File: colvar_UIestimator.h

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (736 lines) | stat: -rw-r--r-- 29,824 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// -*- c++ -*-

// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.

#ifndef COLVAR_UIESTIMATOR_H
#define COLVAR_UIESTIMATOR_H

#include <cmath>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>

#include <typeinfo>

// only for colvar module!
// when integrated into other code, just remove this line and "...cvm::backup_file(...)"
#include "colvarmodule.h"

namespace UIestimator {
    const int Y_SIZE = 21;            // defines the range of extended CV with respect to a given CV
                                      // For example, CV=10, width=1, Y_SIZE=21, then eCV=[0-20], having a size of 21
    const int HALF_Y_SIZE = 10;
    const int EXTENDED_X_SIZE = HALF_Y_SIZE;
    const double EPSILON = 0.000001;   // for comparison of float numbers

    class n_matrix {   // Stores the distribution matrix of n(x,y)

    public:
        n_matrix() {}
        n_matrix(const std::vector<double> & lowerboundary,   // lowerboundary of x
            const std::vector<double> & upperboundary,   // upperboundary of
            const std::vector<double> & width,           // width of x
            const int y_size) {          // size of y, for example, ysize=7, then when x=1, the distribution of y in [-2,4] is considered

            int i;

            this->lowerboundary = lowerboundary;
            this->upperboundary = upperboundary;
            this->width = width;
            this->dimension = lowerboundary.size();
            this->y_size = y_size;     // keep in mind the internal (spare) matrix is stored in diagonal form
            this->y_total_size = int(std::pow(double(y_size), double(dimension)) + EPSILON);

            // the range of the matrix is [lowerboundary, upperboundary]
            x_total_size = 1;
            for (i = 0; i < dimension; i++) {
                x_size.push_back(int((upperboundary[i] - lowerboundary[i]) / width[i] + EPSILON));
                x_total_size *= x_size[i];
            }

            // initialize the internal matrix
            matrix.reserve(x_total_size);
            for (i = 0; i < x_total_size; i++) {
                matrix.push_back(std::vector<int>(y_total_size, 0));
            }

            temp.resize(dimension);
        }

        int inline get_value(const std::vector<double> & x, const std::vector<double> & y) {
            return matrix[convert_x(x)][convert_y(x, y)];
        }

        void inline set_value(const std::vector<double> & x, const std::vector<double> & y, const int value) {
            matrix[convert_x(x)][convert_y(x,y)] = value;
        }

        void inline increase_value(const std::vector<double> & x, const std::vector<double> & y, const int value) {
            matrix[convert_x(x)][convert_y(x,y)] += value;
        }

    private:
        std::vector<double> lowerboundary;
        std::vector<double> upperboundary;
        std::vector<double> width;
        int dimension;
        std::vector<int> x_size;       // the size of x in each dimension
        int x_total_size;              // the size of x of the internal matrix
        int y_size;                    // the size of y in each dimension
        int y_total_size;              // the size of y of the internal matrix

        std::vector<std::vector<int> > matrix;  // the internal matrix

        std::vector<int> temp;         // this vector is used in convert_x and convert_y to save computational resource

        int i, j;

        int convert_x(const std::vector<double> & x) {       // convert real x value to its interal index
            for (i = 0; i < dimension; i++) {
                temp[i] = int((x[i] - lowerboundary[i]) / width[i] + EPSILON);
            }

            int index = 0;
            for (i = 0; i < dimension; i++) {
                if (i + 1 < dimension) {
                    int x_temp = 1;
                    for (j = i + 1; j < dimension; j++)
                        x_temp *= x_size[j];
                    index += temp[i] * x_temp;
                }
                else
                    index += temp[i];
            }
            return index;
        }

        int convert_y(const std::vector<double> & x, const std::vector<double> & y) {       // convert real y value to its interal index

            int i;

            for (i = 0; i < dimension; i++) {
                temp[i] = round((round(y[i] / width[i] + EPSILON) - round(x[i] / width[i] + EPSILON)) + (y_size - 1) / 2 + EPSILON);
            }

            int index = 0;
            for (i = 0; i < dimension; i++) {
                if (i + 1 < dimension)
                    index += temp[i] * int(std::pow(double(y_size), double(dimension - i - 1)) + EPSILON);
                else
                    index += temp[i];
            }
            return index;
        }

        double round(double r) {
            return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);
        }
    };

    // vector, store the sum_x, sum_x_square, count_y
    template <typename T>
    class n_vector {

    public:
        n_vector() {}
        n_vector(const std::vector<double> & lowerboundary,   // lowerboundary of x
            const std::vector<double> & upperboundary,   // upperboundary of
            const std::vector<double> & width,                // width of x
            const int y_size,           // size of y, for example, ysize=7, then when x=1, the distribution of y in [-2,4] is considered
            const T & default_value) {         //   the default value of T

            this->width = width;
            this->dimension = lowerboundary.size();

            x_total_size = 1;
            for (int i = 0; i < dimension; i++) {
                this->lowerboundary.push_back(lowerboundary[i] - (y_size - 1) / 2 * width[i] - EPSILON);
                this->upperboundary.push_back(upperboundary[i] + (y_size - 1) / 2 * width[i] + EPSILON);

                x_size.push_back(int((this->upperboundary[i] - this->lowerboundary[i]) / this->width[i] + EPSILON));
                x_total_size *= x_size[i];
            }

            // initialize the internal vector
            vector.resize(x_total_size, default_value);

            temp.resize(dimension);
        }

        const T inline get_value(const std::vector<double> & x) {
            return vector[convert_x(x)];
        }

        void inline set_value(const std::vector<double> & x, const T value) {
            vector[convert_x(x)] = value;
        }

        void inline increase_value(const std::vector<double> & x, const T value) {
            vector[convert_x(x)] += value;
        }
    private:
        std::vector<double> lowerboundary;
        std::vector<double> upperboundary;
        std::vector<double> width;
        int dimension;
        std::vector<int> x_size;       // the size of x in each dimension
        int x_total_size;              // the size of x of the internal matrix

        std::vector<T> vector;  // the internal vector

        std::vector<int> temp;         // this vector is used in convert_x and convert_y to save computational resource

        int convert_x(const std::vector<double> & x) {       // convert real x value to its interal index

            int i, j;

            for (i = 0; i < dimension; i++) {
                temp[i] = int((x[i] - lowerboundary[i]) / width[i] + EPSILON);
            }

            int index = 0;
            for (i = 0; i < dimension; i++) {
                if (i + 1 < dimension) {
                    int x_temp = 1;
                    for (j = i + 1; j < dimension; j++)
                        x_temp *= x_size[j];
                    index += temp[i] * x_temp;
                }
                else
                    index += temp[i];
            }
            return index;
        }
    };

    class UIestimator {     // the implemension of UI estimator

    public:
        UIestimator() {}

        //called when (re)start an eabf simulation
        UIestimator(const std::vector<double> & lowerboundary,
            const std::vector<double> & upperboundary,
            const std::vector<double> & width,
            const std::vector<double> & krestr,                // force constant in eABF
            const std::string & output_filename,              // the prefix of output files
            const int output_freq,
            const bool restart,                              // whether restart from a .count and a .grad file
            const std::vector<std::string> & input_filename,   // the prefixes of input files
            const double temperature) {

            // initialize variables
            this->lowerboundary = lowerboundary;
            this->upperboundary = upperboundary;
            this->width = width;
            this->krestr = krestr;
            this->output_filename = output_filename;
            this->output_freq = output_freq;
            this->restart = restart;
            this->input_filename = input_filename;
            this->temperature = temperature;

            int i, j;

            dimension = lowerboundary.size();

            for (i = 0; i < dimension; i++) {
                sum_x.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
                sum_x_square.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));

                x_av.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
                sigma_square.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
            }

            count_y = n_vector<int>(lowerboundary, upperboundary, width, Y_SIZE, 0);
            distribution_x_y = n_matrix(lowerboundary, upperboundary, width, Y_SIZE);

            grad = n_vector<std::vector<double> >(lowerboundary, upperboundary, width, 1, std::vector<double>(dimension, 0.0));
            count = n_vector<int>(lowerboundary, upperboundary, width, 1, 0);

            written = false;
            written_1D = false;

            if (dimension == 1) {
                std::vector<double> upperboundary_temp = upperboundary;
                upperboundary_temp[0] = upperboundary[0] + width[0];
                oneD_pmf = n_vector<double>(lowerboundary, upperboundary_temp, width, 1, 0.0);
            }

            if (restart == true) {
                input_grad = n_vector<std::vector<double> >(lowerboundary, upperboundary, width, 1, std::vector<double>(dimension, 0.0));
                input_count = n_vector<int>(lowerboundary, upperboundary, width, 1, 0);

                // initialize input_Grad and input_count
                // the loop_flag is a n-dimensional vector, increae from lowerboundary to upperboundary when looping
                std::vector<double> loop_flag(dimension, 0);
                for (i = 0; i < dimension; i++) {
                    loop_flag[i] = lowerboundary[i];
                }

                i = 0;
                while (i >= 0) {
                    for (j = 0; j < dimension; j++) {
                        input_grad.set_value(loop_flag, std::vector<double>(dimension,0));
                    }
                    input_count.set_value(loop_flag, 0);

                    // iterate over any dimensions
                    i = dimension - 1;
                    while (i >= 0) {
                        loop_flag[i] += width[i];
                        if (loop_flag[i] > upperboundary[i] - width[i] + EPSILON) {
                            loop_flag[i] = lowerboundary[i];
                            i--;
                        }
                        else
                            break;
                    }
                }
                read_inputfiles(input_filename);
            }
        }

        ~UIestimator() {}

        // called from MD engine every step
        bool update(const int step, std::vector<double> x, std::vector<double> y) {

            int i;

            if (step % output_freq == 0) {
                calc_pmf();
                write_files();
                //write_interal_data();
            }

            for (i = 0; i < dimension; i++) {
                // for dihedral RC, it is possible that x = 179 and y = -179, should correct it
                // may have problem, need to fix
                if (x[i] > 150 && y[i] < -150) {
                    y[i] += 360;
                }
                if (x[i] < -150 && y[i] > 150) {
                    y[i] -= 360;
                }

                if (x[i] < lowerboundary[i] - EXTENDED_X_SIZE * width[i] + EPSILON || x[i] > upperboundary[i] + EXTENDED_X_SIZE * width[i] - EPSILON \
                    || y[i] - x[i] < -HALF_Y_SIZE * width[i] + EPSILON || y[i] - x[i] > HALF_Y_SIZE * width[i] - EPSILON \
                    || y[i] - lowerboundary[i] < -HALF_Y_SIZE * width[i] + EPSILON || y[i] - upperboundary[i] > HALF_Y_SIZE * width[i] - EPSILON)
                    return false;
            }

            for (i = 0; i < dimension; i++) {
                sum_x[i].increase_value(y, x[i]);
                sum_x_square[i].increase_value(y, x[i] * x[i]);
            }
            count_y.increase_value(y, 1);

            for (i = 0; i < dimension; i++) {
                // adapt colvars precision
                if (x[i] < lowerboundary[i] + EPSILON || x[i] > upperboundary[i] - EPSILON)
                    return false;
            }
            distribution_x_y.increase_value(x, y, 1);

            return true;
        }

        // update the output_filename
        void update_output_filename(const std::string& filename) {
            output_filename = filename;
        }

    private:
        std::vector<n_vector<double> > sum_x;                        // the sum of x in each y bin
        std::vector<n_vector<double> > sum_x_square;                 // the sum of x in each y bin
        n_vector<int> count_y;                              // the distribution of y
        n_matrix distribution_x_y;   // the distribution of <x, y> pair

        int dimension;

        std::vector<double> lowerboundary;
        std::vector<double> upperboundary;
        std::vector<double> width;
        std::vector<double> krestr;
        std::string output_filename;
        int output_freq;
        bool restart;
        std::vector<std::string> input_filename;
        double temperature;

        n_vector<std::vector<double> > grad;
        n_vector<int> count;

        n_vector<double> oneD_pmf;

        n_vector<std::vector<double> > input_grad;
        n_vector<int> input_count;

        // used in double integration
        std::vector<n_vector<double> > x_av;
        std::vector<n_vector<double> > sigma_square;

        bool written;
        bool written_1D;

        // calculate gradients from the internal variables
        void calc_pmf() {
            int norm;
            int i, j, k;

            std::vector<double> loop_flag(dimension, 0);
            for (i = 0; i < dimension; i++) {
                loop_flag[i] = lowerboundary[i] - HALF_Y_SIZE * width[i];
            }

            i = 0;
            while (i >= 0) {
                norm = count_y.get_value(loop_flag) > 0 ? count_y.get_value(loop_flag) : 1;
                for (j = 0; j < dimension; j++) {
                    x_av[j].set_value(loop_flag, sum_x[j].get_value(loop_flag) / norm);
                    sigma_square[j].set_value(loop_flag, sum_x_square[j].get_value(loop_flag) / norm - x_av[j].get_value(loop_flag) * x_av[j].get_value(loop_flag));
                }

                // iterate over any dimensions
                i = dimension - 1;
                while (i >= 0) {
                    loop_flag[i] += width[i];
                    if (loop_flag[i] > upperboundary[i] + HALF_Y_SIZE * width[i] - width[i] + EPSILON) {
                        loop_flag[i] = lowerboundary[i] - HALF_Y_SIZE * width[i];
                        i--;
                    }
                    else
                        break;
                }
            }

            // double integration
            std::vector<double> av(dimension, 0);
            std::vector<double> diff_av(dimension, 0);

            std::vector<double> loop_flag_x(dimension, 0);
            std::vector<double> loop_flag_y(dimension, 0);
            for (i = 0; i < dimension; i++) {
                loop_flag_x[i] = lowerboundary[i];
                loop_flag_y[i] = loop_flag_x[i] - HALF_Y_SIZE * width[i];
            }

            i = 0;
            while (i >= 0) {
                norm = 0;
                for (k = 0; k < dimension; k++) {
                    av[k] = 0;
                    diff_av[k] = 0;
                    loop_flag_y[k] = loop_flag_x[k] - HALF_Y_SIZE * width[k];
                }

                int j = 0;
                while (j >= 0) {
                    norm += distribution_x_y.get_value(loop_flag_x, loop_flag_y);
                    for (k = 0; k < dimension; k++) {
                        if (sigma_square[k].get_value(loop_flag_y) > EPSILON || sigma_square[k].get_value(loop_flag_y) < -EPSILON)
                            av[k] += distribution_x_y.get_value(loop_flag_x, loop_flag_y) * ( (loop_flag_x[k] + 0.5 * width[k]) - x_av[k].get_value(loop_flag_y)) / sigma_square[k].get_value(loop_flag_y);

                        diff_av[k] += distribution_x_y.get_value(loop_flag_x, loop_flag_y) * (loop_flag_x[k] - loop_flag_y[k]);
                    }

                    // iterate over any dimensions
                    j = dimension - 1;
                    while (j >= 0) {
                        loop_flag_y[j] += width[j];
                        if (loop_flag_y[j] > loop_flag_x[j] + HALF_Y_SIZE * width[j] - width[j] + EPSILON) {
                            loop_flag_y[j] = loop_flag_x[j] - HALF_Y_SIZE * width[j];
                            j--;
                        }
                        else
                            break;
                    }
                }

                std::vector<double> grad_temp(dimension, 0);
                for (k = 0; k < dimension; k++) {
                    diff_av[k] /= (norm > 0 ? norm : 1);
                    av[k] = cvm::boltzmann() * temperature * av[k] / (norm > 0 ? norm : 1);
                    grad_temp[k] = av[k] - krestr[k] * diff_av[k];
                }
                grad.set_value(loop_flag_x, grad_temp);
                count.set_value(loop_flag_x, norm);

                // iterate over any dimensions
                i = dimension - 1;
                while (i >= 0) {
                    loop_flag_x[i] += width[i];
                    if (loop_flag_x[i] > upperboundary[i] - width[i] + EPSILON) {
                        loop_flag_x[i] = lowerboundary[i];
                        i--;
                    }
                    else
                        break;
                }
            }
        }


        // calculate 1D pmf
        void calc_1D_pmf()
        {
            std::vector<double> last_position(1, 0);
            std::vector<double> position(1, 0);

            double min = 0;
            double dG = 0;
            double i;

            oneD_pmf.set_value(lowerboundary, 0);
            last_position = lowerboundary;
            for (i = lowerboundary[0] + width[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
                position[0] = i + EPSILON;
                if (restart == false || input_count.get_value(last_position) == 0) {
                    dG = oneD_pmf.get_value(last_position) + grad.get_value(last_position)[0] * width[0];
                }
                else {
                    dG = oneD_pmf.get_value(last_position) + ((grad.get_value(last_position)[0] * count.get_value(last_position) + input_grad.get_value(last_position)[0] * input_count.get_value(last_position)) / (count.get_value(last_position) + input_count.get_value(last_position))) * width[0];
                }
                if (dG < min)
                    min = dG;
                oneD_pmf.set_value(position, dG);
                last_position[0] = i + EPSILON;
            }

            for (i = lowerboundary[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
                position[0] = i + EPSILON;
                oneD_pmf.set_value(position, oneD_pmf.get_value(position) - min);
            }
        }

        // write 1D pmf
        void write_1D_pmf() {
            std::string pmf_filename = output_filename + ".UI.pmf";

            // only for colvars module!
            if (written_1D) cvm::backup_file(pmf_filename.c_str());

            std::ostream* ofile_pmf = cvm::proxy->output_stream(pmf_filename.c_str());

            std::vector<double> position(1, 0);
            for (double i = lowerboundary[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
                *ofile_pmf << i << " ";
                position[0] = i + EPSILON;
                *ofile_pmf << oneD_pmf.get_value(position) << std::endl;
            }
            cvm::proxy->close_output_stream(pmf_filename.c_str());

            written_1D = true;
        }

        // write heads of the output files
        void writehead(std::ostream& os) const {
            os << "# " << dimension << std::endl;
            for (int i = 0; i < dimension; i++) {
                os << "# " << lowerboundary[i] << " " << width[i] << " " << int((upperboundary[i] - lowerboundary[i]) / width[i] + EPSILON) << " " << 0 << std::endl;
            }
            os << std::endl;
        }

        // write interal data, used for testing
        void write_interal_data() {
            std::string internal_filename = output_filename + ".UI.internal";

            std::ostream* ofile_internal = cvm::proxy->output_stream(internal_filename.c_str());

            std::vector<double> loop_flag(dimension, 0);
            for (int i = 0; i < dimension; i++) {
                loop_flag[i] = lowerboundary[i];
            }

            int n = 0;
            while (n >= 0) {
                for (int j = 0; j < dimension; j++) {
                    *ofile_internal << loop_flag[j] + 0.5 * width[j] << " ";
                }

                for (int k = 0; k < dimension; k++) {
                    *ofile_internal << grad.get_value(loop_flag)[k] << " ";
                }

                std::vector<double> ii(dimension,0);
                for (double i = loop_flag[0] - 10; i < loop_flag[0] + 10 + EPSILON; i+= width[0]) {
                    for (double j = loop_flag[1] - 10; j< loop_flag[1] + 10 + EPSILON; j+=width[1]) {
                        ii[0] = i;
                        ii[1] = j;
                        *ofile_internal << i <<" "<<j<<" "<< distribution_x_y.get_value(loop_flag,ii)<< " ";
                    }
                }
                *ofile_internal << std::endl;

                // iterate over any dimensions
                n = dimension - 1;
                while (n >= 0) {
                    loop_flag[n] += width[n];
                    if (loop_flag[n] > upperboundary[n] - width[n] + EPSILON) {
                        loop_flag[n] = lowerboundary[n];
                        n--;
                    }
                    else
                        break;
                }
            }
            cvm::proxy->close_output_stream(internal_filename.c_str());
        }

        // write output files
        void write_files() {
            std::string grad_filename = output_filename + ".UI.grad";
            std::string hist_filename = output_filename + ".UI.hist.grad";
            std::string count_filename = output_filename + ".UI.count";

            int i, j;
//
            // only for colvars module!
            if (written) cvm::backup_file(grad_filename.c_str());
            //if (written) cvm::backup_file(hist_filename.c_str());
            if (written) cvm::backup_file(count_filename.c_str());

            std::ostream* ofile = cvm::proxy->output_stream(grad_filename.c_str());
            std::ostream* ofile_hist = cvm::proxy->output_stream(hist_filename.c_str(), std::ios::app);
            std::ostream* ofile_count = cvm::proxy->output_stream(count_filename.c_str());

            writehead(*ofile);
            writehead(*ofile_hist);
            writehead(*ofile_count);

            if (dimension == 1) {
                calc_1D_pmf();
                write_1D_pmf();
            }

            std::vector<double> loop_flag(dimension, 0);
            for (i = 0; i < dimension; i++) {
                loop_flag[i] = lowerboundary[i];
            }

            i = 0;
            while (i >= 0) {
                for (j = 0; j < dimension; j++) {
                    *ofile << loop_flag[j] + 0.5 * width[j] << " ";
                    *ofile_hist << loop_flag[j] + 0.5 * width[j] << " ";
                    *ofile_count << loop_flag[j] + 0.5 * width[j] << " ";
                }

                if (restart == false) {
                    for (j = 0; j < dimension; j++) {
                        *ofile << grad.get_value(loop_flag)[j] << " ";
                        *ofile_hist << grad.get_value(loop_flag)[j] << " ";
                    }
                    *ofile << std::endl;
                    *ofile_hist << std::endl;
                    *ofile_count << count.get_value(loop_flag) << " " <<std::endl;
                }
                else {
                    double final_grad = 0;
                    for (j = 0; j < dimension; j++) {
                        int total_count_temp = (count.get_value(loop_flag) + input_count.get_value(loop_flag));
                        if (input_count.get_value(loop_flag) == 0)
                            final_grad = grad.get_value(loop_flag)[j];
                        else
                            final_grad = ((grad.get_value(loop_flag)[j] * count.get_value(loop_flag) + input_grad.get_value(loop_flag)[j] * input_count.get_value(loop_flag)) / total_count_temp);
                        *ofile << final_grad << " ";
                        *ofile_hist << final_grad << " ";
                    }
                    *ofile << std::endl;
                    *ofile_hist << std::endl;
                    *ofile_count << (count.get_value(loop_flag) + input_count.get_value(loop_flag)) << " " <<std::endl;
                }

                // iterate over any dimensions
                i = dimension - 1;
                while (i >= 0) {
                    loop_flag[i] += width[i];
                    if (loop_flag[i] > upperboundary[i] - width[i] + EPSILON) {
                        loop_flag[i] = lowerboundary[i];
                        i--;
                        *ofile << std::endl;
                        *ofile_hist << std::endl;
                        *ofile_count << std::endl;
                    }
                    else
                        break;
                }
            }
            cvm::proxy->close_output_stream(grad_filename.c_str());
            cvm::proxy->close_output_stream(hist_filename.c_str());
            cvm::proxy->close_output_stream(count_filename.c_str());

            written = true;
        }

        // read input files
        void read_inputfiles(const std::vector<std::string> input_filename)
        {
            char sharp;
            double nothing;
            int dimension_temp;
            int i, j, k, l, m;

            std::vector<double> loop_bin_size(dimension, 0);
            std::vector<double> position_temp(dimension, 0);
            std::vector<double> grad_temp(dimension, 0);
            int count_temp = 0;
            for (i = 0; i < int(input_filename.size()); i++) {
                int size = 1 , size_temp = 0;

                std::string count_filename = input_filename[i] + ".UI.count";
                std::string grad_filename = input_filename[i] + ".UI.grad";

                std::ifstream count_file(count_filename.c_str(), std::ios::in);
                std::ifstream grad_file(grad_filename.c_str(), std::ios::in);

                count_file >> sharp >> dimension_temp;
                grad_file >> sharp >> dimension_temp;

                for (j = 0; j < dimension; j++) {
                    count_file >> sharp >> nothing >> nothing >> size_temp >> nothing;
                    grad_file >> sharp >> nothing >> nothing >> nothing >> nothing;
                    size *= size_temp;
                }

                for (j = 0; j < size; j++) {
                    do {
                        for (k = 0; k < dimension; k++) {
                            count_file >> position_temp[k];
                            grad_file >> nothing;
                        }

                        for (l = 0; l < dimension; l++) {
                            grad_file >> grad_temp[l];
                        }
                        count_file >> count_temp;
                    }
                    while (position_temp[i] < lowerboundary[i] - EPSILON || position_temp[i] > upperboundary[i] + EPSILON);

                    if (count_temp == 0) {
                        continue;
                    }

                    for (m = 0; m < dimension; m++) {
                        grad_temp[m] = (grad_temp[m] * count_temp + input_grad.get_value(position_temp)[m] * input_count.get_value(position_temp)) / (count_temp + input_count.get_value(position_temp));
                    }
                    input_grad.set_value(position_temp, grad_temp);
                    input_count.increase_value(position_temp, count_temp);
                }

                count_file.close();
                grad_file.close();
            }
        }
    };
}

#endif