1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include <cmath>
#include "colvarmodule.h"
#include "colvarparse.h"
#include "colvaratoms.h"
#include "colvarvalue.h"
#include "colvar.h"
#include "colvarcomp.h"
template<int flags>
cvm::real colvar::coordnum::switching_function(cvm::real const &r0,
cvm::rvector const &r0_vec,
int en,
int ed,
cvm::atom &A1,
cvm::atom &A2,
bool **pairlist_elem,
cvm::real pairlist_tol)
{
if ((flags & ef_use_pairlist) && !(flags & ef_rebuild_pairlist)) {
bool const within = **pairlist_elem;
(*pairlist_elem)++;
if (!within) {
return 0.0;
}
}
cvm::rvector const r0sq_vec(r0_vec.x*r0_vec.x,
r0_vec.y*r0_vec.y,
r0_vec.z*r0_vec.z);
cvm::rvector const diff = cvm::position_distance(A1.pos, A2.pos);
cvm::rvector const scal_diff(diff.x/((flags & ef_anisotropic) ?
r0_vec.x : r0),
diff.y/((flags & ef_anisotropic) ?
r0_vec.y : r0),
diff.z/((flags & ef_anisotropic) ?
r0_vec.z : r0));
cvm::real const l2 = scal_diff.norm2();
// Assume en and ed are even integers, and avoid sqrt in the following
int const en2 = en/2;
int const ed2 = ed/2;
cvm::real const xn = cvm::integer_power(l2, en2);
cvm::real const xd = cvm::integer_power(l2, ed2);
//The subtraction and division stretches the function back to the range of [0,1] from [pairlist_tol,1]
cvm::real const func = (((1.0-xn)/(1.0-xd)) - pairlist_tol) / (1.0-pairlist_tol);
if (flags & ef_rebuild_pairlist) {
//Particles just outside of the cutoff also are considered if they come near.
**pairlist_elem = (func > (-pairlist_tol * 0.5)) ? true : false;
(*pairlist_elem)++;
}
//If the value is too small, we need to exclude it, rather than let it contribute to the sum or the gradients.
if (func < 0)
return 0;
if (flags & ef_gradients) {
//This is the old, completely correct expression for dFdl2:
//cvm::real const dFdl2 = (1.0/(1.0-xd))*(en2*(xn/l2) -
// func*ed2*(xd/l2))*(-1.0);
//This can become:
//cvm::real const dFdl2 = (1.0/(1.0-xd))*(en2*(xn/l2)*(1.0-xn)/(1.0-xn) -
// func*ed2*(xd/l2))*(-1.0);
//Recognizing that func = (1.0-xn)/(1.0-xd), we can group together the "func" and get a version of dFdl2 that is 0
//when func=0, which lets us skip this gradient calculation when func=0.
cvm::real const dFdl2 = func * ((ed2*xd/((1.0-xd)*l2)) - (en2*xn/((1.0-xn)*l2)));
cvm::rvector const dl2dx((2.0/((flags & ef_anisotropic) ? r0sq_vec.x :
r0*r0)) * diff.x,
(2.0/((flags & ef_anisotropic) ? r0sq_vec.y :
r0*r0)) * diff.y,
(2.0/((flags & ef_anisotropic) ? r0sq_vec.z :
r0*r0)) * diff.z);
A1.grad += (-1.0)*dFdl2*dl2dx;
A2.grad += dFdl2*dl2dx;
}
return func;
}
colvar::coordnum::coordnum(std::string const &conf)
: cvc(conf), b_anisotropic(false), group2_center(NULL), pairlist(NULL)
{
function_type = "coordnum";
x.type(colvarvalue::type_scalar);
group1 = parse_group(conf, "group1");
group2 = parse_group(conf, "group2");
if (int atom_number = cvm::atom_group::overlap(*group1, *group2)) {
cvm::error("Error: group1 and group2 share a common atom (number: " +
cvm::to_str(atom_number) + ")\n", INPUT_ERROR);
return;
}
if (group1->b_dummy) {
cvm::error("Error: only group2 is allowed to be a dummy atom\n",
INPUT_ERROR);
return;
}
bool const b_isotropic = get_keyval(conf, "cutoff", r0,
cvm::real(4.0 * cvm::unit_angstrom()));
if (get_keyval(conf, "cutoff3", r0_vec,
cvm::rvector(4.0 * cvm::unit_angstrom(),
4.0 * cvm::unit_angstrom(),
4.0 * cvm::unit_angstrom()))) {
if (b_isotropic) {
cvm::error("Error: cannot specify \"cutoff\" and \"cutoff3\" "
"at the same time.\n",
INPUT_ERROR);
return;
}
b_anisotropic = true;
// remove meaningless negative signs
if (r0_vec.x < 0.0) r0_vec.x *= -1.0;
if (r0_vec.y < 0.0) r0_vec.y *= -1.0;
if (r0_vec.z < 0.0) r0_vec.z *= -1.0;
}
get_keyval(conf, "expNumer", en, 6);
get_keyval(conf, "expDenom", ed, 12);
if ( (en%2) || (ed%2) ) {
cvm::error("Error: odd exponent(s) provided, can only use even ones.\n",
INPUT_ERROR);
}
if ( (en <= 0) || (ed <= 0) ) {
cvm::error("Error: negative exponent(s) provided.\n",
INPUT_ERROR);
}
if (!is_enabled(f_cvc_pbc_minimum_image)) {
cvm::log("Warning: only minimum-image distances are used by this variable.\n");
}
bool b_group2_center_only = false;
get_keyval(conf, "group2CenterOnly", b_group2_center_only, group2->b_dummy);
if (b_group2_center_only) {
if (!group2_center) {
group2_center = new cvm::atom_group();
group2_center->add_atom(cvm::atom());
}
}
get_keyval(conf, "tolerance", tolerance, 0.0);
if (tolerance > 0) {
get_keyval(conf, "pairListFrequency", pairlist_freq, 100);
if ( ! (pairlist_freq > 0) ) {
cvm::error("Error: non-positive pairlistfrequency provided.\n",
INPUT_ERROR);
return; // and do not allocate the pairlists below
}
if (b_group2_center_only) {
pairlist = new bool[group1->size()];
}
else {
pairlist = new bool[group1->size() * group2->size()];
}
}
}
colvar::coordnum::coordnum()
: b_anisotropic(false), group2_center(NULL), pairlist(NULL)
{
function_type = "coordnum";
x.type(colvarvalue::type_scalar);
}
colvar::coordnum::~coordnum()
{
if (pairlist != NULL) {
delete [] pairlist;
}
if (group2_center != NULL) {
delete group2_center;
}
}
template<int compute_flags> int colvar::coordnum::compute_coordnum()
{
if (group2_center) {
(*group2_center)[0].pos = group2->center_of_mass();
group2_center->calc_required_properties();
}
cvm::atom_group *group2p = group2_center ? group2_center : group2;
bool const use_pairlist = (pairlist != NULL);
bool const rebuild_pairlist = (pairlist != NULL) &&
(cvm::step_relative() % pairlist_freq == 0);
bool *pairlist_elem = use_pairlist ? pairlist : NULL;
cvm::atom_iter ai1 = group1->begin(), ai2 = group2p->begin();
cvm::atom_iter const ai1_end = group1->end();
cvm::atom_iter const ai2_end = group2p->end();
if (b_anisotropic) {
if (use_pairlist) {
if (rebuild_pairlist) {
int const flags = compute_flags | ef_anisotropic | ef_use_pairlist |
ef_rebuild_pairlist;
for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
*ai1, *ai2,
&pairlist_elem,
tolerance);
}
}
} else {
int const flags = compute_flags | ef_anisotropic | ef_use_pairlist;
for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
*ai1, *ai2,
&pairlist_elem,
tolerance);
}
}
}
} else { // if (use_pairlist) {
int const flags = compute_flags | ef_anisotropic;
for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
*ai1, *ai2,
NULL, 0.0);
}
}
}
} else {
if (use_pairlist) {
if (rebuild_pairlist) {
int const flags = compute_flags | ef_use_pairlist | ef_rebuild_pairlist;
for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
*ai1, *ai2,
&pairlist_elem,
tolerance);
}
}
} else {
int const flags = compute_flags | ef_use_pairlist;
for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
*ai1, *ai2,
&pairlist_elem,
tolerance);
}
}
}
} else { // if (use_pairlist) {
int const flags = compute_flags;
for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
*ai1, *ai2,
NULL, 0.0);
}
}
}
}
if (compute_flags & ef_gradients) {
if (group2_center) {
group2->set_weighted_gradient((*group2_center)[0].grad);
}
}
return COLVARS_OK;
}
void colvar::coordnum::calc_value()
{
x.real_value = 0.0;
if (is_enabled(f_cvc_gradient)) {
compute_coordnum<ef_gradients>();
} else {
compute_coordnum<ef_null>();
}
}
void colvar::coordnum::calc_gradients()
{
// Gradients are computed by calc_value() if f_cvc_gradients is enabled
}
void colvar::coordnum::apply_force(colvarvalue const &force)
{
if (!group1->noforce)
group1->apply_colvar_force(force.real_value);
if (!group2->noforce)
group2->apply_colvar_force(force.real_value);
}
simple_scalar_dist_functions(coordnum)
// h_bond member functions
colvar::h_bond::h_bond(std::string const &conf)
: cvc(conf)
{
if (cvm::debug())
cvm::log("Initializing h_bond object.\n");
function_type = "h_bond";
x.type(colvarvalue::type_scalar);
int a_num, d_num;
get_keyval(conf, "acceptor", a_num, -1);
get_keyval(conf, "donor", d_num, -1);
if ( (a_num == -1) || (d_num == -1) ) {
cvm::error("Error: either acceptor or donor undefined.\n");
return;
}
cvm::atom acceptor = cvm::atom(a_num);
cvm::atom donor = cvm::atom(d_num);
register_atom_group(new cvm::atom_group);
atom_groups[0]->add_atom(acceptor);
atom_groups[0]->add_atom(donor);
get_keyval(conf, "cutoff", r0, (3.3 * cvm::unit_angstrom()));
get_keyval(conf, "expNumer", en, 6);
get_keyval(conf, "expDenom", ed, 8);
if ( (en%2) || (ed%2) ) {
cvm::error("Error: odd exponent(s) provided, can only use even ones.\n",
INPUT_ERROR);
}
if ( (en <= 0) || (ed <= 0) ) {
cvm::error("Error: negative exponent(s) provided.\n",
INPUT_ERROR);
}
if (cvm::debug())
cvm::log("Done initializing h_bond object.\n");
}
colvar::h_bond::h_bond(cvm::atom const &acceptor,
cvm::atom const &donor,
cvm::real r0_i, int en_i, int ed_i)
: r0(r0_i), en(en_i), ed(ed_i)
{
function_type = "h_bond";
x.type(colvarvalue::type_scalar);
register_atom_group(new cvm::atom_group);
atom_groups[0]->add_atom(acceptor);
atom_groups[0]->add_atom(donor);
}
colvar::h_bond::h_bond()
: cvc()
{
function_type = "h_bond";
x.type(colvarvalue::type_scalar);
}
colvar::h_bond::~h_bond()
{
delete atom_groups[0];
}
void colvar::h_bond::calc_value()
{
int const flags = coordnum::ef_null;
cvm::rvector const r0_vec(0.0); // TODO enable the flag?
x.real_value =
coordnum::switching_function<flags>(r0, r0_vec, en, ed,
(*atom_groups[0])[0],
(*atom_groups[0])[1],
NULL, 0.0);
}
void colvar::h_bond::calc_gradients()
{
int const flags = coordnum::ef_gradients;
cvm::rvector const r0_vec(0.0); // TODO enable the flag?
coordnum::switching_function<flags>(r0, r0_vec, en, ed,
(*atom_groups[0])[0],
(*atom_groups[0])[1],
NULL, 0.0);
}
void colvar::h_bond::apply_force(colvarvalue const &force)
{
(atom_groups[0])->apply_colvar_force(force);
}
simple_scalar_dist_functions(h_bond)
colvar::selfcoordnum::selfcoordnum(std::string const &conf)
: cvc(conf), pairlist(NULL)
{
function_type = "selfcoordnum";
x.type(colvarvalue::type_scalar);
group1 = parse_group(conf, "group1");
get_keyval(conf, "cutoff", r0, cvm::real(4.0 * cvm::unit_angstrom()));
get_keyval(conf, "expNumer", en, 6);
get_keyval(conf, "expDenom", ed, 12);
if ( (en%2) || (ed%2) ) {
cvm::error("Error: odd exponent(s) provided, can only use even ones.\n",
INPUT_ERROR);
}
if ( (en <= 0) || (ed <= 0) ) {
cvm::error("Error: negative exponent(s) provided.\n",
INPUT_ERROR);
}
if (!is_enabled(f_cvc_pbc_minimum_image)) {
cvm::log("Warning: only minimum-image distances are used by this variable.\n");
}
get_keyval(conf, "tolerance", tolerance, 0.0);
if (tolerance > 0) {
get_keyval(conf, "pairListFrequency", pairlist_freq, 100);
if ( ! (pairlist_freq > 0) ) {
cvm::error("Error: non-positive pairlistfrequency provided.\n",
INPUT_ERROR);
return;
}
pairlist = new bool[(group1->size()-1) * (group1->size()-1)];
}
}
colvar::selfcoordnum::selfcoordnum()
: pairlist(NULL)
{
function_type = "selfcoordnum";
x.type(colvarvalue::type_scalar);
}
colvar::selfcoordnum::~selfcoordnum()
{
if (pairlist != NULL) {
delete [] pairlist;
}
}
template<int compute_flags> int colvar::selfcoordnum::compute_selfcoordnum()
{
cvm::rvector const r0_vec(0.0); // TODO enable the flag?
bool const use_pairlist = (pairlist != NULL);
bool const rebuild_pairlist = (pairlist != NULL) &&
(cvm::step_relative() % pairlist_freq == 0);
bool *pairlist_elem = use_pairlist ? pairlist : NULL;
size_t i = 0, j = 0;
size_t const n = group1->size();
// Always isotropic (TODO: enable the ellipsoid?)
if (use_pairlist) {
if (rebuild_pairlist) {
int const flags = compute_flags | coordnum::ef_use_pairlist |
coordnum::ef_rebuild_pairlist;
for (i = 0; i < n - 1; i++) {
for (j = i + 1; j < n; j++) {
x.real_value +=
coordnum::switching_function<flags>(r0, r0_vec, en, ed,
(*group1)[i],
(*group1)[j],
&pairlist_elem,
tolerance);
}
}
} else {
int const flags = compute_flags | coordnum::ef_use_pairlist;
for (i = 0; i < n - 1; i++) {
for (j = i + 1; j < n; j++) {
x.real_value +=
coordnum::switching_function<flags>(r0, r0_vec, en, ed,
(*group1)[i],
(*group1)[j],
&pairlist_elem,
tolerance);
}
}
}
} else { // if (use_pairlist) {
int const flags = compute_flags | coordnum::ef_null;
for (i = 0; i < n - 1; i++) {
for (j = i + 1; j < n; j++) {
x.real_value +=
coordnum::switching_function<flags>(r0, r0_vec, en, ed,
(*group1)[i],
(*group1)[j],
&pairlist_elem,
tolerance);
}
}
}
return COLVARS_OK;
}
void colvar::selfcoordnum::calc_value()
{
x.real_value = 0.0;
if (is_enabled(f_cvc_gradient)) {
compute_selfcoordnum<coordnum::ef_gradients>();
} else {
compute_selfcoordnum<coordnum::ef_null>();
}
}
void colvar::selfcoordnum::calc_gradients()
{
// Gradients are computed by calc_value() if f_cvc_gradients is enabled
}
void colvar::selfcoordnum::apply_force(colvarvalue const &force)
{
if (!group1->noforce) {
group1->apply_colvar_force(force.real_value);
}
}
simple_scalar_dist_functions(selfcoordnum)
// groupcoordnum member functions
colvar::groupcoordnum::groupcoordnum(std::string const &conf)
: distance(conf), b_anisotropic(false)
{
function_type = "groupcoordnum";
x.type(colvarvalue::type_scalar);
// group1 and group2 are already initialized by distance()
if (group1->b_dummy || group2->b_dummy) {
cvm::error("Error: neither group can be a dummy atom\n");
return;
}
bool const b_scale = get_keyval(conf, "cutoff", r0,
cvm::real(4.0 * cvm::unit_angstrom()));
if (get_keyval(conf, "cutoff3", r0_vec,
cvm::rvector(4.0, 4.0, 4.0), parse_silent)) {
if (b_scale) {
cvm::error("Error: cannot specify \"scale\" and "
"\"scale3\" at the same time.\n");
return;
}
b_anisotropic = true;
// remove meaningless negative signs
if (r0_vec.x < 0.0) r0_vec.x *= -1.0;
if (r0_vec.y < 0.0) r0_vec.y *= -1.0;
if (r0_vec.z < 0.0) r0_vec.z *= -1.0;
}
get_keyval(conf, "expNumer", en, 6);
get_keyval(conf, "expDenom", ed, 12);
if ( (en%2) || (ed%2) ) {
cvm::error("Error: odd exponent(s) provided, can only use even ones.\n",
INPUT_ERROR);
}
if ( (en <= 0) || (ed <= 0) ) {
cvm::error("Error: negative exponent(s) provided.\n",
INPUT_ERROR);
}
if (!is_enabled(f_cvc_pbc_minimum_image)) {
cvm::log("Warning: only minimum-image distances are used by this variable.\n");
}
}
colvar::groupcoordnum::groupcoordnum()
: b_anisotropic(false)
{
function_type = "groupcoordnum";
x.type(colvarvalue::type_scalar);
}
void colvar::groupcoordnum::calc_value()
{
cvm::rvector const r0_vec(0.0); // TODO enable the flag?
// create fake atoms to hold the com coordinates
cvm::atom group1_com_atom;
cvm::atom group2_com_atom;
group1_com_atom.pos = group1->center_of_mass();
group2_com_atom.pos = group2->center_of_mass();
if (b_anisotropic) {
int const flags = coordnum::ef_anisotropic;
x.real_value = coordnum::switching_function<flags>(r0, r0_vec, en, ed,
group1_com_atom,
group2_com_atom,
NULL, 0.0);
} else {
int const flags = coordnum::ef_null;
x.real_value = coordnum::switching_function<flags>(r0, r0_vec, en, ed,
group1_com_atom,
group2_com_atom,
NULL, 0.0);
}
}
void colvar::groupcoordnum::calc_gradients()
{
cvm::rvector const r0_vec(0.0); // TODO enable the flag?
cvm::atom group1_com_atom;
cvm::atom group2_com_atom;
group1_com_atom.pos = group1->center_of_mass();
group2_com_atom.pos = group2->center_of_mass();
if (b_anisotropic) {
int const flags = coordnum::ef_gradients | coordnum::ef_anisotropic;
coordnum::switching_function<flags>(r0, r0_vec, en, ed,
group1_com_atom,
group2_com_atom,
NULL, 0.0);
} else {
int const flags = coordnum::ef_gradients;
coordnum::switching_function<flags>(r0, r0_vec, en, ed,
group1_com_atom,
group2_com_atom,
NULL, 0.0);
}
group1->set_weighted_gradient(group1_com_atom.grad);
group2->set_weighted_gradient(group2_com_atom.grad);
}
void colvar::groupcoordnum::apply_force(colvarvalue const &force)
{
if (!group1->noforce)
group1->apply_colvar_force(force.real_value);
if (!group2->noforce)
group2->apply_colvar_force(force.real_value);
}
simple_scalar_dist_functions(groupcoordnum)
|