1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::cvc::cvc()
: sup_coeff(1.0),
sup_np(1),
b_periodic(false),
b_try_scalable(true)
{
init_cvc_requires();
sup_coeff = 1.0;
period = 0.0;
wrap_center = 0.0;
}
colvar::cvc::cvc(std::string const &conf)
: sup_coeff(1.0),
sup_np(1),
b_periodic(false),
b_try_scalable(true)
{
init_cvc_requires();
sup_coeff = 1.0;
period = 0.0;
wrap_center = 0.0;
init(conf);
}
int colvar::cvc::init(std::string const &conf)
{
if (cvm::debug())
cvm::log("Initializing cvc base object.\n");
std::string const old_name(name);
if (name.size() > 0) {
cvm::log("Updating configuration for component \""+name+"\"");
}
if (get_keyval(conf, "name", name, name)) {
if (name.size() > 0) {
description = "cvc \"" + name + "\" of type " + function_type;
} else {
description = "unnamed cvc";
}
if ((name != old_name) && (old_name.size() > 0)) {
cvm::error("Error: cannot rename component \""+old_name+
"\" after initialization (new name = \""+name+"\")",
INPUT_ERROR);
name = old_name;
}
}
get_keyval(conf, "componentCoeff", sup_coeff, sup_coeff);
get_keyval(conf, "componentExp", sup_np, sup_np);
get_keyval(conf, "period", period, period);
get_keyval(conf, "wrapAround", wrap_center, wrap_center);
get_keyval_feature(dynamic_cast<colvarparse *>(this), conf, "debugGradients",
f_cvc_debug_gradient, false, parse_silent);
bool b_no_PBC = !is_enabled(f_cvc_pbc_minimum_image); // Enabled by default
get_keyval(conf, "forceNoPBC", b_no_PBC, b_no_PBC);
if (b_no_PBC) {
disable(f_cvc_pbc_minimum_image);
} else {
enable(f_cvc_pbc_minimum_image);
}
// Attempt scalable calculations when in parallel? (By default yes, if available)
get_keyval(conf, "scalable", b_try_scalable, b_try_scalable);
if (cvm::debug())
cvm::log("Done initializing cvc base object.\n");
return cvm::get_error();
}
int colvar::cvc::init_total_force_params(std::string const &conf)
{
if (cvm::get_error()) return COLVARS_ERROR;
if (get_keyval_feature(this, conf, "oneSiteSystemForce",
f_cvc_one_site_total_force, is_enabled(f_cvc_one_site_total_force))) {
cvm::log("Warning: keyword \"oneSiteSystemForce\" is deprecated: "
"please use \"oneSiteTotalForce\" instead.\n");
}
if (get_keyval_feature(this, conf, "oneSiteTotalForce",
f_cvc_one_site_total_force, is_enabled(f_cvc_one_site_total_force))) {
cvm::log("Computing total force on group 1 only");
}
if (! is_enabled(f_cvc_one_site_total_force)) {
// check whether any of the other atom groups is dummy
std::vector<cvm::atom_group *>::iterator agi = atom_groups.begin();
agi++;
for ( ; agi != atom_groups.end(); agi++) {
if ((*agi)->b_dummy) {
provide(f_cvc_inv_gradient, false);
provide(f_cvc_Jacobian, false);
}
}
}
return COLVARS_OK;
}
cvm::atom_group *colvar::cvc::parse_group(std::string const &conf,
char const *group_key,
bool optional)
{
cvm::atom_group *group = NULL;
std::string group_conf;
if (key_lookup(conf, group_key, &group_conf)) {
group = new cvm::atom_group(group_key);
if (b_try_scalable) {
if (is_available(f_cvc_scalable_com)
&& is_enabled(f_cvc_com_based)
&& !is_enabled(f_cvc_debug_gradient)) {
enable(f_cvc_scalable_com);
enable(f_cvc_scalable);
// The CVC makes the feature available;
// the atom group will enable it unless it needs to compute a rotational fit
group->provide(f_ag_scalable_com);
}
// TODO check for other types of parallelism here
}
if (group_conf.size() == 0) {
cvm::error("Error: atom group \""+group->key+
"\" is set, but has no definition.\n",
INPUT_ERROR);
return group;
}
cvm::increase_depth();
if (group->parse(group_conf) == COLVARS_OK) {
register_atom_group(group);
}
group->check_keywords(group_conf, group_key);
if (cvm::get_error()) {
cvm::error("Error parsing definition for atom group \""+
std::string(group_key)+"\"\n.", INPUT_ERROR);
}
cvm::decrease_depth();
} else {
if (! optional) {
cvm::error("Error: definition for atom group \""+
std::string(group_key)+"\" not found.\n");
}
}
return group;
}
int colvar::cvc::setup()
{
description = "cvc " + name;
return COLVARS_OK;
}
colvar::cvc::~cvc()
{
free_children_deps();
remove_all_children();
for (size_t i = 0; i < atom_groups.size(); i++) {
if (atom_groups[i] != NULL) delete atom_groups[i];
}
}
void colvar::cvc::read_data()
{
size_t ig;
for (ig = 0; ig < atom_groups.size(); ig++) {
cvm::atom_group &atoms = *(atom_groups[ig]);
atoms.reset_atoms_data();
atoms.read_positions();
atoms.calc_required_properties();
// each atom group will take care of its own fitting_group, if defined
}
//// Don't try to get atom velocities, as no back-end currently implements it
// if (tasks[task_output_velocity] && !tasks[task_fdiff_velocity]) {
// for (i = 0; i < cvcs.size(); i++) {
// for (ig = 0; ig < cvcs[i]->atom_groups.size(); ig++) {
// cvcs[i]->atom_groups[ig]->read_velocities();
// }
// }
// }
}
void colvar::cvc::calc_force_invgrads()
{
cvm::error("Error: calculation of inverse gradients is not implemented "
"for colvar components of type \""+function_type+"\".\n",
COLVARS_NOT_IMPLEMENTED);
}
void colvar::cvc::calc_Jacobian_derivative()
{
cvm::error("Error: calculation of inverse gradients is not implemented "
"for colvar components of type \""+function_type+"\".\n",
COLVARS_NOT_IMPLEMENTED);
}
void colvar::cvc::calc_fit_gradients()
{
for (size_t ig = 0; ig < atom_groups.size(); ig++) {
atom_groups[ig]->calc_fit_gradients();
}
}
void colvar::cvc::debug_gradients()
{
// this function should work for any scalar cvc:
// the only difference will be the name of the atom group (here, "group")
// NOTE: this assumes that groups for this cvc are non-overlapping,
// since atom coordinates are modified only within the current group
cvm::log("Debugging gradients for " + description);
for (size_t ig = 0; ig < atom_groups.size(); ig++) {
cvm::atom_group *group = atom_groups[ig];
if (group->b_dummy) continue;
cvm::rotation const rot_0 = group->rot;
cvm::rotation const rot_inv = group->rot.inverse();
cvm::real x_0 = x.real_value;
if ((x.type() == colvarvalue::type_vector) && (x.size() == 1)) x_0 = x[0];
// cvm::log("gradients = "+cvm::to_str (gradients)+"\n");
cvm::atom_group *group_for_fit = group->fitting_group ? group->fitting_group : group;
cvm::atom_pos fit_gradient_sum, gradient_sum;
// print the values of the fit gradients
if (group->b_rotate || group->b_center) {
if (group->is_enabled(f_ag_fit_gradients)) {
size_t j;
// fit_gradients are in the simulation frame: we should print them in the rotated frame
cvm::log("Fit gradients:\n");
for (j = 0; j < group_for_fit->fit_gradients.size(); j++) {
cvm::log((group->fitting_group ? std::string("refPosGroup") : group->key) +
"[" + cvm::to_str(j) + "] = " +
(group->b_rotate ?
cvm::to_str(rot_0.rotate(group_for_fit->fit_gradients[j])) :
cvm::to_str(group_for_fit->fit_gradients[j])));
}
}
}
// debug the gradients
for (size_t ia = 0; ia < group->size(); ia++) {
// tests are best conducted in the unrotated (simulation) frame
cvm::rvector const atom_grad = (group->b_rotate ?
rot_inv.rotate((*group)[ia].grad) :
(*group)[ia].grad);
gradient_sum += atom_grad;
for (size_t id = 0; id < 3; id++) {
// (re)read original positions
group->read_positions();
// change one coordinate
(*group)[ia].pos[id] += cvm::debug_gradients_step_size;
group->calc_required_properties();
calc_value();
cvm::real x_1 = x.real_value;
if ((x.type() == colvarvalue::type_vector) && (x.size() == 1)) x_1 = x[0];
cvm::log("Atom "+cvm::to_str(ia)+", component "+cvm::to_str(id)+":\n");
cvm::log("dx(actual) = "+cvm::to_str(x_1 - x_0,
21, 14)+"\n");
cvm::real const dx_pred = (group->fit_gradients.size()) ?
(cvm::debug_gradients_step_size * (atom_grad[id] + group->fit_gradients[ia][id])) :
(cvm::debug_gradients_step_size * atom_grad[id]);
cvm::log("dx(interp) = "+cvm::to_str(dx_pred,
21, 14)+"\n");
cvm::log("|dx(actual) - dx(interp)|/|dx(actual)| = "+
cvm::to_str(std::fabs(x_1 - x_0 - dx_pred) /
std::fabs(x_1 - x_0), 12, 5)+"\n");
}
}
if ((group->is_enabled(f_ag_fit_gradients)) && (group->fitting_group != NULL)) {
cvm::atom_group *ref_group = group->fitting_group;
group->read_positions();
group->calc_required_properties();
for (size_t ia = 0; ia < ref_group->size(); ia++) {
// fit gradients are in the unrotated (simulation) frame
cvm::rvector const atom_grad = ref_group->fit_gradients[ia];
fit_gradient_sum += atom_grad;
for (size_t id = 0; id < 3; id++) {
// (re)read original positions
group->read_positions();
ref_group->read_positions();
// change one coordinate
(*ref_group)[ia].pos[id] += cvm::debug_gradients_step_size;
group->calc_required_properties();
calc_value();
cvm::real const x_1 = x.real_value;
cvm::log("refPosGroup atom "+cvm::to_str(ia)+", component "+cvm::to_str (id)+":\n");
cvm::log("dx(actual) = "+cvm::to_str (x_1 - x_0,
21, 14)+"\n");
cvm::real const dx_pred = cvm::debug_gradients_step_size * atom_grad[id];
cvm::log("dx(interp) = "+cvm::to_str (dx_pred,
21, 14)+"\n");
cvm::log ("|dx(actual) - dx(interp)|/|dx(actual)| = "+
cvm::to_str(std::fabs (x_1 - x_0 - dx_pred) /
std::fabs (x_1 - x_0),
12, 5)+
".\n");
}
}
}
cvm::log("Gradient sum: " + cvm::to_str(gradient_sum) +
" Fit gradient sum: " + cvm::to_str(fit_gradient_sum) +
" Total " + cvm::to_str(gradient_sum + fit_gradient_sum));
}
return;
}
cvm::real colvar::cvc::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x1.dist2(x2);
}
colvarvalue colvar::cvc::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x1.dist2_grad(x2);
}
colvarvalue colvar::cvc::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x2.dist2_grad(x1);
}
void colvar::cvc::wrap(colvarvalue &x) const
{
return;
}
// Static members
std::vector<colvardeps::feature *> colvar::cvc::cvc_features;
|