1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include "colvarmodule.h"
#include "colvarproxy.h"
#include "colvar.h"
#include "colvarbias_abf.h"
colvarbias_abf::colvarbias_abf(char const *key)
: colvarbias(key),
b_UI_estimator(false),
b_CZAR_estimator(false),
pabf_freq(0),
system_force(NULL),
gradients(NULL),
samples(NULL),
pmf(NULL),
z_gradients(NULL),
z_samples(NULL),
czar_gradients(NULL),
czar_pmf(NULL),
last_gradients(NULL),
last_samples(NULL)
{
}
int colvarbias_abf::init(std::string const &conf)
{
colvarbias::init(conf);
enable(f_cvb_scalar_variables);
enable(f_cvb_calc_pmf);
// TODO relax this in case of VMD plugin
if (cvm::temperature() == 0.0)
cvm::log("WARNING: ABF should not be run without a thermostat or at 0 Kelvin!\n");
// ************* parsing general ABF options ***********************
get_keyval_feature((colvarparse *)this, conf, "applyBias", f_cvb_apply_force, true);
if (!is_enabled(f_cvb_apply_force)){
cvm::log("WARNING: ABF biases will *not* be applied!\n");
}
get_keyval(conf, "updateBias", update_bias, true);
if (update_bias) {
enable(f_cvb_history_dependent);
} else {
cvm::log("WARNING: ABF biases will *not* be updated!\n");
}
get_keyval(conf, "hideJacobian", hide_Jacobian, false);
if (hide_Jacobian) {
cvm::log("Jacobian (geometric) forces will be handled internally.\n");
} else {
cvm::log("Jacobian (geometric) forces will be included in reported free energy gradients.\n");
}
get_keyval(conf, "fullSamples", full_samples, 200);
if ( full_samples <= 1 ) full_samples = 1;
min_samples = full_samples / 2;
// full_samples - min_samples >= 1 is guaranteed
get_keyval(conf, "inputPrefix", input_prefix, std::vector<std::string>());
get_keyval(conf, "outputFreq", output_freq, cvm::restart_out_freq);
get_keyval(conf, "historyFreq", history_freq, 0);
b_history_files = (history_freq > 0);
// shared ABF
get_keyval(conf, "shared", shared_on, false);
if (shared_on) {
if (!cvm::replica_enabled() || cvm::replica_num() <= 1) {
cvm::error("Error: shared ABF requires more than one replica.");
return COLVARS_ERROR;
}
cvm::log("shared ABF will be applied among "+ cvm::to_str(cvm::replica_num()) + " replicas.\n");
if (cvm::proxy->smp_enabled() == COLVARS_OK) {
cvm::error("Error: shared ABF is currently not available with SMP parallelism; "
"please set \"SMP off\" at the top of the Colvars configuration file.\n",
COLVARS_NOT_IMPLEMENTED);
return COLVARS_NOT_IMPLEMENTED;
}
// If shared_freq is not set, we default to output_freq
get_keyval(conf, "sharedFreq", shared_freq, output_freq);
}
// ************* checking the associated colvars *******************
if (num_variables() == 0) {
cvm::error("Error: no collective variables specified for the ABF bias.\n");
return COLVARS_ERROR;
}
if (update_bias) {
// Request calculation of total force
if(enable(f_cvb_get_total_force)) return cvm::get_error();
}
bool b_extended = false;
size_t i;
for (i = 0; i < num_variables(); i++) {
if (colvars[i]->value().type() != colvarvalue::type_scalar) {
cvm::error("Error: ABF bias can only use scalar-type variables.\n");
}
colvars[i]->enable(f_cv_grid);
if (hide_Jacobian) {
colvars[i]->enable(f_cv_hide_Jacobian);
}
// If any colvar is extended-system, we need to collect the extended
// system gradient
if (colvars[i]->is_enabled(f_cv_extended_Lagrangian))
b_extended = true;
// Cannot mix and match coarse time steps with ABF because it gives
// wrong total force averages - total force needs to be averaged over
// every time step
if (colvars[i]->get_time_step_factor() != time_step_factor) {
cvm::error("Error: " + colvars[i]->description + " has a value of timeStepFactor ("
+ cvm::to_str(colvars[i]->get_time_step_factor()) + ") different from that of "
+ description + " (" + cvm::to_str(time_step_factor) + ").\n");
return COLVARS_ERROR;
}
// Here we could check for orthogonality of the Cartesian coordinates
// and make it just a warning if some parameter is set?
}
if (get_keyval(conf, "maxForce", max_force)) {
if (max_force.size() != num_variables()) {
cvm::error("Error: Number of parameters to maxForce does not match number of colvars.");
}
for (i = 0; i < num_variables(); i++) {
if (max_force[i] < 0.0) {
cvm::error("Error: maxForce should be non-negative.");
}
}
cap_force = true;
} else {
cap_force = false;
}
bin.assign(num_variables(), 0);
force_bin.assign(num_variables(), 0);
system_force = new cvm::real [num_variables()];
// Construct empty grids based on the colvars
if (cvm::debug()) {
cvm::log("Allocating count and free energy gradient grids.\n");
}
samples = new colvar_grid_count(colvars);
gradients = new colvar_grid_gradient(colvars);
gradients->samples = samples;
samples->has_parent_data = true;
// Data for eAB F z-based estimator
if ( b_extended ) {
get_keyval(conf, "CZARestimator", b_CZAR_estimator, true);
// CZAR output files for stratified eABF
get_keyval(conf, "writeCZARwindowFile", b_czar_window_file, false,
colvarparse::parse_silent);
z_bin.assign(num_variables(), 0);
z_samples = new colvar_grid_count(colvars);
z_samples->request_actual_value();
z_gradients = new colvar_grid_gradient(colvars);
z_gradients->request_actual_value();
z_gradients->samples = z_samples;
z_samples->has_parent_data = true;
czar_gradients = new colvar_grid_gradient(colvars);
}
// For now, we integrate on-the-fly iff the grid is < 3D
if ( num_variables() <= 3 ) {
pmf = new integrate_potential(colvars, gradients);
if ( b_CZAR_estimator ) {
czar_pmf = new integrate_potential(colvars, czar_gradients);
}
get_keyval(conf, "integrate", b_integrate, true); // Integrate for output
if ( num_variables() > 1 ) {
// Projected ABF
get_keyval(conf, "pABFintegrateFreq", pabf_freq, 0);
// Parameters for integrating initial (and final) gradient data
get_keyval(conf, "integrateInitSteps", integrate_initial_steps, 1e4);
get_keyval(conf, "integrateInitTol", integrate_initial_tol, 1e-6);
// for updating the integrated PMF on the fly
get_keyval(conf, "integrateSteps", integrate_steps, 100);
get_keyval(conf, "integrateTol", integrate_tol, 1e-4);
}
} else {
b_integrate = false;
}
// For shared ABF, we store a second set of grids.
// This used to be only if "shared" was defined,
// but now we allow calling share externally (e.g. from Tcl).
last_samples = new colvar_grid_count(colvars);
last_gradients = new colvar_grid_gradient(colvars);
last_gradients->samples = last_samples;
last_samples->has_parent_data = true;
shared_last_step = -1;
// If custom grids are provided, read them
if ( input_prefix.size() > 0 ) {
read_gradients_samples();
// Update divergence to account for input data
pmf->set_div();
}
// if extendedLangrangian is on, then call UI estimator
if (b_extended) {
get_keyval(conf, "UIestimator", b_UI_estimator, false);
if (b_UI_estimator) {
std::vector<double> UI_lowerboundary;
std::vector<double> UI_upperboundary;
std::vector<double> UI_width;
std::vector<double> UI_krestr;
bool UI_restart = (input_prefix.size() > 0);
for (i = 0; i < num_variables(); i++)
{
UI_lowerboundary.push_back(colvars[i]->lower_boundary);
UI_upperboundary.push_back(colvars[i]->upper_boundary);
UI_width.push_back(colvars[i]->width);
UI_krestr.push_back(colvars[i]->force_constant());
}
eabf_UI = UIestimator::UIestimator(UI_lowerboundary,
UI_upperboundary,
UI_width,
UI_krestr, // force constant in eABF
output_prefix, // the prefix of output files
cvm::restart_out_freq,
UI_restart, // whether restart from a .count and a .grad file
input_prefix, // the prefixes of input files
cvm::temperature());
}
}
cvm::log("Finished ABF setup.\n");
return COLVARS_OK;
}
/// Destructor
colvarbias_abf::~colvarbias_abf()
{
if (samples) {
delete samples;
samples = NULL;
}
if (gradients) {
delete gradients;
gradients = NULL;
}
if (pmf) {
delete pmf;
pmf = NULL;
}
if (z_samples) {
delete z_samples;
z_samples = NULL;
}
if (z_gradients) {
delete z_gradients;
z_gradients = NULL;
}
if (czar_gradients) {
delete czar_gradients;
czar_gradients = NULL;
}
if (czar_pmf) {
delete czar_pmf;
czar_pmf = NULL;
}
// shared ABF
// We used to only do this if "shared" was defined,
// but now we can call shared externally
if (last_samples) {
delete last_samples;
last_samples = NULL;
}
if (last_gradients) {
delete last_gradients;
last_gradients = NULL;
}
if (system_force) {
delete [] system_force;
system_force = NULL;
}
}
/// Update the FE gradient, compute and apply biasing force
/// also output data to disk if needed
int colvarbias_abf::update()
{
if (cvm::debug()) cvm::log("Updating ABF bias " + this->name);
size_t i;
for (i = 0; i < num_variables(); i++) {
bin[i] = samples->current_bin_scalar(i);
}
if (cvm::proxy->total_forces_same_step()) {
// e.g. in LAMMPS, total forces are current
force_bin = bin;
}
if (cvm::step_relative() > 0 || cvm::proxy->total_forces_same_step()) {
if (update_bias) {
// if (b_adiabatic_reweighting) {
// // Update gradients non-locally based on conditional distribution of
// // fictitious variable TODO
//
// } else
if (samples->index_ok(force_bin)) {
// Only if requested and within bounds of the grid...
for (i = 0; i < num_variables(); i++) {
// get total forces (lagging by 1 timestep) from colvars
// and subtract previous ABF force if necessary
update_system_force(i);
}
gradients->acc_force(force_bin, system_force);
if ( b_integrate ) {
pmf->update_div_neighbors(force_bin);
}
}
}
if ( z_gradients && update_bias ) {
for (i = 0; i < num_variables(); i++) {
z_bin[i] = z_samples->current_bin_scalar(i);
}
if ( z_samples->index_ok(z_bin) ) {
for (i = 0; i < num_variables(); i++) {
// If we are outside the range of xi, the force has not been obtained above
// the function is just an accessor, so cheap to call again anyway
update_system_force(i);
}
z_gradients->acc_force(z_bin, system_force);
}
}
if ( b_integrate ) {
if ( pabf_freq && cvm::step_relative() % pabf_freq == 0 ) {
cvm::real err;
int iter = pmf->integrate(integrate_steps, integrate_tol, err);
if ( iter == integrate_steps ) {
cvm::log("Warning: PMF integration did not converge to " + cvm::to_str(integrate_tol)
+ " in " + cvm::to_str(integrate_steps)
+ " steps. Residual error: " + cvm::to_str(err));
}
pmf->set_zero_minimum(); // TODO: do this only when necessary
}
}
}
if (!cvm::proxy->total_forces_same_step()) {
// e.g. in NAMD, total forces will be available for next timestep
// hence we store the current colvar bin
force_bin = bin;
}
// Reset biasing forces from previous timestep
for (i = 0; i < num_variables(); i++) {
colvar_forces[i].reset();
}
// Compute and apply the new bias, if applicable
if (is_enabled(f_cvb_apply_force) && samples->index_ok(bin)) {
cvm::real count = samples->value(bin);
cvm::real fact = 1.0;
// Factor that ensures smooth introduction of the force
if ( count < full_samples ) {
fact = (count < min_samples) ? 0.0 :
(cvm::real(count - min_samples)) / (cvm::real(full_samples - min_samples));
}
std::vector<cvm::real> grad(num_variables());
if ( pabf_freq ) {
// In projected ABF, the force is the PMF gradient estimate
pmf->vector_gradient_finite_diff(bin, grad);
} else {
// Normal ABF
gradients->vector_value(bin, grad);
}
// if ( b_adiabatic_reweighting) {
// // Average of force according to conditional distribution of fictitious variable
// // need freshly integrated PMF, gradient TODO
// } else
if ( fact != 0.0 ) {
if ( (num_variables() == 1) && colvars[0]->periodic_boundaries() ) {
// Enforce a zero-mean bias on periodic, 1D coordinates
// in other words: boundary condition is that the biasing potential is periodic
// This is enforced naturally if using integrated PMF
colvar_forces[0].real_value = fact * (grad[0] - gradients->average ());
} else {
for (size_t i = 0; i < num_variables(); i++) {
// subtracting the mean force (opposite of the FE gradient) means adding the gradient
colvar_forces[i].real_value = fact * grad[i];
}
}
if (cap_force) {
for (size_t i = 0; i < num_variables(); i++) {
if ( colvar_forces[i].real_value * colvar_forces[i].real_value > max_force[i] * max_force[i] ) {
colvar_forces[i].real_value = (colvar_forces[i].real_value > 0 ? max_force[i] : -1.0 * max_force[i]);
}
}
}
}
}
// update the output prefix; TODO: move later to setup_output() function
if (cvm::main()->num_biases_feature(colvardeps::f_cvb_calc_pmf) == 1) {
// This is the only bias computing PMFs
output_prefix = cvm::output_prefix();
} else {
output_prefix = cvm::output_prefix() + "." + this->name;
}
if (output_freq && (cvm::step_absolute() % output_freq) == 0) {
if (cvm::debug()) cvm::log("ABF bias trying to write gradients and samples to disk");
write_gradients_samples(output_prefix);
}
if (b_history_files && (cvm::step_absolute() % history_freq) == 0) {
// file already exists iff cvm::step_relative() > 0
// otherwise, backup and replace
write_gradients_samples(output_prefix + ".hist", (cvm::step_relative() > 0));
}
if (shared_on && shared_last_step >= 0 && cvm::step_absolute() % shared_freq == 0) {
// Share gradients and samples for shared ABF.
replica_share();
}
// Prepare for the first sharing.
if (shared_last_step < 0) {
// Copy the current gradient and count values into last.
last_gradients->copy_grid(*gradients);
last_samples->copy_grid(*samples);
shared_last_step = cvm::step_absolute();
cvm::log("Prepared sample and gradient buffers at step "+cvm::to_str(cvm::step_absolute())+".");
}
// update UI estimator every step
if (b_UI_estimator)
{
std::vector<double> x(num_variables(),0);
std::vector<double> y(num_variables(),0);
for (size_t i = 0; i < num_variables(); i++)
{
x[i] = colvars[i]->actual_value();
y[i] = colvars[i]->value();
}
eabf_UI.update_output_filename(output_prefix);
eabf_UI.update(cvm::step_absolute(), x, y);
}
return COLVARS_OK;
}
int colvarbias_abf::replica_share() {
if ( !cvm::replica_enabled() ) {
cvm::error("Error: shared ABF: No replicas.\n");
return COLVARS_ERROR;
}
// We must have stored the last_gradients and last_samples.
if (shared_last_step < 0 ) {
cvm::error("Error: shared ABF: Tried to apply shared ABF before any sampling had occurred.\n");
return COLVARS_ERROR;
}
// Share gradients for shared ABF.
cvm::log("shared ABF: Sharing gradient and samples among replicas at step "+cvm::to_str(cvm::step_absolute()) );
// Count of data items.
size_t data_n = gradients->raw_data_num();
size_t samp_start = data_n*sizeof(cvm::real);
size_t msg_total = data_n*sizeof(size_t) + samp_start;
char* msg_data = new char[msg_total];
if (cvm::replica_index() == 0) {
int p;
// Replica 0 collects the delta gradient and count from the others.
for (p = 1; p < cvm::replica_num(); p++) {
// Receive the deltas.
cvm::replica_comm_recv(msg_data, msg_total, p);
// Map the deltas from the others into the grids.
last_gradients->raw_data_in((cvm::real*)(&msg_data[0]));
last_samples->raw_data_in((size_t*)(&msg_data[samp_start]));
// Combine the delta gradient and count of the other replicas
// with Replica 0's current state (including its delta).
gradients->add_grid( *last_gradients );
samples->add_grid( *last_samples );
}
// Now we must send the combined gradient to the other replicas.
gradients->raw_data_out((cvm::real*)(&msg_data[0]));
samples->raw_data_out((size_t*)(&msg_data[samp_start]));
for (p = 1; p < cvm::replica_num(); p++) {
cvm::replica_comm_send(msg_data, msg_total, p);
}
} else {
// All other replicas send their delta gradient and count.
// Calculate the delta gradient and count.
last_gradients->delta_grid(*gradients);
last_samples->delta_grid(*samples);
// Cast the raw char data to the gradient and samples.
last_gradients->raw_data_out((cvm::real*)(&msg_data[0]));
last_samples->raw_data_out((size_t*)(&msg_data[samp_start]));
cvm::replica_comm_send(msg_data, msg_total, 0);
// We now receive the combined gradient from Replica 0.
cvm::replica_comm_recv(msg_data, msg_total, 0);
// We sync to the combined gradient computed by Replica 0.
gradients->raw_data_in((cvm::real*)(&msg_data[0]));
samples->raw_data_in((size_t*)(&msg_data[samp_start]));
}
// Without a barrier it's possible that one replica starts
// share 2 when other replicas haven't finished share 1.
cvm::replica_comm_barrier();
// Done syncing the replicas.
delete[] msg_data;
// Copy the current gradient and count values into last.
last_gradients->copy_grid(*gradients);
last_samples->copy_grid(*samples);
shared_last_step = cvm::step_absolute();
return COLVARS_OK;
}
void colvarbias_abf::write_gradients_samples(const std::string &prefix, bool append)
{
std::string samples_out_name = prefix + ".count";
std::string gradients_out_name = prefix + ".grad";
std::ios::openmode mode = (append ? std::ios::app : std::ios::out);
std::ostream *samples_os =
cvm::proxy->output_stream(samples_out_name, mode);
if (!samples_os) return;
samples->write_multicol(*samples_os);
cvm::proxy->close_output_stream(samples_out_name);
// In dimension higher than 2, dx is easier to handle and visualize
if (num_variables() > 2) {
std::string samples_dx_out_name = prefix + ".count.dx";
std::ostream *samples_dx_os = cvm::proxy->output_stream(samples_dx_out_name, mode);
if (!samples_os) return;
samples->write_opendx(*samples_dx_os);
*samples_dx_os << std::endl;
cvm::proxy->close_output_stream(samples_dx_out_name);
}
std::ostream *gradients_os =
cvm::proxy->output_stream(gradients_out_name, mode);
if (!gradients_os) return;
gradients->write_multicol(*gradients_os);
cvm::proxy->close_output_stream(gradients_out_name);
if (b_integrate) {
// Do numerical integration (to high precision) and output a PMF
cvm::real err;
pmf->integrate(integrate_initial_steps, integrate_initial_tol, err);
pmf->set_zero_minimum();
std::string pmf_out_name = prefix + ".pmf";
std::ostream *pmf_os = cvm::proxy->output_stream(pmf_out_name, mode);
if (!pmf_os) return;
pmf->write_multicol(*pmf_os);
// In dimension higher than 2, dx is easier to handle and visualize
if (num_variables() > 2) {
std::string pmf_dx_out_name = prefix + ".pmf.dx";
std::ostream *pmf_dx_os = cvm::proxy->output_stream(pmf_dx_out_name, mode);
if (!pmf_dx_os) return;
pmf->write_opendx(*pmf_dx_os);
*pmf_dx_os << std::endl;
cvm::proxy->close_output_stream(pmf_dx_out_name);
}
*pmf_os << std::endl;
cvm::proxy->close_output_stream(pmf_out_name);
}
if (b_CZAR_estimator) {
// Write eABF CZAR-related quantities
std::string z_samples_out_name = prefix + ".zcount";
std::ostream *z_samples_os =
cvm::proxy->output_stream(z_samples_out_name, mode);
if (!z_samples_os) return;
z_samples->write_multicol(*z_samples_os);
cvm::proxy->close_output_stream(z_samples_out_name);
if (b_czar_window_file) {
std::string z_gradients_out_name = prefix + ".zgrad";
std::ostream *z_gradients_os =
cvm::proxy->output_stream(z_gradients_out_name, mode);
if (!z_gradients_os) return;
z_gradients->write_multicol(*z_gradients_os);
cvm::proxy->close_output_stream(z_gradients_out_name);
}
// Calculate CZAR estimator of gradients
for (std::vector<int> ix = czar_gradients->new_index();
czar_gradients->index_ok(ix); czar_gradients->incr(ix)) {
for (size_t n = 0; n < czar_gradients->multiplicity(); n++) {
czar_gradients->set_value(ix, z_gradients->value_output(ix, n)
- cvm::temperature() * cvm::boltzmann() * z_samples->log_gradient_finite_diff(ix, n), n);
}
}
std::string czar_gradients_out_name = prefix + ".czar.grad";
std::ostream *czar_gradients_os =
cvm::proxy->output_stream(czar_gradients_out_name, mode);
if (!czar_gradients_os) return;
czar_gradients->write_multicol(*czar_gradients_os);
cvm::proxy->close_output_stream(czar_gradients_out_name);
if (b_integrate) {
// Do numerical integration (to high precision) and output a PMF
cvm::real err;
czar_pmf->set_div();
czar_pmf->integrate(integrate_initial_steps, integrate_initial_tol, err);
czar_pmf->set_zero_minimum();
std::string czar_pmf_out_name = prefix + ".czar.pmf";
std::ostream *czar_pmf_os = cvm::proxy->output_stream(czar_pmf_out_name, mode);
if (!czar_pmf_os) return;
czar_pmf->write_multicol(*czar_pmf_os);
// In dimension higher than 2, dx is easier to handle and visualize
if (num_variables() > 2) {
std::string czar_pmf_dx_out_name = prefix + ".czar.pmf.dx";
std::ostream *czar_pmf_dx_os = cvm::proxy->output_stream(czar_pmf_dx_out_name, mode);
if (!czar_pmf_dx_os) return;
czar_pmf->write_opendx(*czar_pmf_dx_os);
*czar_pmf_dx_os << std::endl;
cvm::proxy->close_output_stream(czar_pmf_dx_out_name);
}
*czar_pmf_os << std::endl;
cvm::proxy->close_output_stream(czar_pmf_out_name);
}
}
return;
}
// For Tcl implementation of selection rules.
/// Give the total number of bins for a given bias.
int colvarbias_abf::bin_num() {
return samples->number_of_points(0);
}
/// Calculate the bin index for a given bias.
int colvarbias_abf::current_bin() {
return samples->current_bin_scalar(0);
}
/// Give the count at a given bin index.
int colvarbias_abf::bin_count(int bin_index) {
if (bin_index < 0 || bin_index >= bin_num()) {
cvm::error("Error: Tried to get bin count from invalid bin index "+cvm::to_str(bin_index));
return -1;
}
std::vector<int> ix(1,(int)bin_index);
return samples->value(ix);
}
void colvarbias_abf::read_gradients_samples()
{
std::string samples_in_name, gradients_in_name, z_samples_in_name, z_gradients_in_name;
for ( size_t i = 0; i < input_prefix.size(); i++ ) {
samples_in_name = input_prefix[i] + ".count";
gradients_in_name = input_prefix[i] + ".grad";
z_samples_in_name = input_prefix[i] + ".zcount";
z_gradients_in_name = input_prefix[i] + ".zgrad";
// For user-provided files, the per-bias naming scheme may not apply
std::ifstream is;
cvm::log("Reading sample count from " + samples_in_name + " and gradient from " + gradients_in_name);
is.open(samples_in_name.c_str());
if (!is.is_open()) cvm::error("Error opening ABF samples file " + samples_in_name + " for reading");
samples->read_multicol(is, true);
is.close();
is.clear();
is.open(gradients_in_name.c_str());
if (!is.is_open()) {
cvm::error("Error opening ABF gradient file " +
gradients_in_name + " for reading", INPUT_ERROR);
} else {
gradients->read_multicol(is, true);
is.close();
}
if (b_CZAR_estimator) {
// Read eABF z-averaged data for CZAR
cvm::log("Reading z-histogram from " + z_samples_in_name + " and z-gradient from " + z_gradients_in_name);
is.clear();
is.open(z_samples_in_name.c_str());
if (!is.is_open()) cvm::error("Error opening eABF z-histogram file " + z_samples_in_name + " for reading");
z_samples->read_multicol(is, true);
is.close();
is.clear();
is.open(z_gradients_in_name.c_str());
if (!is.is_open()) cvm::error("Error opening eABF z-gradient file " + z_gradients_in_name + " for reading");
z_gradients->read_multicol(is, true);
is.close();
}
}
return;
}
std::ostream & colvarbias_abf::write_state_data(std::ostream& os)
{
std::ios::fmtflags flags(os.flags());
os.setf(std::ios::fmtflags(0), std::ios::floatfield); // default floating-point format
os << "\nsamples\n";
samples->write_raw(os, 8);
os.flags(flags);
os << "\ngradient\n";
gradients->write_raw(os, 8);
if (b_CZAR_estimator) {
os.setf(std::ios::fmtflags(0), std::ios::floatfield); // default floating-point format
os << "\nz_samples\n";
z_samples->write_raw(os, 8);
os.flags(flags);
os << "\nz_gradient\n";
z_gradients->write_raw(os, 8);
}
os.flags(flags);
return os;
}
std::istream & colvarbias_abf::read_state_data(std::istream& is)
{
if ( input_prefix.size() > 0 ) {
cvm::error("ERROR: cannot provide both inputPrefix and a colvars state file.\n", INPUT_ERROR);
}
if (! read_state_data_key(is, "samples")) {
return is;
}
if (! samples->read_raw(is)) {
return is;
}
if (! read_state_data_key(is, "gradient")) {
return is;
}
if (! gradients->read_raw(is)) {
return is;
}
if (b_integrate) {
// Update divergence to account for restart data
pmf->set_div();
}
if (b_CZAR_estimator) {
if (! read_state_data_key(is, "z_samples")) {
return is;
}
if (! z_samples->read_raw(is)) {
return is;
}
if (! read_state_data_key(is, "z_gradient")) {
return is;
}
if (! z_gradients->read_raw(is)) {
return is;
}
}
return is;
}
int colvarbias_abf::write_output_files()
{
write_gradients_samples(output_prefix);
return COLVARS_OK;
}
|