1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include "colvarmodule.h"
#include "colvarproxy.h"
#include "colvar.h"
#include "colvarbias_histogram.h"
colvarbias_histogram::colvarbias_histogram(char const *key)
: colvarbias(key),
grid(NULL), out_name("")
{
}
int colvarbias_histogram::init(std::string const &conf)
{
colvarbias::init(conf);
enable(f_cvb_scalar_variables);
enable(f_cvb_history_dependent);
size_t i;
get_keyval(conf, "outputFile", out_name, std::string(""));
get_keyval(conf, "outputFileDX", out_name_dx, std::string(""));
get_keyval(conf, "outputFreq", output_freq, cvm::restart_out_freq);
/// with VMD, this may not be an error
// if ( output_freq == 0 ) {
// cvm::error("User required histogram with zero output frequency");
// }
colvar_array_size = 0;
{
bool colvar_array = false;
get_keyval(conf, "gatherVectorColvars", colvar_array, colvar_array);
if (colvar_array) {
for (i = 0; i < num_variables(); i++) { // should be all vector
if (colvars[i]->value().type() != colvarvalue::type_vector) {
cvm::error("Error: used gatherVectorColvars with non-vector colvar.\n", INPUT_ERROR);
return INPUT_ERROR;
}
if (i == 0) {
colvar_array_size = colvars[i]->value().size();
if (colvar_array_size < 1) {
cvm::error("Error: vector variable has dimension less than one.\n", INPUT_ERROR);
return INPUT_ERROR;
}
} else {
if (colvar_array_size != colvars[i]->value().size()) {
cvm::error("Error: trying to combine vector colvars of different lengths.\n", INPUT_ERROR);
return INPUT_ERROR;
}
}
}
} else {
for (i = 0; i < num_variables(); i++) { // should be all scalar
if (colvars[i]->value().type() != colvarvalue::type_scalar) {
cvm::error("Error: only scalar colvars are supported when gatherVectorColvars is off.\n", INPUT_ERROR);
return INPUT_ERROR;
}
}
}
}
if (colvar_array_size > 0) {
weights.assign(colvar_array_size, 1.0);
get_keyval(conf, "weights", weights, weights);
}
for (i = 0; i < num_variables(); i++) {
colvars[i]->enable(f_cv_grid);
}
grid = new colvar_grid_scalar();
grid->init_from_colvars(colvars);
{
std::string grid_conf;
if (key_lookup(conf, "histogramGrid", &grid_conf)) {
grid->parse_params(grid_conf);
grid->check_keywords(grid_conf, "histogramGrid");
}
}
return COLVARS_OK;
}
colvarbias_histogram::~colvarbias_histogram()
{
if (grid) {
delete grid;
grid = NULL;
}
}
int colvarbias_histogram::update()
{
int error_code = COLVARS_OK;
// update base class
error_code |= colvarbias::update();
if (cvm::debug()) {
cvm::log("Updating histogram bias " + this->name);
}
// assign a valid bin size
bin.assign(num_variables(), 0);
if (out_name.size() == 0) {
// At the first timestep, we need to assign out_name since
// output_prefix is unset during the constructor
if (cvm::step_relative() == 0) {
out_name = cvm::output_prefix() + "." + this->name + ".dat";
cvm::log("Histogram " + this->name + " will be written to file \"" + out_name + "\"");
}
}
if (out_name_dx.size() == 0) {
if (cvm::step_relative() == 0) {
out_name_dx = cvm::output_prefix() + "." + this->name + ".dx";
cvm::log("Histogram " + this->name + " will be written to file \"" + out_name_dx + "\"");
}
}
if (colvar_array_size == 0) {
// update indices for scalar values
size_t i;
for (i = 0; i < num_variables(); i++) {
bin[i] = grid->current_bin_scalar(i);
}
if (grid->index_ok(bin)) {
grid->acc_value(bin, 1.0);
}
} else {
// update indices for vector/array values
size_t iv, i;
for (iv = 0; iv < colvar_array_size; iv++) {
for (i = 0; i < num_variables(); i++) {
bin[i] = grid->current_bin_scalar(i, iv);
}
if (grid->index_ok(bin)) {
grid->acc_value(bin, weights[iv]);
}
}
}
if (output_freq && (cvm::step_absolute() % output_freq) == 0) {
write_output_files();
}
error_code |= cvm::get_error();
return error_code;
}
int colvarbias_histogram::write_output_files()
{
if (!has_data) {
// nothing to write
return COLVARS_OK;
}
if (out_name.size()) {
cvm::log("Writing the histogram file \""+out_name+"\".\n");
cvm::backup_file(out_name.c_str());
std::ostream *grid_os = cvm::proxy->output_stream(out_name);
if (!grid_os) {
return cvm::error("Error opening histogram file "+out_name+
" for writing.\n", FILE_ERROR);
}
grid->write_multicol(*grid_os);
cvm::proxy->close_output_stream(out_name);
}
if (out_name_dx.size()) {
cvm::log("Writing the histogram file \""+out_name_dx+"\".\n");
cvm::backup_file(out_name_dx.c_str());
std::ostream *grid_os = cvm::proxy->output_stream(out_name_dx);
if (!grid_os) {
return cvm::error("Error opening histogram file "+out_name_dx+
" for writing.\n", FILE_ERROR);
}
grid->write_opendx(*grid_os);
cvm::proxy->close_output_stream(out_name_dx);
}
return COLVARS_OK;
}
std::istream & colvarbias_histogram::read_state_data(std::istream& is)
{
if (! read_state_data_key(is, "grid")) {
return is;
}
if (! grid->read_raw(is)) {
return is;
}
return is;
}
std::ostream & colvarbias_histogram::write_state_data(std::ostream& os)
{
std::ios::fmtflags flags(os.flags());
os.setf(std::ios::fmtflags(0), std::ios::floatfield);
os << "grid\n";
grid->write_raw(os, 8);
os.flags(flags);
return os;
}
|