File: colvarbias.cpp

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (670 lines) | stat: -rw-r--r-- 16,993 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// -*- c++ -*-

// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.

#include "colvarmodule.h"
#include "colvarproxy.h"
#include "colvarvalue.h"
#include "colvarbias.h"
#include "colvargrid.h"


colvarbias::colvarbias(char const *key)
  : bias_type(to_lower_cppstr(key))
{
  init_cvb_requires();

  rank = 1;

  has_data = false;
  b_output_energy = false;
  reset();
  state_file_step = 0;
  description = "uninitialized " + cvm::to_str(key) + " bias";
}


int colvarbias::init(std::string const &conf)
{
  colvarparse::init(conf);

  size_t i = 0;

  if (name.size() == 0) {

    // first initialization

    cvm::log("Initializing a new \""+bias_type+"\" instance.\n");
    rank = cvm::main()->num_biases_type(bias_type);
    get_keyval(conf, "name", name, bias_type+cvm::to_str(rank));

    {
      colvarbias *bias_with_name = cvm::bias_by_name(this->name);
      if (bias_with_name != NULL) {
        if ((bias_with_name->rank != this->rank) ||
            (bias_with_name->bias_type != this->bias_type)) {
          cvm::error("Error: this bias cannot have the same name, \""+this->name+
                     "\", as another bias.\n", INPUT_ERROR);
          return INPUT_ERROR;
        }
      }
    }

    description = "bias " + name;

    {
      // lookup the associated colvars
      std::vector<std::string> colvar_names;
      if (get_keyval(conf, "colvars", colvar_names)) {
        if (num_variables()) {
          cvm::error("Error: cannot redefine the colvars that a bias was already defined on.\n",
                     INPUT_ERROR);
          return INPUT_ERROR;
        }
        for (i = 0; i < colvar_names.size(); i++) {
          add_colvar(colvar_names[i]);
        }
      }
    }

    if (!num_variables()) {
      cvm::error("Error: no collective variables specified.\n", INPUT_ERROR);
      return INPUT_ERROR;
    }
  } else {
    cvm::log("Reinitializing bias \""+name+"\".\n");
  }

  output_prefix = cvm::output_prefix();

  get_keyval(conf, "outputEnergy", b_output_energy, b_output_energy);

  get_keyval(conf, "timeStepFactor", time_step_factor, 1);
  if (time_step_factor < 1) {
    cvm::error("Error: timeStepFactor must be 1 or greater.\n");
    return COLVARS_ERROR;
  }

  // Now that children are defined, we can solve dependencies
  enable(f_cvb_active);
  if (cvm::debug()) print_state();

  return COLVARS_OK;
}


int colvarbias::reset()
{
  bias_energy = 0.0;
  for (size_t i = 0; i < num_variables(); i++) {
    colvar_forces[i].reset();
  }
  return COLVARS_OK;
}


colvarbias::colvarbias()
  : colvarparse(), has_data(false)
{}


colvarbias::~colvarbias()
{
  colvarbias::clear();
}


int colvarbias::clear()
{
  free_children_deps();

  // Remove references to this bias from colvars
  for (std::vector<colvar *>::iterator cvi = colvars.begin();
       cvi != colvars.end();
       ++cvi) {
    for (std::vector<colvarbias *>::iterator bi = (*cvi)->biases.begin();
         bi != (*cvi)->biases.end();
         ++bi) {
      if ( *bi == this) {
        (*cvi)->biases.erase(bi);
        break;
      }
    }
  }

  colvarmodule *cv = cvm::main();
  // ...and from the colvars module
  for (std::vector<colvarbias *>::iterator bi = cv->biases.begin();
       bi != cv->biases.end();
       ++bi) {
    if ( *bi == this) {
      cv->biases.erase(bi);
      break;
    }
  }

  return COLVARS_OK;
}


int colvarbias::clear_state_data()
{
  // no mutable content to delete for base class
  return COLVARS_OK;
}


int colvarbias::add_colvar(std::string const &cv_name)
{
  if (colvar *cv = cvm::colvar_by_name(cv_name)) {

    if (cvm::debug()) {
      cvm::log("Applying this bias to collective variable \""+
               cv->name+"\".\n");
    }

    colvars.push_back(cv);

    colvar_forces.push_back(colvarvalue());
    colvar_forces.back().type(cv->value()); // make sure each force is initialized to zero
    colvar_forces.back().is_derivative(); // colvar constraints are not applied to the force
    colvar_forces.back().reset();

    previous_colvar_forces.push_back(colvar_forces.back());

    cv->biases.push_back(this); // add back-reference to this bias to colvar

    if (is_enabled(f_cvb_apply_force)) {
      cv->enable(f_cv_gradient);
    }

    // Add dependency link.
    // All biases need at least the value of each colvar
    // although possibly not at all timesteps
    add_child(cv);

  } else {
    cvm::error("Error: cannot find a colvar named \""+
               cv_name+"\".\n", INPUT_ERROR);
    return INPUT_ERROR;
  }

  return COLVARS_OK;
}


int colvarbias::update()
{
  if (cvm::debug()) {
    cvm::log("Updating the "+bias_type+" bias \""+this->name+"\".\n");
  }

  has_data = true;

  bias_energy = 0.0;
  for (size_t ir = 0; ir < num_variables(); ir++) {
    colvar_forces[ir].reset();
  }

  return COLVARS_OK;
}


void colvarbias::communicate_forces()
{
  size_t i = 0;
  for (i = 0; i < num_variables(); i++) {
    if (cvm::debug()) {
      cvm::log("Communicating a force to colvar \""+
               variables(i)->name+"\".\n");
    }
    // Impulse-style multiple timestep
    // Note that biases with different values of time_step_factor
    // may send forces to the same colvar
    // which is why rescaling has to happen now: the colvar is not
    // aware of this bias' time_step_factor
    variables(i)->add_bias_force(cvm::real(time_step_factor) * colvar_forces[i]);
  }
  for (i = 0; i < num_variables(); i++) {
    previous_colvar_forces[i] = colvar_forces[i];
  }
}


int colvarbias::end_of_step()
{
  return COLVARS_OK;
}


int colvarbias::change_configuration(std::string const &conf)
{
  cvm::error("Error: change_configuration() not implemented.\n",
             COLVARS_NOT_IMPLEMENTED);
  return COLVARS_NOT_IMPLEMENTED;
}


cvm::real colvarbias::energy_difference(std::string const &conf)
{
  cvm::error("Error: energy_difference() not implemented.\n",
             COLVARS_NOT_IMPLEMENTED);
  return 0.0;
}


// So far, these are only implemented in colvarbias_abf
int colvarbias::bin_num()
{
  cvm::error("Error: bin_num() not implemented.\n");
  return COLVARS_NOT_IMPLEMENTED;
}
int colvarbias::current_bin()
{
  cvm::error("Error: current_bin() not implemented.\n");
  return COLVARS_NOT_IMPLEMENTED;
}
int colvarbias::bin_count(int bin_index)
{
  cvm::error("Error: bin_count() not implemented.\n");
  return COLVARS_NOT_IMPLEMENTED;
}
int colvarbias::replica_share()
{
  cvm::error("Error: replica_share() not implemented.\n");
  return COLVARS_NOT_IMPLEMENTED;
}


std::string const colvarbias::get_state_params() const
{
  std::ostringstream os;
  os << "step " << cvm::step_absolute() << "\n"
     << "name " << this->name << "\n";
  return os.str();
}


int colvarbias::set_state_params(std::string const &conf)
{
  std::string new_name = "";
  if (colvarparse::get_keyval(conf, "name", new_name,
                              std::string(""), colvarparse::parse_silent) &&
      (new_name != this->name)) {
    cvm::error("Error: in the state file, the "
               "\""+bias_type+"\" block has a different name, \""+new_name+
               "\": different system?\n", INPUT_ERROR);
  }

  if (name.size() == 0) {
    cvm::error("Error: \""+bias_type+"\" block within the restart file "
               "has no identifiers.\n", INPUT_ERROR);
  }

  colvarparse::get_keyval(conf, "step", state_file_step,
                          cvm::step_absolute(), colvarparse::parse_silent);

  return COLVARS_OK;
}


std::ostream & colvarbias::write_state(std::ostream &os)
{
  if (cvm::debug()) {
    cvm::log("Writing state file for bias \""+name+"\"\n");
  }
  os.setf(std::ios::scientific, std::ios::floatfield);
  os.precision(cvm::cv_prec);
  os << bias_type << " {\n"
     << "  configuration {\n";
  std::istringstream is(get_state_params());
  std::string line;
  while (std::getline(is, line)) {
    os << "    " << line << "\n";
  }
  os << "  }\n";
  write_state_data(os);
  os << "}\n\n";
  return os;
}


std::istream & colvarbias::read_state(std::istream &is)
{
  size_t const start_pos = is.tellg();

  std::string key, brace, conf;
  if ( !(is >> key)   || !(key == bias_type) ||
       !(is >> brace) || !(brace == "{") ||
       !(is >> colvarparse::read_block("configuration", conf)) ||
       (set_state_params(conf) != COLVARS_OK) ) {
    cvm::error("Error: in reading state configuration for \""+bias_type+"\" bias \""+
               this->name+"\" at position "+
               cvm::to_str(is.tellg())+" in stream.\n", INPUT_ERROR);
    is.clear();
    is.seekg(start_pos, std::ios::beg);
    is.setstate(std::ios::failbit);
    return is;
  }

  if (!read_state_data(is)) {
    cvm::error("Error: in reading state data for \""+bias_type+"\" bias \""+
               this->name+"\" at position "+
               cvm::to_str(is.tellg())+" in stream.\n", INPUT_ERROR);
    is.clear();
    is.seekg(start_pos, std::ios::beg);
    is.setstate(std::ios::failbit);
  }

  is >> brace;
  if (brace != "}") {
    cvm::error("Error: corrupt restart information for \""+bias_type+"\" bias \""+
               this->name+"\": no matching brace at position "+
               cvm::to_str(is.tellg())+" in stream.\n");
    is.setstate(std::ios::failbit);
  }

  return is;
}


std::istream & colvarbias::read_state_data_key(std::istream &is, char const *key)
{
  size_t const start_pos = is.tellg();
  std::string key_in;
  if ( !(is >> key_in) ||
       !(key_in == to_lower_cppstr(std::string(key))) ) {
    cvm::error("Error: in reading restart configuration for "+
               bias_type+" bias \""+this->name+"\" at position "+
               cvm::to_str(is.tellg())+" in stream.\n", INPUT_ERROR);
    is.clear();
    is.seekg(start_pos, std::ios::beg);
    is.setstate(std::ios::failbit);
    return is;
  }
  return is;
}



std::ostream & colvarbias::write_traj_label(std::ostream &os)
{
  os << " ";
  if (b_output_energy)
    os << " E_"
       << cvm::wrap_string(this->name, cvm::en_width-2);
  return os;
}


std::ostream & colvarbias::write_traj(std::ostream &os)
{
  os << " ";
  if (b_output_energy)
    os << " "
       << std::setprecision(cvm::en_prec) << std::setw(cvm::en_width)
       << bias_energy;
  return os;
}



colvarbias_ti::colvarbias_ti(char const *key)
  : colvarbias(key)
{
  provide(f_cvb_calc_ti_samples);
  ti_avg_forces = NULL;
  ti_count = NULL;
}


colvarbias_ti::~colvarbias_ti()
{
  colvarbias_ti::clear_state_data();
}


int colvarbias_ti::clear_state_data()
{
  if (ti_avg_forces != NULL) {
    delete ti_avg_forces;
    ti_avg_forces = NULL;
  }
  if (ti_count != NULL) {
    delete ti_count;
    ti_count = NULL;
  }
  return COLVARS_OK;
}


int colvarbias_ti::init(std::string const &conf)
{
  int error_code = COLVARS_OK;

  get_keyval_feature(this, conf, "writeTISamples",
                     f_cvb_write_ti_samples,
                     is_enabled(f_cvb_write_ti_samples));

  get_keyval_feature(this, conf, "writeTIPMF",
                     f_cvb_write_ti_pmf,
                     is_enabled(f_cvb_write_ti_pmf));

  if ((num_variables() > 1) && is_enabled(f_cvb_write_ti_pmf)) {
    return cvm::error("Error: only 1-dimensional PMFs can be written "
                      "on the fly.\n"
                      "Consider using writeTISamples instead and "
                      "post-processing the sampled free-energy gradients.\n",
                      COLVARS_NOT_IMPLEMENTED);
  } else {
    error_code |= init_grids();
  }

  if (is_enabled(f_cvb_write_ti_pmf)) {
    enable(f_cvb_write_ti_samples);
  }

  if (is_enabled(f_cvb_calc_ti_samples)) {
    std::vector<std::string> const time_biases =
      cvm::main()->time_dependent_biases();
    if (time_biases.size() > 0) {
      if ((time_biases.size() > 1) || (time_biases[0] != this->name)) {
        for (size_t i = 0; i < num_variables(); i++) {
          if (! variables(i)->is_enabled(f_cv_subtract_applied_force)) {
            return cvm::error("Error: cannot collect TI samples while other "
                              "time-dependent biases are active and not all "
                              "variables have subtractAppliedForces on.\n",
                              INPUT_ERROR);
          }
        }
      }
    }
  }

  return error_code;
}


int colvarbias_ti::init_grids()
{
  if (is_enabled(f_cvb_calc_ti_samples)) {
    if (ti_avg_forces == NULL) {
      ti_bin.resize(num_variables());
      ti_system_forces.resize(num_variables());
      for (size_t icv = 0; icv < num_variables(); icv++) {
        ti_system_forces[icv].type(variables(icv)->value());
        ti_system_forces[icv].is_derivative();
        ti_system_forces[icv].reset();
      }
      ti_avg_forces = new colvar_grid_gradient(colvars);
      ti_count = new colvar_grid_count(colvars);
      ti_avg_forces->samples = ti_count;
      ti_count->has_parent_data = true;
    }
  }

  return COLVARS_OK;
}


int colvarbias_ti::update()
{
  return update_system_forces(NULL);
}


int colvarbias_ti::update_system_forces(std::vector<colvarvalue> const
                                        *subtract_forces)
{
  if (! is_enabled(f_cvb_calc_ti_samples)) {
    return COLVARS_OK;
  }

  has_data = true;

  if (cvm::debug()) {
    cvm::log("Updating system forces for bias "+this->name+"\n");
  }

  colvarproxy *proxy = cvm::main()->proxy;

  size_t i;

  if (proxy->total_forces_same_step()) {
    for (i = 0; i < num_variables(); i++) {
      ti_bin[i] = ti_avg_forces->current_bin_scalar(i);
    }
  }

  // Collect total colvar forces
  if ((cvm::step_relative() > 0) || proxy->total_forces_same_step()) {
    if (ti_avg_forces->index_ok(ti_bin)) {
      for (i = 0; i < num_variables(); i++) {
        if (variables(i)->is_enabled(f_cv_subtract_applied_force)) {
          // this colvar is already subtracting all applied forces
          ti_system_forces[i] = variables(i)->total_force();
        } else {
          ti_system_forces[i] = variables(i)->total_force() -
            ((subtract_forces != NULL) ?
             (*subtract_forces)[i] : previous_colvar_forces[i]);
        }
      }
      ti_avg_forces->acc_value(ti_bin, ti_system_forces);
    }
  }

  if (!proxy->total_forces_same_step()) {
    // Set the index for use in the next iteration, when total forces come in
    for (i = 0; i < num_variables(); i++) {
      ti_bin[i] = ti_avg_forces->current_bin_scalar(i);
    }
  }

  return COLVARS_OK;
}


std::string const colvarbias_ti::get_state_params() const
{
  return std::string("");
}


int colvarbias_ti::set_state_params(std::string const &state_conf)
{
  return COLVARS_OK;
}


std::ostream & colvarbias_ti::write_state_data(std::ostream &os)
{
  if (! is_enabled(f_cvb_calc_ti_samples)) {
    return os;
  }
  os << "\nhistogram\n";
  ti_count->write_raw(os);
  os << "\nsystem_forces\n";
  ti_avg_forces->write_raw(os);
  return os;
}


std::istream & colvarbias_ti::read_state_data(std::istream &is)
{
  if (! is_enabled(f_cvb_calc_ti_samples)) {
    return is;
  }
  if (cvm::debug()) {
    cvm::log("Reading state data for the TI estimator.\n");
  }
  if (! read_state_data_key(is, "histogram")) {
    return is;
  }
  if (! ti_count->read_raw(is)) {
    return is;
  }
  if (! read_state_data_key(is, "system_forces")) {
    return is;
  }
  if (! ti_avg_forces->read_raw(is)) {
    return is;
  }
  if (cvm::debug()) {
    cvm::log("Done reading state data for the TI estimator.\n");
  }
  return is;
}


int colvarbias_ti::write_output_files()
{
  if (!has_data) {
    // nothing to write
    return COLVARS_OK;
  }

  std::string const ti_output_prefix = cvm::output_prefix()+"."+this->name;

  std::ostream *os = NULL;

  if (is_enabled(f_cvb_write_ti_samples)) {
    std::string const ti_count_file_name(ti_output_prefix+".ti.count");
    os = cvm::proxy->output_stream(ti_count_file_name);
    if (os) {
      ti_count->write_multicol(*os);
      cvm::proxy->close_output_stream(ti_count_file_name);
    }

    std::string const ti_grad_file_name(ti_output_prefix+".ti.grad");
    os = cvm::proxy->output_stream(ti_grad_file_name);
    if (os) {
      ti_avg_forces->write_multicol(*os);
      cvm::proxy->close_output_stream(ti_grad_file_name);
    }
  }

  if (is_enabled(f_cvb_write_ti_pmf)) {
    std::string const pmf_file_name(ti_output_prefix+".ti.pmf");
    cvm::log("Writing TI PMF to file \""+pmf_file_name+"\".\n");
    os = cvm::proxy->output_stream(pmf_file_name);
    if (os) {
      // get the FE gradient
      ti_avg_forces->multiply_constant(-1.0);
      ti_avg_forces->write_1D_integral(*os);
      ti_avg_forces->multiply_constant(-1.0);
      cvm::proxy->close_output_stream(pmf_file_name);
    }
  }

  return COLVARS_OK;
}


// Static members

std::vector<colvardeps::feature *> colvarbias::cvb_features;