1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
# include "wpmd.h"
// Calculates derivative overlap matrix IDD
void OverlapDeriv::calc_der_overlap(bool self, cdouble cc1, cdouble c2){
cVector_3 I3 = I1 * ((bb_4a + 2.5) / w12.a);
cdouble I4 = I0 * ( bb_4a *(bb_4a + 5.) + 3.75 ) / w12.a / w12.a;
// calculate derivatives <(phi_k)'_q_k | (phi_l)'_q_l>:
IDD.set(0, 0, I4 - (d1.l + d2.l)*I2 + d1.l*d2.l*I0 ); // over a_k_re and a_l_re
IDD.set(0, 1, i_unit*( I4 - (d1.l + d2.m)*I2 + d1.l*d2.m*I0 ) ); // over a_k_re and a_l_im
if(!self)
IDD.set(1, 0, i_unit1*( I4 + (d1.m - d2.l)*I2 - d1.m*d2.l*I0 ) ); // over a_k_im and a_l_re
else
IDD.set(1,0, conj(IDD(0,1)));
IDD.set(1, 1, I4 + (d1.m - d2.m)*I2 - d1.m*d2.m*I0 ); // over a_k_im and a_l_im
for(int i=0;i<3;i++){
IDD.set(0, (i+1)*2, -I3[i] + d1.l*I1[i] + d2.u[i]*(d1.l*I0 - I2) ); // over a_k_re and b_l_re
IDD.set(0, (i+1)*2+1, i_unit1*( I3[i] - d1.l*I1[i] + d2.v[i]*(I2 - d1.l*I0) ) ); // over a_k_re and b_l_im
IDD.set(1, (i+1)*2, i_unit *( I3[i] + d1.m*I1[i] + d2.u[i]*(I2 + d1.m*I0) ) ); // over a_k_im and b_l_re
IDD.set(1, (i+1)*2+1, -I3[i] - d1.m*I1[i] - d2.v[i]*(d1.m*I0 + I2) ); // over a_k_im and b_l_im
if(!self) {
IDD.set((i+1)*2, 0, -I3[i] + d2.l*I1[i] + d1.u[i]*(d2.l*I0 - I2) ); // over b_k_re and a_l_re
IDD.set((i+1)*2+1, 0, i_unit *( I3[i] - d2.l*I1[i] - d1.v[i]*(I2 - d2.l*I0) ) ); // over b_k_im and a_l_re
IDD.set((i+1)*2, 1, i_unit1*( I3[i] - d2.m*I1[i] + d1.u[i]*(I2 - d2.m*I0) ) ); // over b_k_re and a_l_im
IDD.set((i+1)*2+1, 1, -I3[i] + d2.m*I1[i] - d1.v[i]*(d2.m*I0 - I2) ); // over b_k_im and a_l_im
}
else{
IDD.set((i+1)*2, 0, conj(IDD(0,(i+1)*2)) ); // over b_k_re and a_l_re
IDD.set((i+1)*2+1, 0, conj(IDD(0,(i+1)*2+1)) ); // over b_k_im and a_l_re
IDD.set((i+1)*2, 1, conj(IDD(1,(i+1)*2)) ); // over b_k_re and a_l_im
IDD.set((i+1)*2+1, 1, conj(IDD(1,(i+1)*2+1)) ); // over b_k_im and a_l_im
}
for(int j=0;j<3;j++){
if(!self || j>=i){
cdouble I2ij = I0 / w12.a *
(i==j ? w12.b[i]*w12.b[i] / w12.a / 4 + 0.5
: w12.b[i]*w12.b[j] / w12.a / 4);
// over b_k_re and b_l_re
IDD.set((j+1)*2, (i+1)*2, I2ij + d1.u[i]*I1[j] + d2.u[j]*(I1[i] + d1.u[i]*I0) );
// over b_k_re and b_l_im
IDD.set((j+1)*2, (i+1)*2+1, i_unit *( I2ij + d1.u[i]*I1[j] + d2.v[j]*(I1[i] + d1.u[i]*I0) ) );
// over b_k_im and b_l_re
if(!self || i!=j)
IDD.set((j+1)*2+1, (i+1)*2, i_unit1*( I2ij - d1.v[i]*I1[j] + d2.u[j]*(I1[i] - d1.v[i]*I0) ) );
else
IDD.set((j+1)*2+1, (i+1)*2, conj(IDD((i+1)*2,(j+1)*2+1)));
// over b_k_im and b_l_im
IDD.set((j+1)*2+1,(i+1)*2+1, I2ij - d1.v[i]*I1[j] + d2.v[j]*(I1[i] - d1.v[i]*I0) );
}
else{ // self && j<i
// over b_k_re and b_l_re
IDD.set((j+1)*2, (i+1)*2, conj(IDD((i+1)*2, (j+1)*2)) );
// over b_k_re and b_l_im
IDD.set((j+1)*2, (i+1)*2+1, conj(IDD((i+1)*2+1,(j+1)*2)) );
// over b_k_im and b_l_re
IDD.set((j+1)*2+1, (i+1)*2, conj(IDD((i+1)*2,(j+1)*2+1)) );
// over b_k_im and b_l_im
IDD.set((j+1)*2+1,(i+1)*2+1, conj(IDD((i+1)*2+1,(j+1)*2+1 )) );
}
} // j
} // i
if(real(cc1)){ // adding terms for split-packet
IDD.set(8, 0, c2*da2_re() ); // over c_1_re and a_2_re
IDD.set(8, 1, c2*da2_im() ); // over c_1_re and a_2_im
IDD.set(9, 0, -i_unit*c2*da2_re() ); // over c_1_im and a_2_re
IDD.set(9, 1, -i_unit*c2*da2_im() ); // over c_1_im and a_2_im
IDD.set(0, 8, cc1*da1_re() ); // over c_2_re and a_1_re
IDD.set(1, 8, cc1*da1_im() ); // over c_2_re and a_1_im
IDD.set(0, 9, i_unit*cc1*da1_re() ); // over c_2_im and a_1_re
IDD.set(1, 9, i_unit*cc1*da1_im() ); // over c_2_im and a_1_im
for(int i=0;i<3;i++){
IDD.set(8, 2+2*i, c2*db2_re(i) ); // over c_1_re and b_2_re
IDD.set(8, 2+2*i+1, c2*db2_im(i) ); // over c_1_re and b_2_im
IDD.set(9, 2+2*i, -i_unit*c2*db2_re(i) ); // over c_1_im and b_2_re
IDD.set(9, 2+2*i+1, -i_unit*c2*db2_im(i) ); // over c_1_im and b_2_im
IDD.set(2+2*i, 8, cc1*db1_re(i) ); // over c_2_re and b_1_re
IDD.set(2+2*i+1, 8, cc1*db1_im(i) ); // over c_2_re and b_1_im
IDD.set(2+2*i, 9, i_unit*cc1*db1_re(i) ); // over c_2_im and i_1_re
IDD.set(2+2*i+1, 9, i_unit*cc1*db1_im(i) ); // over c_2_im and a_1_im
}
IDD.set(8, 8, I0 ); // over c_1_re and c_2_re
IDD.set(8, 9, i_unit*I0 ); // over c_1_re and c_2_im
IDD.set(9, 8, -i_unit*I0 ); // over c_1_im and c_2_re
IDD.set(9, 9, I0 ); // over c_1_im and c_2_im
}
}
WavePacket AWPMD::create_wp(Vector_3 &x, Vector_3 &v, double &w, double &pw, double mass){
if(mass<0)
mass=me;
if(constraint==FIX){
if(w0>0)
w=w0;
pw=0.;
}
double rw;
if(Lextra>0){ // width PBC, keeping the width are within [0,Lextra]
w=fmod(w,Lextra);
if(w<0) w+=Lextra;
rw=w; // WP width for energy evaluation is within [0, L/2]
if(rw > Lextra/2) rw = Lextra - rw;
}
else
rw=w;
WavePacket wp;
wp.init(rw,x,v*mass*one_h,pw*one_h);
return wp;
}
void AWPMD::resize(int flag){
for(int s=0;s<2;s++){
//0. resizing matrices
Y[s].init(ne[s],1);
O[s].init(ne[s],1);
Oflg[s].init(ne[s],1);
//Te[s].init(nel,1);
//Tei[s].init(nel,1);
Eep[s].assign((size_t)nwp[s],0);
Eeip[s].assign((size_t)nwp[s],0);
Eeep[s].assign((size_t)nwp[s],0);
Ewp[s].assign((size_t)nwp[s],0);
if(flag&(0x8|0x4) && approx!=HARTREE){ //electron forces, L and M are needed
M[s].init(ne[s],nvar[s]);
L[s].init(ne[s],nvar[s]);
}
}
Eiep.assign((size_t)ni,0);
Eiip.assign((size_t)ni,0);
}
//e sets Periodic Boundary Conditions
//e using bit flags: 0x1 -- PBC along X
//e 0x2 -- PBC along Y
//e 0x4 -- PBC along Z
//e cell specifies the lengths of the simulation box in all directions
//e if PBCs are used, the corresponding coordinates of electrons and ions
//e in periodic directions must be within a range [0, cell[per_dir])
//e @returns 1 if OK
int AWPMD::set_pbc(const Vector_3P pcell, int pbc_){
if(!pcell)
pbc=0;
else{
pbc=pbc_;
cell=*pcell;
}
return 1;
}
//e setup elctrons: forms internal wave packet representations
//e if PBCs are used the coords must be within a range [0, cell)
int AWPMD::set_electrons(int s, int n, Vector_3P x, Vector_3P v, double* w, double* pw, double mass, double *q)
{
if(s < 0 || s > 1)
return LOGERR(-1,fmt("AWPMD.set_electrons: invaid s setting (%d)!",s),LINFO);
norm_matrix_state[s] = NORM_UNDEFINED;
nwp[s]=ne[s]=n;
nvar[s]=8*n;
wp[s].resize(n);
partition1[s].clear();
for(int i=0;i<n;i++){
wp[s][i]=create_wp(x[i],v[i],w[i],pw[i], mass);
// assign default partition
partition1[s].push_back(i+1);
}
// assign electronic charge
if(q)
qe[s].assign(q,q+nwp[s]);
else
qe[s].assign(nwp[s],-1);
return 1;
}
//e setup ion charges and coordinates
//e if PBCs are used the coords must be within a range [0, cell)
int AWPMD::set_ions(int n, double* q, Vector_3P x)
{
ni = n;
qi.resize(n);
xi.resize(n);
partition1[2].clear();
for(int i=0;i<n;i++){
qi[i] = q[i], xi[i] = x[i];
// assign default partition for ions
partition1[2].push_back(i+1);
}
return 1;
}
//e same as interaction, but using Hartee factorization (no antisymmetrization)
int AWPMD::interaction_hartree(int flag, Vector_3P fi, Vector_3P fe_x,
Vector_3P fe_p, double *fe_w, double *fe_pw, Vector_2P fe_c){
// 0. resizing the arrays if needed
enum APPROX tmp=HARTREE;
swap(tmp,approx); // do not neeed large matrices
resize(flag);
swap(tmp,approx);
//1. clearing forces
clear_forces(flag,fi,fe_x,fe_p,fe_w,fe_pw,fe_c);
Eee = Ew = 0.;
for(int s1=0;s1<2;s1++){
Ee[s1]=0.;
Eei[s1]=0.;
for(int c1=0;c1<ne[s1];c1++){
// width part
double w1=wp[s1][c1].get_width();
/*double sgn1=1;
if(Lextra>0){ // width PBC
if(w1>Lextra-w1){
w1=-(Lextra-w1); // '-' is to change derivative sign
sgn1=-1;
}
}*/
Vector_3 r1=wp[s1][c1].get_r();
Vector_3 p=wp[s1][c1].get_p()*h_plank;
Vector_3 pw=wp[s1][c1].get_pwidth()*h_plank;
// energy contribution
Ee[s1] += (p.norm2()+pw.norm2())/(2*me);
Ew += h2_me*9./(8.*w1*w1);
if(constraint == HARM) Ew += harm_w0_4 * w1*w1;
// width force contribution
//double dE=2*Epot/w;
//if(d->fw1)d->fw1[c1]+=dE;
//if(fw2 && fw2!=fw1)fw2[c1]+=dE;
// e-e interaction
for(int s2=s1;s2<2;s2++){
for(int c2=(s1==s2 ? c1+1 : 0) ;c2<ne[s2];c2++){
double w2=wp[s2][c2].get_width();
Vector_3 v12=wp[s2][c2].get_r()-r1;
// position PBC
v12=v12.rcell1(cell,pbc);
double r12=v12.normalize();
/*double sgn2=1; // signs
if(Lextra>0){ // width PBC
if(w2>Lextra-w2){
w2=-(Lextra-w2); // '-' is to change derivative sign
sgn2=-1;
}
}*/
double wsq=w1*w1+w2*w2;
double argw=sqrt((2./3.)*wsq);
//double arg=r12/argw;
//double erfa=erf(arg);
double Epot=coul_pref*erf_div(r12,1./argw); //erfa/r12;
Eee+=Epot;
// force contribution
/*double dEw=coul_pref*two_over_sqr_pi*exp(-arg*arg)/argw;
double dEpot=(Epot-dEw)/r12;
if(!d->fixw){
dEw/=wsq;
if(d->fw1 && c1>=0){
d->fw1[c1]+=sgn1*dEw*w1;
}
if(d->fw2){
d->fw2[c2]+=sgn2*dEw*w2;
}
}*/
}
}
// e-i interaction
double wsq1=w1*w1;
double argw=sqr_2_over_3*w1;
for(int i=0;i<ni;i++){
Vector_3 v12=xi[i]-r1;
// position PBC
v12=v12.rcell1(cell,pbc);
double r12=v12.normalize();
//double arg=r12/argw;
//double erfa=erf(arg);
double cel=-coul_pref*qi[i]; // electron charge is always -1
double Epot=cel*erf_div(r12,1./argw); //erfa/r12;
Eei[s1]+=Epot;
//printf("(%g %g %g)- (%g %g %g)\n",r1[0],r1[1],r1[2],xi[i][0],xi[i][1],xi[i][2]);
//printf("awp(%d,%d:%d)[%g]: %g\n",i,s1,c1,r12,Epot);
// force contribution
if(flag&0x3){
double arg=r12/argw;
double dEw=cel*two_over_sqr_pi*exp(-arg*arg)/argw;
double dEpot=(Epot-dEw)/r12;
fi[i]+=v12*dEpot; // ionic force
}
// electron force
/*if(!d->fixw){
dEw/=wsq;
if(d->fw1 && c1>=0){
d->fw1[c1]+=sgn1*dEw*w1;
}
}*/
}
}
}
if(calc_ii)
interaction_ii(flag,fi);
return 1;
}
//e initializes internal buffers for calculations (set_electrons must be called first)
//int init(){}
//e calculates interaction in the system of ni ions + electrons
//e the electonic subsystem must be previously setup by set_electrons, ionic by set_ions
//e the iterators are describing ionic system only
// 0x1 -- give back ion forces
// 0x2 -- add ion forces to the existing set
// 0x4 -- calculate derivatives for electronic time step (NOT IMPLEMENTED)
//e if PBCs are used the coords must be within a range [0, cell)
int AWPMD::interaction(int flag, Vector_3P fi, Vector_3P fe_x,
Vector_3P fe_p, double *fe_w, double *fe_pw, Vector_2P fe_c){
if(approx==HARTREE)
return interaction_hartree(flag,fi,fe_x,fe_p,fe_w,fe_pw,fe_c);
// 0. resizing the arrays if needed
resize(flag);
// 1. clearing forces
clear_forces(flag,fi,fe_x,fe_p,fe_w,fe_pw,fe_c);
//2. calculating overlap matrix
for(int s=0;s<2;s++){
int nes = ne[s];
if(nes == 0) continue;
for(int k=0;k<nes;k++){
Y[s].set(k,k,1.); // Diagonal elements (=1)
Oflg[s](k,k) = 1;
for(int l=k+1;l<nes;l++){
cdouble I0kl = pbc_mul(wp[s][l],wp[s][k]).integral(); // Non-diagonal elements
Y[s].set(k,l,I0kl);
Oflg[s](k,l) = (norm(I0kl) > ovl_tolerance);
}
}
O[s] = Y[s]; // save overlap matrix
//3. inverting the overlap matrix
int info=0;
if(nes){
/*FILE *f1=fopen(fmt("matrO_%d.d",s),"wt");
fileout(f1,Y[s],"%15g");
fclose(f1);8*/
ZPPTRF("L",&nes,Y[s].arr,&info);
// analyze return code here
if(info<0)
return LOGERR(info,fmt("AWPMD.interacton: call to ZPTRF failed (exitcode %d)!",info),LINFO);
ZPPTRI("L",&nes,Y[s].arr,&info);
if(info<0)
return LOGERR(info,fmt("AWPMD.interacton: call to ZPTRI failed (exitcode %d)!",info),LINFO);
/*f1=fopen(fmt("matrY_%d.d",s),"wt");
fileout(f1,Y[s],"%15g");
fclose(f1);*/
}
// Clearing matrices for electronic forces
if(flag&0x4){
Te[s].Set(0.);
Tei[s].Set(0.);
}
}
Vector_3 ndr;
// calculating single particle contribution
for(int s=0;s<2;s++){
Ee[s]=Eei[s]=0.;
for(int k=0;k<ne[s];k++){
for(int l=k;l<ne[s];l++){
if( !Oflg[s](k,l) ) continue; // non-overlapping WPs
// electrons kinetic energy
WavePacket wk=wp[s][k];
WavePacket& wl=wp[s][l];
if(pbc)
ndr=move_to_image(wl,wk);
WavePacket wkl=wl*conj(wk);
//Vector_3 rrkl=wkl.get_r();
cVector_3 v1=wl.b*conj(wk.a)-conj(wk.b)*wl.a;
cdouble v=(v1*v1)/wkl.a;
v-=6.*conj(wk.a)*wl.a;
v/=wkl.a;
cdouble I0kl = O[s](k,l);
cdouble dE=-h2_me*I0kl*v/2;
if(flag&0x4) // matrix needed only for electronic forces
Te[s].set(k,l,dE);
// energy component (trace)
dE*=Y[s](l,k);
Ee[s]+=(l==k ? 1. : 2.)*real(dE);
cVector_3 dkl=wkl.b/(2.*wkl.a);
// e-i energy
cdouble sum(0.,0.);
for(int i=0;i<ni;i++){ // ions loop
cVector_3 gkli=dkl - cVector_3(xi[i]);
if(pbc) // correcting the real part (distance) according to PBC
gkli=rcell1(gkli,cell,pbc);
//-Igor- gkli=cVector_3(real(gkli).rcell1(cell,pbc),imag(gkli));
cdouble ngkli=gkli.norm();
cdouble c=sqrt(wkl.a);
//cdouble ttt = cerf_div(ngkli,c);
dE=-coul_pref*(qi[i])*I0kl*cerf_div(ngkli,c);
sum+=dE;
if(flag&0x3){// calculate forces on ions
if(fabs(real(ngkli))+fabs(imag(ngkli))>1e-10){
cdouble arg=ngkli*c;
cdouble dEw=-coul_pref*qi[i]*I0kl*two_over_sqr_pi*exp(-arg*arg)*c;
dE=(dE-dEw)/ngkli;
dE*=Y[s](l,k);
Vector_3 dir=-real(gkli);
dir.normalize();
fi[i]+=(l==k ? 1. : 2.)*real(dE)*dir;
}
}
}
dE=sum;
if(flag&0x4) // matrix needed only for electronic forces
Tei[s].set(k,l,dE);
// energy component (trace)
dE*=Y[s](l,k);
Eei[s]+=(l==k ? 1. : 2.)*real(dE);
}
}
}
// calculating e-e interaction
Eee = Ew = 0.;
// same spin
for(int s=0;s<2;s++){ // spin
for(int k=0;k<ne[s];k++){ //c1
for(int l=k+1;l<ne[s];l++){ //c3
for(int m=k;m<ne[s];m++){ //c2
if( Oflg[s](k,m) ) {
WavePacket wkm=pbc_mul(wp[s][m],wp[s][k]);
cVector_3 dkm=wkm.b/(2*wkm.a);
cdouble I0km=O[s](k,m);
// kl-mn
for(int n=l;n<ne[s];n++){ //c4
if(n<=m || !Oflg[s](l,n)) continue;
WavePacket wln=pbc_mul(wp[s][n],wp[s][l]);
if(pbc) // reducing the pair to elementary cell
ndr=move_to_image(wkm,wln); // mind the derivative: wln.b+=wln.a*ndr, wln.lz+=-wln.a*ndr^2-i*wln.old_p*ndr;
//Vector_3 rln=wln.get_r();
cVector_3 dln=wln.b/(2*wln.a);
cdouble dd=(dkm-dln).norm();
cdouble c=1./sqrt(1./wln.a+1./wkm.a);
cdouble Vklmn=coul_pref*I0km*O[s](l,n)*cerf_div(dd,c);
//cdouble arge=dkm*dkm*wkm.a+dln*dln*wln.a+wkm.lz+wln.lz;
//cdouble Vklmn=0.5*coul_pref*M_PI*M_PI*M_PI*exp(arge)*cerf_div(dd,c)/pow(wln.a*wkm.a,3./2.);
cdouble dE=Vklmn*(Y[s](m,k)*Y[s](n,l)-Y[s](m,l)*Y[s](n,k));
double rdE=real(dE);
if(m!=k || n!=l) // not the same pair
rdE*=2;
Eee+=rdE;
}//n
}
if( Oflg[s](l,m) ) {
WavePacket wlm=pbc_mul(wp[s][m],wp[s][l]);
cVector_3 dlm=wlm.b/(2*wlm.a);
cdouble I0lm=O[s](l,m);
// kl-nm
for(int n=l;n<ne[s];n++){
if(n<=m || !Oflg[s](k,n)) continue;
WavePacket wkn=pbc_mul(wp[s][n],wp[s][k]);
if(pbc) // reducing the pair to elementary cell
ndr=move_to_image(wlm,wkn); // mind the derivative: wln.b+=wln.a*ndr, wln.lz+=-wln.a*ndr^2-i*wln.old_p*ndr;
cVector_3 dkn=wkn.b/(2*wkn.a);
cdouble dd=(dkn-dlm).norm();
cdouble c=1./sqrt(1./wkn.a+1./wlm.a);
cdouble Vklnm=coul_pref*I0lm*O[s](k,n)*cerf_div(dd,c);
cdouble dE=Vklnm*(Y[s](n,k)*Y[s](m,l)-Y[s](n,l)*Y[s](m,k));
double rdE=real(dE);
if(m!=k || n!=l) // not the same pair
rdE*=2;
Eee+=rdE;
}//n
}
}// m
}// l
}// k
}// s
// different spin
for(int k=0;k<ne[0];k++){ // skm=0 //c1
for(int l=0;l<ne[1];l++){ // sln=1 //c3
for(int m=k;m<ne[0];m++){ //c2
if( Oflg[0](k,m) ) {
WavePacket wkm=pbc_mul(wp[0][m],wp[0][k]);
cVector_3 dkm=wkm.b/(2*wkm.a);
cdouble I0km=O[0](k,m);
for(int n=l;n<ne[1];n++){ // km-ln //c4
if( Oflg[1](n,l) ) {
WavePacket wln=pbc_mul(wp[1][l],wp[1][n]);
if(pbc) // reducing the pair to elementary cell
ndr=move_to_image(wkm,wln); // mind the derivative: wln.b+=wln.a*ndr, wln.lz+=-wln.a*ndr^2-i*wln.old_p*ndr;
//Vector_3 rln=wln.get_r();
cVector_3 dln=wln.b/(2*wln.a);
cdouble dd=(dkm-dln).norm();
cdouble c=1./sqrt(1./wln.a+1./wkm.a);
cdouble Vklmn=coul_pref*I0km*wln.integral()*cerf_div(dd,c);
cdouble dE=Vklmn*Y[0](m,k)*Y[1](n,l);
int Mkm=(m==k ? 1: 2);
int Mln=(n==l ? 1: 2);
double rdE=Mkm*Mln*real(dE); //!!!
Eee+=rdE;
} //if
} // n
} //if
} // m
}// l
}// k
if(calc_ii)
interaction_ii(flag,fi);
return 1;
}
//e Calculates Norm matrix and performs LU-factorization
//e The result is saved in AWPMD::Norm[s]
void AWPMD::norm_matrix(int s){
// Internal variables
int k, l, i, j, qi, qj;
int nes = ne[s], nes8 = nes*8, nnes8 = nes*nes8;
if(!nes) return;
// References for frequently used arrays
sqmatrix<double>& Norms = Norm[s];
chmatrix& Ys = Y[s];
smatrix<unsigned char>& Oflgs = Oflg[s];
// Allocate of vectors and matrices
Norms.init(nes8,1);
IDD.init(nes8,1);
if(ID.size() != nnes8)
ID.resize(nnes8), IDYs.resize(nnes8), ipiv.resize(nes8);
// Calculate first and second derivatives
for(k=0;k<nes;k++){
int k8 = k*8;
WavePacket& wk = wp[s][k];
NormDeriv dk(wk);
dk = conj(dk); // conjugate: mu -> -mu, v -> -v !!!
for(l=0;l<nes;l++){
if( !Oflgs(k,l) ) continue; // non-overlapping WPs
int l8 = l*8;
WavePacket wl = wp[s][l];
if(pbc) move_to_image(wk,wl);
WavePacket wkl=conj(wk)*wl;
NormDeriv dl(wl);
cdouble I0 = O[s](k,l);
cVector_3 I1 = wkl.b * (I0 / wkl.a / 2);
cdouble bb_4a = wkl.b.norm2() / wkl.a / 4;
cdouble I2 = I0 * (bb_4a + 1.5) / wkl.a;
// calculate derivatives <phi_k | (phi_l)'_q_l>:
int idx = k + l*nes8;
if(k != l) {
ID[idx] = dl.l*I0 - I2; // over a_l_re
ID[idx+nes] = i_unit*(dl.m*I0 - I2); // over a_l_im
for(i=0;i<3;i++){
ID[idx+((i+1)*2)*nes] = dl.u[i]*I0 + I1[i]; // over b_l_re
ID[idx+((i+1)*2+1)*nes] = i_unit*(dl.v[i]*I0 + I1[i]); // over b_l_im
}
} else { // k == l
ID[idx] = i_unit*imag(dl.l); // over a_l_re
ID[idx+nes] = i_unit*(dl.m - I2); // over a_l_im
for(i=0;i<3;i++){
ID[idx+((i+1)*2)*nes] = dl.u[i] + I1[i]; // over b_l_re
ID[idx+((i+1)*2+1)*nes] = 0.; // over b_l_im
}
}
if(k <= l) {
cVector_3 I3 = I1 * ((bb_4a + 2.5) / wkl.a);
cdouble I4 = I0 * ( bb_4a *(bb_4a + 5.) + 3.75 ) / wkl.a / wkl.a;
// calculate derivatives <(phi_k)'_q_k | (phi_l)'_q_l>:
IDD.set(k8, l8, I4 - (dk.l + dl.l)*I2 + dk.l*dl.l*I0 ); // over a_k_re and a_l_re
IDD.set(k8, l8+1, i_unit*( I4 - (dk.l + dl.m)*I2 + dk.l*dl.m*I0 ) ); // over a_k_re and a_l_im
if(k != l) IDD.set(k8+1, l8, i_unit1*( I4 + (dk.m - dl.l)*I2 - dk.m*dl.l*I0 ) ); // over a_k_im and a_l_re
IDD.set(k8+1, l8+1, I4 + (dk.m - dl.m)*I2 - dk.m*dl.m*I0 ); // over a_k_im and a_l_im
for(i=0;i<3;i++){
IDD.set(k8, l8+(i+1)*2, -I3[i] + dk.l*I1[i] + dl.u[i]*(dk.l*I0 - I2) ); // over a_k_re and b_l_re
IDD.set(k8, l8+(i+1)*2+1, i_unit1*( I3[i] - dk.l*I1[i] + dl.v[i]*(I2 - dk.l*I0) ) ); // over a_k_re and b_l_im
IDD.set(k8+1, l8+(i+1)*2, i_unit *( I3[i] + dk.m*I1[i] + dl.u[i]*(I2 + dk.m*I0) ) ); // over a_k_im and b_l_re
IDD.set(k8+1, l8+(i+1)*2+1, -I3[i] - dk.m*I1[i] - dl.v[i]*(dk.m*I0 + I2) ); // over a_k_im and b_l_im
if(k != l) {
IDD.set(k8+(i+1)*2, l8, -I3[i] + dl.l*I1[i] + dk.u[i]*(dl.l*I0 - I2) ); // over b_k_re and a_l_re
IDD.set(k8+(i+1)*2+1, l8, i_unit *( I3[i] - dl.l*I1[i] - dk.v[i]*(I2 - dl.l*I0) ) ); // over b_k_im and a_l_re
IDD.set(k8+(i+1)*2, l8+1, i_unit1*( I3[i] - dl.m*I1[i] + dk.u[i]*(I2 - dl.m*I0) ) ); // over b_k_re and a_l_im
IDD.set(k8+(i+1)*2+1, l8+1, -I3[i] + dl.m*I1[i] - dk.v[i]*(dl.m*I0 - I2) ); // over b_k_im and a_l_im
}
for(j=0;j<3;j++){
cdouble I2ij = I0 / wkl.a *
(i==j ? wkl.b[i]*wkl.b[i] / wkl.a / 4 + 0.5
: wkl.b[i]*wkl.b[j] / wkl.a / 4);
// over b_k_re and b_l_re
IDD.set(k8+(j+1)*2, l8+(i+1)*2, I2ij + dk.u[i]*I1[j] + dl.u[j]*(I1[i] + dk.u[i]*I0) );
// over b_k_re and b_l_im
IDD.set(k8+(j+1)*2, l8+(i+1)*2+1, i_unit *( I2ij + dk.u[i]*I1[j] + dl.v[j]*(I1[i] + dk.u[i]*I0) ) );
// over b_k_im and b_l_re
if(k != l) IDD.set(k8+(j+1)*2+1, l8+(i+1)*2, i_unit1*( I2ij - dk.v[i]*I1[j] + dl.u[j]*(I1[i] - dk.v[i]*I0) ) );
// over b_k_im and b_l_im
IDD.set(k8+(j+1)*2+1, l8+(i+1)*2+1, I2ij - dk.v[i]*I1[j] + dl.v[j]*(I1[i] - dk.v[i]*I0) );
} // j
} // i
} // if(k <= l)
} // k
} // l
// Calculate matrix product IDYs_(k,q_j) = Ys_(k,l) * <phi_l | (phi_j)'_q_j>
for(qj=0; qj<nes8; qj++){
j = qj / 8;
int idx = qj*nes;
for(k=0;k<nes;k++) {
cdouble sum = 0.;
for(l=0;l<nes;l++)
if( Oflgs(l,j) ) sum += ID[idx+l] * Ys(k,l);
IDYs[idx+k] = sum;
}
}
// Calculate Norm-matrix
for(qi=0; qi<nes8; qi++){
i = qi / 8;
int idxqi = qi*nes;
Norms(qi,qi) = 0.; // zero diagonal elements
for(qj=qi+1; qj<nes8; qj++){
j = qj / 8;
int idxqj = qj*nes;
// Calculate matrix product sum = <(phi_i)'_q_i | phi_k> * IDYs_(k,q_j)
cdouble sum = 0.;
for(k=0;k<nes;k++)
if( Oflgs(i,k) )
sum += IDYs[idxqj+k] * conj(ID[idxqi+k]);
// Update norm-matrix taking into account its anti-symmetry
double a = Oflgs(i,j) ? // IDD = 0 for non-overlapping WPs
h_plank2 * imag( (sum - IDD(qi,qj))*Ys(j,i) ) :
h_plank2 * imag( sum*Ys(j,i) );
Norms(qi,qj) = a;
Norms(qj,qi) = -a;
} // qj
} // qi
# if 1
// transform norm matrix to the physical variables
for(i=0;i<nes;i++){
WavePacket wi=wp[s][i];
for(k=0;k<8;k++){
// iterator to list all N(8*i+k,*) with fixed 8*i+k
sqmatrix<double>::iterator mi=Norms.fix_first(8*i+k,0);
for(j=i ;j<nes;j++){ // TO DO: run this loop from i+1 and take simplectic form for (i,i) block
WavePacket wj=wp[s][j];
wj.int2phys_der< eq_second >(mi+8*j,mi+8*j,mi+8*j+3,mi+8*j+6,mi+8*j+7);
}
}// finished line of blocks from right
for(k= 8*i;k<nes8;k++){ // TO DO: run this loop from 8*i+8 and take simplectic form for (i,i) block
// iterator to list all N(8i+*,k) by fixed k
sqmatrix<double>::iterator mi=Norms.fix_second(8*i,k);
wi.int2phys_der< eq_second >(mi,mi,mi+3,mi+6,mi+7);
}// finished line of blocks from left
for(k=0;k<8;k++){ // filling the lower triangle according to antisymmetry
for(j=8*i+8;j<nes8;j++)
Norms(j,8*i+k)=-Norms(8*i+k,j);
}
}
# endif
# if 0
// transform norm matrix to the physical variables
for(i=0;i<nes;i++){
WavePacket wi=wp[s][i];
for(j=i;j<nes;j++){
WavePacket wj=wp[s][j];
for(k=0;k<8;k++){
// iterator to list all N(8*i+k,*) with fixed 8*i+k
sqmatrix<double>::iterator mi=Norms.fix_first(8*i+k,8*j);
wj.int2phys_der< eq_second >(mi,mi,mi+3,mi+6,mi+7);
}
for(k=0;k<8;k++){
// iterator to list all N(8*i+k,*) with fixed 8*i+k
sqmatrix<double>::iterator mi=Norms.fix_second(8*i,8*j+k);
wi.int2phys_der< eq_second >(mi,mi,mi+3,mi+6,mi+7);
}
if(i!=j){
for(int k1=0;k1<8;k1++){
for(int k2=0;k2<8;k2++)
Norms(8*j+k1,8*i+k2)=-Norms(8*i+k2,8*j+k1);
}
}
}
}
# endif
norm_matrix_state[s] = NORM_CALCULATED;
}
//e Norm matrix LU-factorization
void AWPMD::norm_factorize(int s) {
if( norm_matrix_state[s] != NORM_CALCULATED) norm_matrix(s);
int nes8 = ne[s]*8, info;
DGETRF(&nes8, &nes8, Norm[s].arr, &nes8, &ipiv[0], &info);
if(info < 0)
LOGERR(info,fmt("AWPMD.norm_factorize: call to DGETRF failed (exitcode %d)!",info),LINFO);
norm_matrix_state[s] = NORM_FACTORIZED;
}
//e Norm matrix inversion
void AWPMD::norm_invert(int s) {
if( norm_matrix_state[s] != NORM_FACTORIZED) norm_factorize(s);
int nes8 = ne[s]*8, info;
int IDD_size = (int)IDD.get_datasize(nes8);
DGETRI(&nes8, Norm[s].arr, &nes8, &ipiv[0], (double*)IDD.arr, &IDD_size, &info); // use IDD for work storage
if(info < 0)
LOGERR(info,fmt("AWPMD.norm_invert: call to DGETRI failed (exitcode %d)!",info),LINFO);
norm_matrix_state[s] = NORM_INVERTED;
}
//e Get the determinant of the norm-matrix for the particles with spin s
double AWPMD::norm_matrix_det(int s) {
double det = 1.;
int nes8 = ne[s]*8;
if(!nes8) return det;
if(norm_matrix_state[s] != NORM_FACTORIZED) norm_factorize(s);
sqmatrix<double>& Norms = Norm[s];
for(int i=0; i<nes8; i++)
det *= Norms(i, i); // product of the diagonal elements
return det;
}
//e Get the determinant logarithm of the norm-matrix for the particles with spin s
double AWPMD::norm_matrix_detl(int s) {
double detl = 0.;
int nes8 = ne[s]*8;
if(!nes8) return detl;
if(norm_matrix_state[s] != NORM_FACTORIZED) norm_factorize(s);
sqmatrix<double>& Norms = Norm[s];
for(int i=0; i<nes8; i++)
detl += log(fabs( Norms(i, i) )); // product of the diagonal elements
return detl;
}
double AWPMD::get_energy(){
double res=Eee + Ew;
for(int s=0;s<2;s++)
res+=Eei[s]+Ee[s];
if(calc_ii)
res+=Eii;
return res;
}
//e makes timestep of electronic component (NOT IMPLEMENTED)
int AWPMD::step(double dt){
return -1;
}
//e gets current electronic coordinates
int AWPMD::get_electrons(int spin, Vector_3P x, Vector_3P v, double* w, double* pw, double mass){
if(spin<0 || spin >1)
return -1; // invalid spin: return LOGERR(-1,fmt("AWPMD.get_electrons: invaid spin setting (%d)!",spin),LINFO);
if(mass<0)
mass=me;
for(int i=0;i<ni;i++){
w[i]=sqrt(3./(4*real(wp[spin][i].a)));
pw[i]=-2*w[i]*imag(wp[spin][i].a)/one_h; //pw[i]=-h_plank2*w[i]*imag(wp[spin][i].a);
x[i]=real(wp[spin][i].b)/(2*real(wp[spin][i].a));
v[i]=(pw[i]*x[i]/w[i] + imag(wp[spin][i].b)/one_h)/mass; //v[i]=(pw[i]*x[i]/w[i] + h_plank*imag(wp[spin][i].b))/m_electron;
}
return 1;
}
void AWPMD::clear_forces(int flag,Vector_3P fi, Vector_3P fe_x,
Vector_3P fe_p, double *fe_w, double *fe_pw, Vector_2P fe_c){
if(flag&0x1){
for(int i=0;i<ni;i++)
fi[i]=Vector_3(0.);
}
if(flag&0x4 && !(flag&0x10)){ // electron forces requested in physical representation
for(int s1=0;s1<2;s1++){ // clearing forces
for(int c1=0;c1<ne[s1];c1++){
fe_x[c1]=Vector_3(0,0,0);
fe_p[c1]=Vector_3(0,0,0);
fe_w[c1]=0;
fe_pw[c1]=0;
}
}
}
}
int AWPMD::interaction_ii(int flag,Vector_3P fi){
Eii=0.;
for(int i=0;i<ni;i++){
for(int j=i+1;j<ni;j++){
double M12e, M12f;
_mytie(M12e,M12f)=check_part1ii(i,j);
if(M12f){
Vector_3 rij=xi[i]-xi[j];
double r=rij.norm();
double dE=coul_pref*qi[i]*qi[j]/r;
Eii+=M12e*dE;
Eiip[i]+=0.5*M12e*dE;
Eiip[j]+=0.5*M12e*dE;
if(flag&0x3){ // ion forces needed
Vector_3 df=-M12f*dE*rij/(r*r);
fi[i]+=df;
fi[j]-=df;
}
}
}
}
return 1;
}
|