File: colvarcomp_coordnums.cpp

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (719 lines) | stat: -rw-r--r-- 21,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
// -*- c++ -*-

// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.

#include <cmath>

#include "colvarmodule.h"
#include "colvarparse.h"
#include "colvaratoms.h"
#include "colvarvalue.h"
#include "colvar.h"
#include "colvarcomp.h"



template<int flags>
cvm::real colvar::coordnum::switching_function(cvm::real const &r0,
                                               cvm::rvector const &r0_vec,
                                               int en,
                                               int ed,
                                               cvm::atom &A1,
                                               cvm::atom &A2,
                                               bool **pairlist_elem,
                                               cvm::real pairlist_tol)
{
  if ((flags & ef_use_pairlist) && !(flags & ef_rebuild_pairlist)) {
    bool const within = **pairlist_elem;
    (*pairlist_elem)++;
    if (!within) {
      return 0.0;
    }
  }

  cvm::rvector const r0sq_vec(r0_vec.x*r0_vec.x,
                              r0_vec.y*r0_vec.y,
                              r0_vec.z*r0_vec.z);

  cvm::rvector const diff = cvm::position_distance(A1.pos, A2.pos);

  cvm::rvector const scal_diff(diff.x/((flags & ef_anisotropic) ?
                                       r0_vec.x : r0),
                               diff.y/((flags & ef_anisotropic) ?
                                       r0_vec.y : r0),
                               diff.z/((flags & ef_anisotropic) ?
                                       r0_vec.z : r0));
  cvm::real const l2 = scal_diff.norm2();

  // Assume en and ed are even integers, and avoid sqrt in the following
  int const en2 = en/2;
  int const ed2 = ed/2;

  cvm::real const xn = cvm::integer_power(l2, en2);
  cvm::real const xd = cvm::integer_power(l2, ed2);
  //The subtraction and division stretches the function back to the range of [0,1] from [pairlist_tol,1]
  cvm::real const func = (((1.0-xn)/(1.0-xd)) - pairlist_tol) / (1.0-pairlist_tol);

  if (flags & ef_rebuild_pairlist) {
    //Particles just outside of the cutoff also are considered if they come near.
    **pairlist_elem = (func > (-pairlist_tol * 0.5)) ? true : false;
    (*pairlist_elem)++;
  }
  //If the value is too small, we need to exclude it, rather than let it contribute to the sum or the gradients.
  if (func < 0)
    return 0;

  if (flags & ef_gradients) {
    //This is the old, completely correct expression for dFdl2:
    //cvm::real const dFdl2 = (1.0/(1.0-xd))*(en2*(xn/l2) -
    //                                        func*ed2*(xd/l2))*(-1.0);
    //This can become:
    //cvm::real const dFdl2 = (1.0/(1.0-xd))*(en2*(xn/l2)*(1.0-xn)/(1.0-xn) -
    //                                        func*ed2*(xd/l2))*(-1.0);
    //Recognizing that func = (1.0-xn)/(1.0-xd), we can group together the "func" and get a version of dFdl2 that is 0
    //when func=0, which lets us skip this gradient calculation when func=0.
    cvm::real const dFdl2 = func * ((ed2*xd/((1.0-xd)*l2)) - (en2*xn/((1.0-xn)*l2)));
    cvm::rvector const dl2dx((2.0/((flags & ef_anisotropic) ? r0sq_vec.x :
                                   r0*r0)) * diff.x,
                             (2.0/((flags & ef_anisotropic) ? r0sq_vec.y :
                                   r0*r0)) * diff.y,
                             (2.0/((flags & ef_anisotropic) ? r0sq_vec.z :
                                   r0*r0)) * diff.z);
    A1.grad += (-1.0)*dFdl2*dl2dx;
    A2.grad +=        dFdl2*dl2dx;
  }

  return func;
}


colvar::coordnum::coordnum(std::string const &conf)
  : cvc(conf), b_anisotropic(false), group2_center(NULL), pairlist(NULL)

{
  function_type = "coordnum";
  x.type(colvarvalue::type_scalar);

  group1 = parse_group(conf, "group1");
  group2 = parse_group(conf, "group2");

  if (int atom_number = cvm::atom_group::overlap(*group1, *group2)) {
    cvm::error("Error: group1 and group2 share a common atom (number: " +
               cvm::to_str(atom_number) + ")\n", INPUT_ERROR);
    return;
  }

  if (group1->b_dummy) {
    cvm::error("Error: only group2 is allowed to be a dummy atom\n",
               INPUT_ERROR);
    return;
  }

  bool const b_isotropic = get_keyval(conf, "cutoff", r0,
                                      cvm::real(4.0 * cvm::unit_angstrom()));

  if (get_keyval(conf, "cutoff3", r0_vec,
                 cvm::rvector(4.0 * cvm::unit_angstrom(),
                              4.0 * cvm::unit_angstrom(),
                              4.0 * cvm::unit_angstrom()))) {
    if (b_isotropic) {
      cvm::error("Error: cannot specify \"cutoff\" and \"cutoff3\" "
                 "at the same time.\n",
                 INPUT_ERROR);
      return;
    }

    b_anisotropic = true;
    // remove meaningless negative signs
    if (r0_vec.x < 0.0) r0_vec.x *= -1.0;
    if (r0_vec.y < 0.0) r0_vec.y *= -1.0;
    if (r0_vec.z < 0.0) r0_vec.z *= -1.0;
  }

  get_keyval(conf, "expNumer", en, 6);
  get_keyval(conf, "expDenom", ed, 12);

  if ( (en%2) || (ed%2) ) {
    cvm::error("Error: odd exponent(s) provided, can only use even ones.\n",
               INPUT_ERROR);
  }

  if ( (en <= 0) || (ed <= 0) ) {
    cvm::error("Error: negative exponent(s) provided.\n",
               INPUT_ERROR);
  }

  if (!is_enabled(f_cvc_pbc_minimum_image)) {
    cvm::log("Warning: only minimum-image distances are used by this variable.\n");
  }

  bool b_group2_center_only = false;
  get_keyval(conf, "group2CenterOnly", b_group2_center_only, group2->b_dummy);
  if (b_group2_center_only) {
    if (!group2_center) {
      group2_center = new cvm::atom_group();
      group2_center->add_atom(cvm::atom());
    }
  }

  get_keyval(conf, "tolerance", tolerance, 0.0);
  if (tolerance > 0) {
    get_keyval(conf, "pairListFrequency", pairlist_freq, 100);
    if ( ! (pairlist_freq > 0) ) {
      cvm::error("Error: non-positive pairlistfrequency provided.\n",
                 INPUT_ERROR);
      return; // and do not allocate the pairlists below
    }
    if (b_group2_center_only) {
      pairlist = new bool[group1->size()];
    }
    else {
      pairlist = new bool[group1->size() * group2->size()];
    }
  }

}


colvar::coordnum::coordnum()
  : b_anisotropic(false), group2_center(NULL), pairlist(NULL)
{
  function_type = "coordnum";
  x.type(colvarvalue::type_scalar);
}


colvar::coordnum::~coordnum()
{
  if (pairlist != NULL) {
    delete [] pairlist;
  }
  if (group2_center != NULL) {
    delete group2_center;
  }
}


template<int compute_flags> int colvar::coordnum::compute_coordnum()
{
  if (group2_center) {
    (*group2_center)[0].pos = group2->center_of_mass();
    group2_center->calc_required_properties();
  }
  cvm::atom_group *group2p = group2_center ? group2_center : group2;

  bool const use_pairlist = (pairlist != NULL);
  bool const rebuild_pairlist = (pairlist != NULL) &&
    (cvm::step_relative() % pairlist_freq == 0);

  bool *pairlist_elem = use_pairlist ? pairlist : NULL;
  cvm::atom_iter ai1 = group1->begin(), ai2 = group2p->begin();
  cvm::atom_iter const ai1_end = group1->end();
  cvm::atom_iter const ai2_end = group2p->end();

  if (b_anisotropic) {

    if (use_pairlist) {

      if (rebuild_pairlist) {

        int const flags = compute_flags | ef_anisotropic | ef_use_pairlist |
          ef_rebuild_pairlist;
        for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
          for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
            x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
                                                      *ai1, *ai2,
                                                      &pairlist_elem,
                                                      tolerance);
          }
        }

      } else {

        int const flags = compute_flags | ef_anisotropic | ef_use_pairlist;
        for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
          for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
            x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
                                                      *ai1, *ai2,
                                                      &pairlist_elem,
                                                      tolerance);
          }
        }
      }

    } else { // if (use_pairlist) {

      int const flags = compute_flags | ef_anisotropic;
      for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
        for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
          x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
                                                    *ai1, *ai2,
                                                    NULL, 0.0);
        }
      }
    }

  } else {

    if (use_pairlist) {

      if (rebuild_pairlist) {

        int const flags = compute_flags | ef_use_pairlist | ef_rebuild_pairlist;
        for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
          for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
            x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
                                                      *ai1, *ai2,
                                                      &pairlist_elem,
                                                      tolerance);
          }
        }

      } else {

        int const flags = compute_flags | ef_use_pairlist;
        for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
          for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
            x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
                                                      *ai1, *ai2,
                                                      &pairlist_elem,
                                                      tolerance);
          }
        }
      }

    } else { // if (use_pairlist) {

      int const flags = compute_flags;
      for (ai1 = group1->begin(); ai1 != ai1_end; ai1++) {
        for (ai2 = group2->begin(); ai2 != ai2_end; ai2++) {
          x.real_value += switching_function<flags>(r0, r0_vec, en, ed,
                                                    *ai1, *ai2,
                                                    NULL, 0.0);
        }
      }
    }
  }

  if (compute_flags & ef_gradients) {
    if (group2_center) {
      group2->set_weighted_gradient((*group2_center)[0].grad);
    }
  }

  return COLVARS_OK;
}


void colvar::coordnum::calc_value()
{
  x.real_value = 0.0;
  if (is_enabled(f_cvc_gradient)) {
    compute_coordnum<ef_gradients>();
  } else {
    compute_coordnum<ef_null>();
  }
}


void colvar::coordnum::calc_gradients()
{
  // Gradients are computed by calc_value() if f_cvc_gradients is enabled
}


void colvar::coordnum::apply_force(colvarvalue const &force)
{
  if (!group1->noforce)
    group1->apply_colvar_force(force.real_value);

  if (!group2->noforce)
    group2->apply_colvar_force(force.real_value);
}


simple_scalar_dist_functions(coordnum)



// h_bond member functions

colvar::h_bond::h_bond(std::string const &conf)
: cvc(conf)
{
  if (cvm::debug())
    cvm::log("Initializing h_bond object.\n");

  function_type = "h_bond";
  x.type(colvarvalue::type_scalar);

  int a_num, d_num;
  get_keyval(conf, "acceptor", a_num, -1);
  get_keyval(conf, "donor",    d_num, -1);

  if ( (a_num == -1) || (d_num == -1) ) {
    cvm::error("Error: either acceptor or donor undefined.\n");
    return;
  }

  cvm::atom acceptor = cvm::atom(a_num);
  cvm::atom donor    = cvm::atom(d_num);
  register_atom_group(new cvm::atom_group);
  atom_groups[0]->add_atom(acceptor);
  atom_groups[0]->add_atom(donor);

  get_keyval(conf, "cutoff",   r0, (3.3 * cvm::unit_angstrom()));
  get_keyval(conf, "expNumer", en, 6);
  get_keyval(conf, "expDenom", ed, 8);

  if ( (en%2) || (ed%2) ) {
    cvm::error("Error: odd exponent(s) provided, can only use even ones.\n",
               INPUT_ERROR);
  }

  if ( (en <= 0) || (ed <= 0) ) {
    cvm::error("Error: negative exponent(s) provided.\n",
               INPUT_ERROR);
  }

  if (cvm::debug())
    cvm::log("Done initializing h_bond object.\n");
}


colvar::h_bond::h_bond(cvm::atom const &acceptor,
                       cvm::atom const &donor,
                       cvm::real r0_i, int en_i, int ed_i)
  : r0(r0_i), en(en_i), ed(ed_i)
{
  function_type = "h_bond";
  x.type(colvarvalue::type_scalar);

  register_atom_group(new cvm::atom_group);
  atom_groups[0]->add_atom(acceptor);
  atom_groups[0]->add_atom(donor);
}


colvar::h_bond::h_bond()
  : cvc()
{
  function_type = "h_bond";
  x.type(colvarvalue::type_scalar);
}


colvar::h_bond::~h_bond()
{
  delete atom_groups[0];
}


void colvar::h_bond::calc_value()
{
  int const flags = coordnum::ef_null;
  cvm::rvector const r0_vec(0.0); // TODO enable the flag?
  x.real_value =
    coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                        (*atom_groups[0])[0],
                                        (*atom_groups[0])[1],
                                        NULL, 0.0);
}


void colvar::h_bond::calc_gradients()
{
  int const flags = coordnum::ef_gradients;
  cvm::rvector const r0_vec(0.0); // TODO enable the flag?
  coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                      (*atom_groups[0])[0],
                                      (*atom_groups[0])[1],
                                      NULL, 0.0);
}


void colvar::h_bond::apply_force(colvarvalue const &force)
{
  (atom_groups[0])->apply_colvar_force(force);
}


simple_scalar_dist_functions(h_bond)



colvar::selfcoordnum::selfcoordnum(std::string const &conf)
  : cvc(conf), pairlist(NULL)
{
  function_type = "selfcoordnum";
  x.type(colvarvalue::type_scalar);

  group1 = parse_group(conf, "group1");

  get_keyval(conf, "cutoff", r0, cvm::real(4.0 * cvm::unit_angstrom()));
  get_keyval(conf, "expNumer", en, 6);
  get_keyval(conf, "expDenom", ed, 12);


  if ( (en%2) || (ed%2) ) {
    cvm::error("Error: odd exponent(s) provided, can only use even ones.\n",
               INPUT_ERROR);
  }

  if ( (en <= 0) || (ed <= 0) ) {
    cvm::error("Error: negative exponent(s) provided.\n",
               INPUT_ERROR);
  }

  if (!is_enabled(f_cvc_pbc_minimum_image)) {
    cvm::log("Warning: only minimum-image distances are used by this variable.\n");
  }

  get_keyval(conf, "tolerance", tolerance, 0.0);
  if (tolerance > 0) {
    get_keyval(conf, "pairListFrequency", pairlist_freq, 100);
    if ( ! (pairlist_freq > 0) ) {
      cvm::error("Error: non-positive pairlistfrequency provided.\n",
                 INPUT_ERROR);
      return;
    }
    pairlist = new bool[(group1->size()-1) * (group1->size()-1)];
  }
}


colvar::selfcoordnum::selfcoordnum()
  : pairlist(NULL)
{
  function_type = "selfcoordnum";
  x.type(colvarvalue::type_scalar);
}


colvar::selfcoordnum::~selfcoordnum()
{
  if (pairlist != NULL) {
    delete [] pairlist;
  }
}


template<int compute_flags> int colvar::selfcoordnum::compute_selfcoordnum()
{
  cvm::rvector const r0_vec(0.0); // TODO enable the flag?

  bool const use_pairlist = (pairlist != NULL);
  bool const rebuild_pairlist = (pairlist != NULL) &&
    (cvm::step_relative() % pairlist_freq == 0);

  bool *pairlist_elem = use_pairlist ? pairlist : NULL;
  size_t i = 0, j = 0;
  size_t const n = group1->size();

  // Always isotropic (TODO: enable the ellipsoid?)

  if (use_pairlist) {

    if (rebuild_pairlist) {
      int const flags = compute_flags | coordnum::ef_use_pairlist |
        coordnum::ef_rebuild_pairlist;
      for (i = 0; i < n - 1; i++) {
        for (j = i + 1; j < n; j++) {
          x.real_value +=
            coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                                (*group1)[i],
                                                (*group1)[j],
                                                &pairlist_elem,
                                                tolerance);
        }
      }
    } else {
      int const flags = compute_flags | coordnum::ef_use_pairlist;
      for (i = 0; i < n - 1; i++) {
        for (j = i + 1; j < n; j++) {
          x.real_value +=
            coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                                (*group1)[i],
                                                (*group1)[j],
                                                &pairlist_elem,
                                                tolerance);
        }
      }
    }

  } else { // if (use_pairlist) {

    int const flags = compute_flags | coordnum::ef_null;
    for (i = 0; i < n - 1; i++) {
      for (j = i + 1; j < n; j++) {
        x.real_value +=
          coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                              (*group1)[i],
                                              (*group1)[j],
                                              &pairlist_elem,
                                              tolerance);
      }
    }
  }

  return COLVARS_OK;
}


void colvar::selfcoordnum::calc_value()
{
  x.real_value = 0.0;
  if (is_enabled(f_cvc_gradient)) {
    compute_selfcoordnum<coordnum::ef_gradients>();
  } else {
    compute_selfcoordnum<coordnum::ef_null>();
  }
}


void colvar::selfcoordnum::calc_gradients()
{
  // Gradients are computed by calc_value() if f_cvc_gradients is enabled
}


void colvar::selfcoordnum::apply_force(colvarvalue const &force)
{
  if (!group1->noforce) {
    group1->apply_colvar_force(force.real_value);
  }
}


simple_scalar_dist_functions(selfcoordnum)



// groupcoordnum member functions
colvar::groupcoordnum::groupcoordnum(std::string const &conf)
  : distance(conf), b_anisotropic(false)
{
  function_type = "groupcoordnum";
  x.type(colvarvalue::type_scalar);

  // group1 and group2 are already initialized by distance()
  if (group1->b_dummy || group2->b_dummy) {
    cvm::error("Error: neither group can be a dummy atom\n");
    return;
  }

  bool const b_scale = get_keyval(conf, "cutoff", r0,
                                  cvm::real(4.0 * cvm::unit_angstrom()));

  if (get_keyval(conf, "cutoff3", r0_vec,
                 cvm::rvector(4.0, 4.0, 4.0), parse_silent)) {

    if (b_scale) {
      cvm::error("Error: cannot specify \"scale\" and "
                 "\"scale3\" at the same time.\n");
      return;
    }
    b_anisotropic = true;
    // remove meaningless negative signs
    if (r0_vec.x < 0.0) r0_vec.x *= -1.0;
    if (r0_vec.y < 0.0) r0_vec.y *= -1.0;
    if (r0_vec.z < 0.0) r0_vec.z *= -1.0;
  }

  get_keyval(conf, "expNumer", en, 6);
  get_keyval(conf, "expDenom", ed, 12);

  if ( (en%2) || (ed%2) ) {
    cvm::error("Error: odd exponent(s) provided, can only use even ones.\n",
               INPUT_ERROR);
  }

  if ( (en <= 0) || (ed <= 0) ) {
    cvm::error("Error: negative exponent(s) provided.\n",
               INPUT_ERROR);
  }

  if (!is_enabled(f_cvc_pbc_minimum_image)) {
    cvm::log("Warning: only minimum-image distances are used by this variable.\n");
  }

}


colvar::groupcoordnum::groupcoordnum()
  : b_anisotropic(false)
{
  function_type = "groupcoordnum";
  x.type(colvarvalue::type_scalar);
}


void colvar::groupcoordnum::calc_value()
{
  cvm::rvector const r0_vec(0.0); // TODO enable the flag?

  // create fake atoms to hold the com coordinates
  cvm::atom group1_com_atom;
  cvm::atom group2_com_atom;
  group1_com_atom.pos = group1->center_of_mass();
  group2_com_atom.pos = group2->center_of_mass();
  if (b_anisotropic) {
    int const flags = coordnum::ef_anisotropic;
    x.real_value = coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                                       group1_com_atom,
                                                       group2_com_atom,
                                                       NULL, 0.0);
  } else {
    int const flags = coordnum::ef_null;
    x.real_value = coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                                       group1_com_atom,
                                                       group2_com_atom,
                                                       NULL, 0.0);
  }
}


void colvar::groupcoordnum::calc_gradients()
{
  cvm::rvector const r0_vec(0.0); // TODO enable the flag?

  cvm::atom group1_com_atom;
  cvm::atom group2_com_atom;
  group1_com_atom.pos = group1->center_of_mass();
  group2_com_atom.pos = group2->center_of_mass();

  if (b_anisotropic) {
    int const flags = coordnum::ef_gradients | coordnum::ef_anisotropic;
    coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                        group1_com_atom,
                                        group2_com_atom,
                                        NULL, 0.0);
  } else {
    int const flags = coordnum::ef_gradients;
    coordnum::switching_function<flags>(r0, r0_vec, en, ed,
                                        group1_com_atom,
                                        group2_com_atom,
                                        NULL, 0.0);
  }

  group1->set_weighted_gradient(group1_com_atom.grad);
  group2->set_weighted_gradient(group2_com_atom.grad);
}


void colvar::groupcoordnum::apply_force(colvarvalue const &force)
{
  if (!group1->noforce)
    group1->apply_colvar_force(force.real_value);

  if (!group2->noforce)
    group2->apply_colvar_force(force.real_value);
}


simple_scalar_dist_functions(groupcoordnum)