2, -I3[i] + d1.l*I1[i] + d2.u[i]*(d1.l*I0 - I2) );              // over a_k_re and b_l_re
    IDD.set(0, (i+1)*2+1, i_unit1*( I3[i] - d1.l*I1[i] + d2.v[i]*(I2 - d1.l*I0) ) );   // over a_k_re and b_l_im
    IDD.set(1, (i+1)*2, i_unit *( I3[i] + d1.m*I1[i] + d2.u[i]*(I2 + d1.m*I0) ) ); // over a_k_im and b_l_re
    IDD.set(1, (i+1)*2+1, -I3[i] - d1.m*I1[i] - d2.v[i]*(d1.m*I0 + I2) );            // over a_k_im and b_l_im
    if(!self) {
      IDD.set((i+1)*2, 0, -I3[i] + d2.l*I1[i] + d1.u[i]*(d2.l*I0 - I2) );              // over b_k_re and a_l_re
      IDD.set((i+1)*2+1, 0, i_unit *( I3[i] - d2.l*I1[i] - d1.v[i]*(I2 - d2.l*I0) ) );   // over b_k_im and a_l_re
      IDD.set((i+1)*2, 1, i_unit1*( I3[i] - d2.m*I1[i] + d1.u[i]*(I2 - d2.m*I0) ) ); // over b_k_re and a_l_im
      IDD.set((i+1)*2+1, 1, -I3[i] + d2.m*I1[i] - d1.v[i]*(d2.m*I0 - I2) );            // over b_k_im and a_l_im
    }
    else{
      IDD.set((i+1)*2, 0, conj(IDD(0,(i+1)*2)) );              // over b_k_re and a_l_re
      IDD.set((i+1)*2+1, 0, conj(IDD(0,(i+1)*2+1)) );   // over b_k_im and a_l_re
      IDD.set((i+1)*2, 1, conj(IDD(1,(i+1)*2)) ); // over b_k_re and a_l_im
      IDD.set((i+1)*2+1, 1, conj(IDD(1,(i+1)*2+1)) );            // over b_k_im and a_l_im
    }
    
    for(int j=0;j<3;j++){
      if(!self || j>=i){
        cdouble I2ij = I0 / w12.a *
          (i==j ? w12.b[i]*w12.b[i] / w12.a / 4 + 0.5
                : w12.b[i]*w12.b[j] / w12.a / 4);
        // over b_k_re and b_l_re
        IDD.set((j+1)*2, (i+1)*2, I2ij + d1.u[i]*I1[j] + d2.u[j]*(I1[i] + d1.u[i]*I0) );
        // over b_k_re and b_l_im
        IDD.set((j+1)*2, (i+1)*2+1, i_unit *( I2ij + d1.u[i]*I1[j] + d2.v[j]*(I1[i] + d1.u[i]*I0) ) );
        // over b_k_im and b_l_re
        if(!self || i!=j)
          IDD.set((j+1)*2+1, (i+1)*2, i_unit1*( I2ij - d1.v[i]*I1[j] + d2.u[j]*(I1[i] - d1.v[i]*I0) ) );
        else
          IDD.set((j+1)*2+1, (i+1)*2, conj(IDD((i+1)*2,(j+1)*2+1)));
        // over b_k_im and b_l_im
        IDD.set((j+1)*2+1,(i+1)*2+1, I2ij - d1.v[i]*I1[j] + d2.v[j]*(I1[i] - d1.v[i]*I0) );
      }
      else{ // self && j<i
        // over b_k_re and b_l_re
        IDD.set((j+1)*2, (i+1)*2, conj(IDD((i+1)*2, (j+1)*2)) );
        // over b_k_re and b_l_im
        IDD.set((j+1)*2, (i+1)*2+1, conj(IDD((i+1)*2+1,(j+1)*2)) );
        // over b_k_im and b_l_re
        IDD.set((j+1)*2+1, (i+1)*2, conj(IDD((i+1)*2,(j+1)*2+1)) );
        // over b_k_im and b_l_im
        IDD.set((j+1)*2+1,(i+1)*2+1, conj(IDD((i+1)*2+1,(j+1)*2+1 )) );
      }
    } // j
  } // i   

  if(real(cc1)){ // adding terms for split-packet
    
    IDD.set(8, 0, c2*da2_re() );   // over c_1_re and a_2_re
    IDD.set(8, 1, c2*da2_im() );   // over c_1_re and a_2_im
    IDD.set(9, 0, -i_unit*c2*da2_re() );   // over c_1_im and a_2_re
    IDD.set(9, 1, -i_unit*c2*da2_im() );   // over c_1_im and a_2_im

    IDD.set(0, 8, cc1*da1_re() );   // over c_2_re and a_1_re
    IDD.set(1, 8, cc1*da1_im() );   // over c_2_re and a_1_im
    IDD.set(0, 9, i_unit*cc1*da1_re() );   // over c_2_im and a_1_re
    IDD.set(1, 9, i_unit*cc1*da1_im() );   // over c_2_im and a_1_im

    for(int i=0;i<3;i++){
      IDD.set(8, 2+2*i,   c2*db2_re(i) );   // over c_1_re and b_2_re
      IDD.set(8, 2+2*i+1, c2*db2_im(i) );   // over c_1_re and b_2_im
      IDD.set(9, 2+2*i, -i_unit*c2*db2_re(i) );   // over c_1_im and b_2_re
      IDD.set(9, 2+2*i+1, -i_unit*c2*db2_im(i) );   // over c_1_im and b_2_im

      IDD.set(2+2*i, 8, cc1*db1_re(i) );   // over c_2_re and b_1_re
      IDD.set(2+2*i+1, 8, cc1*db1_im(i) );   // over c_2_re and b_1_im
      IDD.set(2+2*i, 9, i_unit*cc1*db1_re(i) );   // over c_2_im and i_1_re
      IDD.set(2+2*i+1, 9, i_unit*cc1*db1_im(i) );   // over c_2_im and a_1_im
    }

    IDD.set(8, 8, I0 );   // over c_1_re and c_2_re
    IDD.set(8, 9, i_unit*I0 );   // over c_1_re and c_2_im
    IDD.set(9, 8, -i_unit*I0 );   // over c_1_im and c_2_re
    IDD.set(9, 9, I0 );   // over c_1_im and c_2_im
  }
}



WavePacket AWPMD::create_wp(Vector_3 &x, Vector_3 &v, double &w, double &pw, double mass){
  if(mass<0)
    mass=me;
  if(constraint==FIX){
    if(w0>0)
      w=w0;
    pw=0.;
  }
  
  double rw;
  if(Lextra>0){ // width PBC, keeping the width are within [0,Lextra]
    w=fmod(w,Lextra);
    if(w<0) w+=Lextra;
    rw=w; // WP width for energy evaluation is within [0, L/2]
    if(rw > Lextra/2) rw = Lextra - rw;
  }
  else
    rw=w;

  WavePacket wp;
  wp.init(rw,x,v*mass*one_h,pw*one_h);
  return wp;
}


void AWPMD::resize(int flag){
  for(int s=0;s<2;s++){
    //0. resizing matrices
    Y[s].init(ne[s],1);
    O[s].init(ne[s],1);
    Oflg[s].init(ne[s],1);
    //Te[s].init(nel,1);
    //Tei[s].init(nel,1);
    Eep[s].assign((size_t)nwp[s],0);
    Eeip[s].assign((size_t)nwp[s],0);
    Eeep[s].assign((size_t)nwp[s],0);
    Ewp[s].assign((size_t)nwp[s],0);

    if(flag&(0x8|0x4) && approx!=HARTREE){ //electron forces, L and M are needed
      M[s].init(ne[s],nvar[s]);
      L[s].init(ne[s],nvar[s]);
    }
  }  
  Eiep.assign((size_t)ni,0);
  Eiip.assign((size_t)ni,0);

  
}


//e sets Periodic Boundary Conditions
//e using bit flags: 0x1 -- PBC along X
//e                  0x2 -- PBC along Y
//e                  0x4 -- PBC along Z
//e cell specifies the lengths of the simulation box in all directions
//e if PBCs are used, the corresponding coordinates of electrons and ions
//e in periodic directions must be within a range  [0, cell[per_dir]) 
//e @returns 1 if OK
int AWPMD::set_pbc(const Vector_3P pcell, int pbc_){
  if(!pcell)
    pbc=0;
  else{
    pbc=pbc_;
    cell=*pcell;
  }
  return 1;
}

//e setup elctrons: forms internal wave packet representations
//e if PBCs are used the coords must be within a range [0, cell)
int AWPMD::set_electrons(int s, int n, Vector_3P x, Vector_3P v, double* w, double* pw, double mass, double *q)
{
  if(s < 0 || s > 1)
    return LOGERR(-1,fmt("AWPMD.set_electrons: invaid s setting (%d)!",s),LINFO);

  norm_matrix_state[s] = NORM_UNDEFINED;
  nwp[s]=ne[s]=n;
  nvar[s]=8*n;
  wp[s].resize(n);

  partition1[s].clear();
  for(int i=0;i<n;i++){
    wp[s][i]=create_wp(x[i],v[i],w[i],pw[i], mass);
    // assign default partition
    partition1[s].push_back(i+1);
  }

  // assign electronic charge
  if(q)
    qe[s].assign(q,q+nwp[s]);
  else
    qe[s].assign(nwp[s],-1);


  return 1;
}

//e setup ion charges and coordinates
//e if PBCs are used the coords must be within a range [0, cell)
int AWPMD::set_ions(int n, double* q, Vector_3P x)
{
  ni = n;
  qi.resize(n);
  xi.resize(n);
  partition1[2].clear();
  for(int i=0;i<n;i++){
    qi[i] = q[i],  xi[i] = x[i];
    // assign default partition for ions
    partition1[2].push_back(i+1);
  }

  return 1;
}

//e same as interaction, but using Hartee factorization (no antisymmetrization)
int  AWPMD::interaction_hartree(int flag, Vector_3P fi, Vector_3P fe_x, 
                                      Vector_3P fe_p, double *fe_w, double *fe_pw, Vector_2P fe_c){
   
  // 0. resizing the arrays if needed
  enum APPROX tmp=HARTREE;
  swap(tmp,approx); // do not neeed large matrices
  resize(flag);
  swap(tmp,approx);
  //1. clearing forces
  clear_forces(flag,fi,fe_x,fe_p,fe_w,fe_pw,fe_c);
  
  Eee = Ew = 0.;
  for(int s1=0;s1<2;s1++){
    Ee[s1]=0.;
    Eei[s1]=0.;
    for(int c1=0;c1<ne[s1];c1++){
      // width part
      double w1=wp[s1][c1].get_width();
      /*double sgn1=1;
      if(Lextra>0){ // width PBC
        if(w1>Lextra-w1){
          w1=-(Lextra-w1); // '-' is to change derivative sign
          sgn1=-1;
        }
      }*/
      Vector_3 r1=wp[s1][c1].get_r();
      Vector_3 p=wp[s1][c1].get_p()*h_plank;
      Vector_3 pw=wp[s1][c1].get_pwidth()*h_plank;
      // energy contribution
      Ee[s1] += (p.norm2()+pw.norm2())/(2*me);
      Ew += h2_me*9./(8.*w1*w1);
      if(constraint == HARM) Ew += harm_w0_4 * w1*w1;
      // width force contribution
      //double dE=2*Epot/w;
      //if(d->fw1)d->fw1[c1]+=dE;  
      //if(fw2 && fw2!=fw1)fw2[c1]+=dE;
      
      // e-e interaction
      for(int s2=s1;s2<2;s2++){
        for(int c2=(s1==s2 ? c1+1 : 0) ;c2<ne[s2];c2++){
          double w2=wp[s2][c2].get_width();
          Vector_3 v12=wp[s2][c2].get_r()-r1;
          // position PBC
          v12=v12.rcell1(cell,pbc);
          double r12=v12.normalize();
          /*double sgn2=1; // signs
          if(Lextra>0){ // width PBC
            if(w2>Lextra-w2){
              w2=-(Lextra-w2); // '-' is to change derivative sign
              sgn2=-1;
            }
          }*/
          double wsq=w1*w1+w2*w2;
          double argw=sqrt((2./3.)*wsq);

          //double arg=r12/argw;
          //double erfa=erf(arg);
          double Epot=coul_pref*erf_div(r12,1./argw);   //erfa/r12;
          Eee+=Epot;
          
          // force contribution
          /*double dEw=coul_pref*two_over_sqr_pi*exp(-arg*arg)/argw;
          double dEpot=(Epot-dEw)/r12;
          if(!d->fixw){
            dEw/=wsq;
            if(d->fw1 && c1>=0){
              d->fw1[c1]+=sgn1*dEw*w1;
            }
            if(d->fw2){
              d->fw2[c2]+=sgn2*dEw*w2;
            }
          }*/   
        }
      }
      // e-i interaction
      double wsq1=w1*w1;
      double argw=sqr_2_over_3*w1;
      for(int i=0;i<ni;i++){
        Vector_3 v12=xi[i]-r1;
        // position PBC
        v12=v12.rcell1(cell,pbc);
        double r12=v12.normalize();

        //double arg=r12/argw;
        //double erfa=erf(arg);
        double cel=-coul_pref*qi[i]; // electron charge is always -1
        double Epot=cel*erf_div(r12,1./argw); //erfa/r12;
        Eei[s1]+=Epot;
        //printf("(%g %g %g)- (%g %g %g)\n",r1[0],r1[1],r1[2],xi[i][0],xi[i][1],xi[i][2]);
        //printf("awp(%d,%d:%d)[%g]: %g\n",i,s1,c1,r12,Epot);
        // force contribution
        if(flag&0x3){
          double arg=r12/argw;
          double dEw=cel*two_over_sqr_pi*exp(-arg*arg)/argw;
          double dEpot=(Epot-dEw)/r12;
          fi[i]+=v12*dEpot; // ionic force
        }
        // electron force
        /*if(!d->fixw){
          dEw/=wsq;
          if(d->fw1 && c1>=0){
            d->fw1[c1]+=sgn1*dEw*w1;
          }
        }*/
      }
    }
  }
  if(calc_ii)
    interaction_ii(flag,fi);
  return 1;
}


//e initializes internal buffers for calculations (set_electrons must be called first)
//int init(){}

//e calculates interaction in the system of ni ions + electrons 
//e the electonic subsystem must be previously setup by set_electrons, ionic by set_ions
//e the iterators are describing ionic system only
// 0x1 -- give back ion forces
// 0x2 -- add ion forces to the existing set
// 0x4 -- calculate derivatives for electronic time step (NOT IMPLEMENTED)
//e if PBCs are used the coords must be within a range [0, cell)
int AWPMD::interaction(int flag, Vector_3P fi, Vector_3P fe_x, 
                                 Vector_3P fe_p, double *fe_w, double *fe_pw, Vector_2P fe_c){
  if(approx==HARTREE)
    return interaction_hartree(flag,fi,fe_x,fe_p,fe_w,fe_pw,fe_c);
  // 0. resizing the arrays if needed
  resize(flag);
  // 1. clearing forces
  clear_forces(flag,fi,fe_x,fe_p,fe_w,fe_pw,fe_c);
  
  //2. calculating overlap matrix
  for(int s=0;s<2;s++){
    int nes = ne[s];
    if(nes == 0) continue;

    for(int k=0;k<nes;k++){
      Y[s].set(k,k,1.);  // Diagonal elements (=1)
      Oflg[s](k,k) = 1;
      for(int l=k+1;l<nes;l++){
        cdouble I0kl = pbc_mul(wp[s][l],wp[s][k]).integral(); // Non-diagonal elements
        Y[s].set(k,l,I0kl);
        Oflg[s](k,l) = (norm(I0kl) > ovl_tolerance);
      }
    }
    O[s] = Y[s];  // save overlap matrix

    //3. inverting the overlap matrix
    int info=0;
    if(nes){
      /*FILE *f1=fopen(fmt("matrO_%d.d",s),"wt");
      fileout(f1,Y[s],"%15g");
      fclose(f1);8*/
      
      ZPPTRF("L",&nes,Y[s].arr,&info);
      // analyze return code here
      if(info<0)
        return LOGERR(info,fmt("AWPMD.interacton: call to ZPTRF failed (exitcode %d)!",info),LINFO); 
      ZPPTRI("L",&nes,Y[s].arr,&info);
      if(info<0)
        return LOGERR(info,fmt("AWPMD.interacton: call to ZPTRI failed (exitcode %d)!",info),LINFO); 

      
      /*f1=fopen(fmt("matrY_%d.d",s),"wt");
      fileout(f1,Y[s],"%15g");
      fclose(f1);*/
    }

    // Clearing matrices for electronic forces
    if(flag&0x4){
      Te[s].Set(0.);
      Tei[s].Set(0.);
    }
  }

  Vector_3 ndr;
  //  calculating single particle contribution
  for(int s=0;s<2;s++){
    Ee[s]=Eei[s]=0.;
    for(int k=0;k<ne[s];k++){
      for(int l=k;l<ne[s];l++){

        if( !Oflg[s](k,l) ) continue; // non-overlapping WPs

        // electrons kinetic energy
        WavePacket wk=wp[s][k];
        WavePacket& wl=wp[s][l];
        if(pbc)
          ndr=move_to_image(wl,wk);
        
        WavePacket wkl=wl*conj(wk);
        //Vector_3 rrkl=wkl.get_r();
        cVector_3 v1=wl.b*conj(wk.a)-conj(wk.b)*wl.a;
        cdouble v=(v1*v1)/wkl.a;
        v-=6.*conj(wk.a)*wl.a;
        v/=wkl.a;
        cdouble I0kl = O[s](k,l);
        cdouble dE=-h2_me*I0kl*v/2;
        if(flag&0x4) // matrix needed only for electronic forces
          Te[s].set(k,l,dE);
        // energy component (trace)
        dE*=Y[s](l,k);
        Ee[s]+=(l==k ? 1. : 2.)*real(dE);

        cVector_3 dkl=wkl.b/(2.*wkl.a);

        // e-i energy
        cdouble sum(0.,0.);
        for(int i=0;i<ni;i++){  // ions loop 
          cVector_3 gkli=dkl - cVector_3(xi[i]);
          
          if(pbc) // correcting the real part (distance) according to PBC
            gkli=rcell1(gkli,cell,pbc);
            //-Igor- gkli=cVector_3(real(gkli).rcell1(cell,pbc),imag(gkli));
          
          cdouble ngkli=gkli.norm();
          cdouble c=sqrt(wkl.a);
          //cdouble ttt = cerf_div(ngkli,c);
          dE=-coul_pref*(qi[i])*I0kl*cerf_div(ngkli,c);

          sum+=dE;
          if(flag&0x3){// calculate forces on ions
            if(fabs(real(ngkli))+fabs(imag(ngkli))>1e-10){
              cdouble arg=ngkli*c;
              cdouble dEw=-coul_pref*qi[i]*I0kl*two_over_sqr_pi*exp(-arg*arg)*c;
              dE=(dE-dEw)/ngkli;
              dE*=Y[s](l,k);
              Vector_3 dir=-real(gkli);
              dir.normalize();
              fi[i]+=(l==k ? 1. : 2.)*real(dE)*dir;          
            }
          }
        }
        dE=sum;
        if(flag&0x4) // matrix needed only for electronic forces
          Tei[s].set(k,l,dE);
        // energy component (trace)
        dE*=Y[s](l,k);
        Eei[s]+=(l==k ? 1. : 2.)*real(dE);
      }
    }
  }

  // calculating e-e interaction
  Eee = Ew = 0.;
  // same spin
  for(int s=0;s<2;s++){ // spin 
    for(int k=0;k<ne[s];k++){  //c1
      for(int l=k+1;l<ne[s];l++){ //c3
        for(int m=k;m<ne[s];m++){ //c2
          
          if( Oflg[s](k,m) ) {
            WavePacket wkm=pbc_mul(wp[s][m],wp[s][k]);
            cVector_3 dkm=wkm.b/(2*wkm.a);
            cdouble I0km=O[s](k,m);

            // kl-mn
            for(int n=l;n<ne[s];n++){ //c4
              if(n<=m || !Oflg[s](l,n)) continue;

              WavePacket wln=pbc_mul(wp[s][n],wp[s][l]);
              if(pbc) // reducing the pair to elementary cell
                ndr=move_to_image(wkm,wln); // mind the derivative: wln.b+=wln.a*ndr, wln.lz+=-wln.a*ndr^2-i*wln.old_p*ndr; 
              //Vector_3 rln=wln.get_r();

              cVector_3 dln=wln.b/(2*wln.a);
              cdouble dd=(dkm-dln).norm();
              cdouble c=1./sqrt(1./wln.a+1./wkm.a);
              cdouble Vklmn=coul_pref*I0km*O[s](l,n)*cerf_div(dd,c);

              //cdouble arge=dkm*dkm*wkm.a+dln*dln*wln.a+wkm.lz+wln.lz;
              //cdouble Vklmn=0.5*coul_pref*M_PI*M_PI*M_PI*exp(arge)*cerf_div(dd,c)/pow(wln.a*wkm.a,3./2.);
              cdouble dE=Vklmn*(Y[s](m,k)*Y[s](n,l)-Y[s](m,l)*Y[s](n,k));
              double rdE=real(dE);
              if(m!=k || n!=l) // not the same pair
                rdE*=2;
              Eee+=rdE;
            }//n
          }
          
          if( Oflg[s](l,m) ) {
            WavePacket wlm=pbc_mul(wp[s][m],wp[s][l]);
            cVector_3 dlm=wlm.b/(2*wlm.a);
            cdouble I0lm=O[s](l,m);

            // kl-nm
            for(int n=l;n<ne[s];n++){
              if(n<=m || !Oflg[s](k,n)) continue;

              WavePacket wkn=pbc_mul(wp[s][n],wp[s][k]);
              if(pbc) // reducing the pair to elementary cell
                ndr=move_to_image(wlm,wkn); // mind the derivative: wln.b+=wln.a*ndr, wln.lz+=-wln.a*ndr^2-i*wln.old_p*ndr; 
              
              cVector_3 dkn=wkn.b/(2*wkn.a);
              cdouble dd=(dkn-dlm).norm();
              cdouble c=1./sqrt(1./wkn.a+1./wlm.a);
              cdouble Vklnm=coul_pref*I0lm*O[s](k,n)*cerf_div(dd,c);

              cdouble dE=Vklnm*(Y[s](n,k)*Y[s](m,l)-Y[s](n,l)*Y[s](m,k));
              double rdE=real(dE);
              if(m!=k || n!=l) // not the same pair
                rdE*=2;
              Eee+=rdE;
            }//n
          }
        }// m
      }// l
    }// k
  }// s
  
  // different spin
  for(int k=0;k<ne[0];k++){ // skm=0  //c1
    for(int l=0;l<ne[1];l++){  // sln=1  //c3
      for(int m=k;m<ne[0];m++){         //c2
        if( Oflg[0](k,m) ) {
          WavePacket wkm=pbc_mul(wp[0][m],wp[0][k]);
          cVector_3 dkm=wkm.b/(2*wkm.a);
          cdouble I0km=O[0](k,m);
          
          for(int n=l;n<ne[1];n++){ // km-ln   //c4
            if( Oflg[1](n,l) ) {
              WavePacket wln=pbc_mul(wp[1][l],wp[1][n]);
              if(pbc) // reducing the pair to elementary cell
                ndr=move_to_image(wkm,wln); // mind the derivative: wln.b+=wln.a*ndr, wln.lz+=-wln.a*ndr^2-i*wln.old_p*ndr; 
              //Vector_3 rln=wln.get_r();

              cVector_3 dln=wln.b/(2*wln.a);
              cdouble dd=(dkm-dln).norm();
              cdouble c=1./sqrt(1./wln.a+1./wkm.a);
              cdouble Vklmn=coul_pref*I0km*wln.integral()*cerf_div(dd,c);

              cdouble dE=Vklmn*Y[0](m,k)*Y[1](n,l);
              int Mkm=(m==k ? 1: 2);
              int Mln=(n==l ? 1: 2);
              double rdE=Mkm*Mln*real(dE); //!!!
              Eee+=rdE;
            } //if
          } // n
        } //if
      } // m
    }// l 
  }// k
  if(calc_ii)
    interaction_ii(flag,fi);
  return 1;
}

//e Calculates Norm matrix and performs LU-factorization
//e The result is saved in AWPMD::Norm[s]
void AWPMD::norm_matrix(int s){
  // Internal variables
  int k, l, i, j, qi, qj;
  int nes = ne[s], nes8 = nes*8, nnes8 = nes*nes8;
  
  if(!nes) return;

  // References for frequently used arrays
  sqmatrix<double>& Norms = Norm[s];
  chmatrix& Ys = Y[s];
  smatrix<unsigned char>& Oflgs = Oflg[s];

  // Allocate of vectors and matrices
  Norms.init(nes8,1);
  IDD.init(nes8,1);
  if(ID.size() != nnes8)
    ID.resize(nnes8), IDYs.resize(nnes8), ipiv.resize(nes8);

  // Calculate first and second derivatives
  for(k=0;k<nes;k++){
    int k8 = k*8;
    WavePacket& wk = wp[s][k];
    NormDeriv dk(wk);
    dk = conj(dk);  // conjugate: mu -> -mu, v -> -v !!!

    for(l=0;l<nes;l++){
      if( !Oflgs(k,l) ) continue; // non-overlapping WPs

      int l8 = l*8;
      WavePacket wl = wp[s][l];
      if(pbc) move_to_image(wk,wl);
      WavePacket wkl=conj(wk)*wl;
      NormDeriv dl(wl);

      cdouble   I0 = O[s](k,l);
      cVector_3 I1 = wkl.b * (I0 / wkl.a / 2);
      cdouble   bb_4a = wkl.b.norm2() / wkl.a / 4;
      cdouble   I2 = I0 * (bb_4a + 1.5) / wkl.a;

      // calculate derivatives <phi_k | (phi_l)'_q_l>:
      int idx = k + l*nes8;
      if(k != l) {
        ID[idx] = dl.l*I0 - I2;             // over a_l_re
        ID[idx+nes] = i_unit*(dl.m*I0 - I2);    // over a_l_im
        for(i=0;i<3;i++){
          ID[idx+((i+1)*2)*nes] = dl.u[i]*I0 + I1[i];           // over b_l_re
          ID[idx+((i+1)*2+1)*nes] = i_unit*(dl.v[i]*I0 + I1[i]);  // over b_l_im
        }
      } else { // k == l
        ID[idx] = i_unit*imag(dl.l);    // over a_l_re
        ID[idx+nes] = i_unit*(dl.m - I2);   // over a_l_im
        for(i=0;i<3;i++){
          ID[idx+((i+1)*2)*nes] = dl.u[i] + I1[i];  // over b_l_re
          ID[idx+((i+1)*2+1)*nes] = 0.;               // over b_l_im
        }
      }

      if(k <= l) {
        cVector_3 I3 = I1 * ((bb_4a + 2.5) / wkl.a); 
        cdouble   I4 = I0 * ( bb_4a *(bb_4a + 5.) + 3.75 ) / wkl.a / wkl.a;

        // calculate derivatives <(phi_k)'_q_k | (phi_l)'_q_l>:
        IDD.set(k8, l8, I4 - (dk.l + dl.l)*I2 + dk.l*dl.l*I0 );                // over a_k_re and a_l_re
        IDD.set(k8, l8+1, i_unit*( I4 - (dk.l + dl.m)*I2 + dk.l*dl.m*I0 ) );   // over a_k_re and a_l_im
        if(k != l) IDD.set(k8+1, l8, i_unit1*( I4 + (dk.m - dl.l)*I2 - dk.m*dl.l*I0 ) );  // over a_k_im and a_l_re
        IDD.set(k8+1, l8+1, I4 + (dk.m - dl.m)*I2 - dk.m*dl.m*I0 );            // over a_k_im and a_l_im

        for(i=0;i<3;i++){
          IDD.set(k8, l8+(i+1)*2, -I3[i] + dk.l*I1[i] + dl.u[i]*(dk.l*I0 - I2) );              // over a_k_re and b_l_re
          IDD.set(k8, l8+(i+1)*2+1, i_unit1*( I3[i] - dk.l*I1[i] + dl.v[i]*(I2 - dk.l*I0) ) );   // over a_k_re and b_l_im
          IDD.set(k8+1, l8+(i+1)*2, i_unit *( I3[i] + dk.m*I1[i] + dl.u[i]*(I2 + dk.m*I0) ) ); // over a_k_im and b_l_re
          IDD.set(k8+1, l8+(i+1)*2+1, -I3[i] - dk.m*I1[i] - dl.v[i]*(dk.m*I0 + I2) );            // over a_k_im and b_l_im
          if(k != l) {
            IDD.set(k8+(i+1)*2, l8, -I3[i] + dl.l*I1[i] + dk.u[i]*(dl.l*I0 - I2) );              // over b_k_re and a_l_re
            IDD.set(k8+(i+1)*2+1, l8, i_unit *( I3[i] - dl.l*I1[i] - dk.v[i]*(I2 - dl.l*I0) ) );   // over b_k_im and a_l_re
            IDD.set(k8+(i+1)*2, l8+1, i_unit1*( I3[i] - dl.m*I1[i] + dk.u[i]*(I2 - dl.m*I0) ) ); // over b_k_re and a_l_im
            IDD.set(k8+(i+1)*2+1, l8+1, -I3[i] + dl.m*I1[i] - dk.v[i]*(dl.m*I0 - I2) );            // over b_k_im and a_l_im
          }
          
          for(j=0;j<3;j++){
            cdouble I2ij = I0 / wkl.a *
              (i==j ? wkl.b[i]*wkl.b[i] / wkl.a / 4 + 0.5
                    : wkl.b[i]*wkl.b[j] / wkl.a / 4);
            // over b_k_re and b_l_re
            IDD.set(k8+(j+1)*2, l8+(i+1)*2, I2ij + dk.u[i]*I1[j] + dl.u[j]*(I1[i] + dk.u[i]*I0) );
            // over b_k_re and b_l_im
            IDD.set(k8+(j+1)*2, l8+(i+1)*2+1, i_unit *( I2ij + dk.u[i]*I1[j] + dl.v[j]*(I1[i] + dk.u[i]*I0) ) );
            // over b_k_im and b_l_re
            if(k != l) IDD.set(k8+(j+1)*2+1, l8+(i+1)*2, i_unit1*( I2ij - dk.v[i]*I1[j] + dl.u[j]*(I1[i] - dk.v[i]*I0) ) );
            // over b_k_im and b_l_im
            IDD.set(k8+(j+1)*2+1, l8+(i+1)*2+1, I2ij - dk.v[i]*I1[j] + dl.v[j]*(I1[i] - dk.v[i]*I0) );
          } // j
        } // i
      } // if(k <= l)
    } // k
  } // l

  // Calculate matrix product IDYs_(k,q_j) = Ys_(k,l) * <phi_l | (phi_j)'_q_j>
  for(qj=0; qj<nes8; qj++){
    j = qj / 8;
    int idx = qj*nes;
    for(k=0;k<nes;k++) {
      cdouble sum = 0.;
      for(l=0;l<nes;l++)
        if( Oflgs(l,j) ) sum += ID[idx+l] * Ys(k,l);
      IDYs[idx+k] = sum;
    }
  }

  // Calculate Norm-matrix
  for(qi=0; qi<nes8; qi++){
    i = qi / 8;
    int idxqi = qi*nes;
      
    Norms(qi,qi) = 0.;  // zero diagonal elements

    for(qj=qi+1; qj<nes8; qj++){
      j = qj / 8;
      int idxqj = qj*nes;

      // Calculate matrix product sum = <(phi_i)'_q_i | phi_k> * IDYs_(k,q_j)
      cdouble sum = 0.;
      for(k=0;k<nes;k++)
        if( Oflgs(i,k) )
          sum += IDYs[idxqj+k] * conj(ID[idxqi+k]);

      // Update norm-matrix taking into account its anti-symmetry
      double a = Oflgs(i,j) ?                            // IDD = 0 for non-overlapping WPs
        h_plank2 * imag( (sum - IDD(qi,qj))*Ys(j,i) ) :
        h_plank2 * imag( sum*Ys(j,i) );
      Norms(qi,qj) = a;
      Norms(qj,qi) = -a;
    } // qj
  } // qi

# if 1
  // transform norm matrix to the physical variables
  for(i=0;i<nes;i++){
    WavePacket wi=wp[s][i];
    for(k=0;k<8;k++){
      // iterator to list all N(8*i+k,*) with fixed 8*i+k
      sqmatrix<double>::iterator mi=Norms.fix_first(8*i+k,0);
      for(j=i ;j<nes;j++){  // TO DO: run this loop from i+1 and take simplectic form for (i,i) block
        WavePacket wj=wp[s][j];
        wj.int2phys_der< eq_second >(mi+8*j,mi+8*j,mi+8*j+3,mi+8*j+6,mi+8*j+7);
      }
    }// finished line of blocks from right
    for(k= 8*i;k<nes8;k++){ // TO DO: run this loop from 8*i+8 and take simplectic form for (i,i) block
      // iterator to list all N(8i+*,k) by fixed k
      sqmatrix<double>::iterator mi=Norms.fix_second(8*i,k);
      wi.int2phys_der< eq_second >(mi,mi,mi+3,mi+6,mi+7);
    }// finished line of blocks from left

    for(k=0;k<8;k++){ // filling the lower triangle according to antisymmetry
      for(j=8*i+8;j<nes8;j++)
        Norms(j,8*i+k)=-Norms(8*i+k,j);
    }
  }
# endif
# if 0

  // transform norm matrix to the physical variables
  for(i=0;i<nes;i++){
    WavePacket wi=wp[s][i];
    for(j=i;j<nes;j++){
      WavePacket wj=wp[s][j];
      for(k=0;k<8;k++){
        // iterator to list all N(8*i+k,*) with fixed 8*i+k
        sqmatrix<double>::iterator mi=Norms.fix_first(8*i+k,8*j);
        wj.int2phys_der< eq_second >(mi,mi,mi+3,mi+6,mi+7);
      }
      for(k=0;k<8;k++){
        // iterator to list all N(8*i+k,*) with fixed 8*i+k
        sqmatrix<double>::iterator mi=Norms.fix_second(8*i,8*j+k);
        wi.int2phys_der< eq_second >(mi,mi,mi+3,mi+6,mi+7);
      }
      if(i!=j){
        for(int k1=0;k1<8;k1++){
          for(int k2=0;k2<8;k2++)
            Norms(8*j+k1,8*i+k2)=-Norms(8*i+k2,8*j+k1);
        }
      }
    }
  }
# endif

  norm_matrix_state[s] = NORM_CALCULATED;
}

//e Norm matrix LU-factorization
void AWPMD::norm_factorize(int s) {
  if( norm_matrix_state[s] != NORM_CALCULATED) norm_matrix(s);

  int nes8 = ne[s]*8, info;
  DGETRF(&nes8, &nes8, Norm[s].arr, &nes8, &ipiv[0], &info);
  if(info < 0)
    LOGERR(info,fmt("AWPMD.norm_factorize: call to DGETRF failed (exitcode %d)!",info),LINFO); 

  norm_matrix_state[s] = NORM_FACTORIZED;
}


//e Norm matrix inversion
void AWPMD::norm_invert(int s) {
  if( norm_matrix_state[s] != NORM_FACTORIZED) norm_factorize(s);

  int nes8 = ne[s]*8, info;
  int IDD_size = (int)IDD.get_datasize(nes8);

  DGETRI(&nes8, Norm[s].arr, &nes8, &ipiv[0], (double*)IDD.arr, &IDD_size, &info); // use IDD for work storage
  if(info < 0)
    LOGERR(info,fmt("AWPMD.norm_invert: call to DGETRI failed (exitcode %d)!",info),LINFO); 

  norm_matrix_state[s] = NORM_INVERTED;
}


//e Get the determinant of the norm-matrix for the particles with spin s
double AWPMD::norm_matrix_det(int s) {
  double det = 1.;
  int nes8 = ne[s]*8;

  if(!nes8) return det;
  if(norm_matrix_state[s] != NORM_FACTORIZED) norm_factorize(s);

  sqmatrix<double>& Norms = Norm[s];
  for(int i=0; i<nes8; i++)
    det *= Norms(i, i);  // product of the diagonal elements

  return det;
}


//e Get the determinant logarithm of the norm-matrix for the particles with spin s
double AWPMD::norm_matrix_detl(int s) {
  double detl = 0.;
  int nes8 = ne[s]*8;

  if(!nes8) return detl;
  if(norm_matrix_state[s] != NORM_FACTORIZED) norm_factorize(s);

  sqmatrix<double>& Norms = Norm[s];
  for(int i=0; i<nes8; i++)
    detl += log(fabs( Norms(i, i) ));  // product of the diagonal elements

  return detl;
}


double AWPMD::get_energy(){
  double res=Eee + Ew;
  for(int s=0;s<2;s++)
    res+=Eei[s]+Ee[s];
  if(calc_ii)
    res+=Eii;
  return res;
}

//e makes timestep of electronic component (NOT IMPLEMENTED)
int AWPMD::step(double dt){
  return -1;
}


//e gets current electronic coordinates
int AWPMD::get_electrons(int spin, Vector_3P x, Vector_3P v, double* w, double* pw, double mass){
  if(spin<0 || spin >1)
    return -1; // invalid spin: return LOGERR(-1,fmt("AWPMD.get_electrons: invaid spin setting (%d)!",spin),LINFO);
  if(mass<0)
    mass=me;
  for(int i=0;i<ni;i++){
    w[i]=sqrt(3./(4*real(wp[spin][i].a)));
    pw[i]=-2*w[i]*imag(wp[spin][i].a)/one_h; //pw[i]=-h_plank2*w[i]*imag(wp[spin][i].a);
    x[i]=real(wp[spin][i].b)/(2*real(wp[spin][i].a));
    v[i]=(pw[i]*x[i]/w[i] + imag(wp[spin][i].b)/one_h)/mass; //v[i]=(pw[i]*x[i]/w[i] + h_plank*imag(wp[spin][i].b))/m_electron;
  }
  return 1;
}



void AWPMD::clear_forces(int flag,Vector_3P fi, Vector_3P fe_x, 
                               Vector_3P fe_p, double *fe_w, double *fe_pw, Vector_2P fe_c){
  if(flag&0x1){
    for(int i=0;i<ni;i++)
      fi[i]=Vector_3(0.);
  }
  if(flag&0x4 && !(flag&0x10)){ // electron forces requested in physical representation
    for(int s1=0;s1<2;s1++){ // clearing forces
      for(int c1=0;c1<ne[s1];c1++){
        fe_x[c1]=Vector_3(0,0,0);
        fe_p[c1]=Vector_3(0,0,0);
        fe_w[c1]=0;
        fe_pw[c1]=0;
      }
    }
  }
}



int AWPMD::interaction_ii(int flag,Vector_3P fi){
  Eii=0.;
  for(int i=0;i<ni;i++){
    for(int j=i+1;j<ni;j++){
      double M12e, M12f;
      _mytie(M12e,M12f)=check_part1ii(i,j);
      if(M12f){
        Vector_3 rij=xi[i]-xi[j];
        double r=rij.norm();
        double dE=coul_pref*qi[i]*qi[j]/r;
        Eii+=M12e*dE;
         
        Eiip[i]+=0.5*M12e*dE;
        Eiip[j]+=0.5*M12e*dE;

        if(flag&0x3){ // ion forces needed
          Vector_3 df=-M12f*dE*rij/(r*r);
          fi[i]+=df;
          fi[j]-=df;
        } 
      }
    }
  }
  return 1;
}