1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include <cmath>
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvarparse.h"
#include "colvar.h"
#include "colvarcomp.h"
//////////////////////////////////////////////////////////////////////
// alpha component
//////////////////////////////////////////////////////////////////////
colvar::alpha_angles::alpha_angles(std::string const &conf)
: cvc(conf)
{
if (cvm::debug())
cvm::log("Initializing alpha_angles object.\n");
function_type = "alpha_angles";
enable(f_cvc_implicit_gradient);
x.type(colvarvalue::type_scalar);
std::string segment_id;
get_keyval(conf, "psfSegID", segment_id, std::string("MAIN"));
std::vector<int> residues;
{
std::string residues_conf = "";
key_lookup(conf, "residueRange", &residues_conf);
if (residues_conf.size()) {
std::istringstream is(residues_conf);
int initial, final;
char dash;
if ( (is >> initial) && (initial > 0) &&
(is >> dash) && (dash == '-') &&
(is >> final) && (final > 0) ) {
for (int rnum = initial; rnum <= final; rnum++) {
residues.push_back(rnum);
}
}
} else {
cvm::error("Error: no residues defined in \"residueRange\".\n");
return;
}
}
if (residues.size() < 5) {
cvm::error("Error: not enough residues defined in \"residueRange\".\n");
return;
}
std::string const &sid = segment_id;
std::vector<int> const &r = residues;
get_keyval(conf, "hBondCoeff", hb_coeff, 0.5);
if ( (hb_coeff < 0.0) || (hb_coeff > 1.0) ) {
cvm::error("Error: hBondCoeff must be defined between 0 and 1.\n");
return;
}
get_keyval(conf, "angleRef", theta_ref, 88.0);
get_keyval(conf, "angleTol", theta_tol, 15.0);
if (hb_coeff < 1.0) {
for (size_t i = 0; i < residues.size()-2; i++) {
theta.push_back(new colvar::angle(cvm::atom(r[i ], "CA", sid),
cvm::atom(r[i+1], "CA", sid),
cvm::atom(r[i+2], "CA", sid)));
register_atom_group(theta.back()->atom_groups[0]);
register_atom_group(theta.back()->atom_groups[1]);
register_atom_group(theta.back()->atom_groups[2]);
}
} else {
cvm::log("The hBondCoeff specified will disable the Calpha-Calpha-Calpha angle terms.\n");
}
{
cvm::real r0;
size_t en, ed;
get_keyval(conf, "hBondCutoff", r0, (3.3 * cvm::unit_angstrom()));
get_keyval(conf, "hBondExpNumer", en, 6);
get_keyval(conf, "hBondExpDenom", ed, 8);
if (hb_coeff > 0.0) {
for (size_t i = 0; i < residues.size()-4; i++) {
hb.push_back(new colvar::h_bond(cvm::atom(r[i ], "O", sid),
cvm::atom(r[i+4], "N", sid),
r0, en, ed));
register_atom_group(hb.back()->atom_groups[0]);
}
} else {
cvm::log("The hBondCoeff specified will disable the hydrogen bond terms.\n");
}
}
if (cvm::debug())
cvm::log("Done initializing alpha_angles object.\n");
}
colvar::alpha_angles::alpha_angles()
: cvc()
{
function_type = "alpha_angles";
enable(f_cvc_implicit_gradient);
x.type(colvarvalue::type_scalar);
}
colvar::alpha_angles::~alpha_angles()
{
while (theta.size() != 0) {
delete theta.back();
theta.pop_back();
}
while (hb.size() != 0) {
delete hb.back();
hb.pop_back();
}
}
void colvar::alpha_angles::calc_value()
{
x.real_value = 0.0;
if (theta.size()) {
cvm::real const theta_norm =
(1.0-hb_coeff) / cvm::real(theta.size());
for (size_t i = 0; i < theta.size(); i++) {
(theta[i])->calc_value();
cvm::real const t = ((theta[i])->value().real_value-theta_ref)/theta_tol;
cvm::real const f = ( (1.0 - (t*t)) /
(1.0 - (t*t*t*t)) );
x.real_value += theta_norm * f;
if (cvm::debug())
cvm::log("Calpha-Calpha angle no. "+cvm::to_str(i+1)+" in \""+
this->name+"\" has a value of "+
(cvm::to_str((theta[i])->value().real_value))+
" degrees, f = "+cvm::to_str(f)+".\n");
}
}
if (hb.size()) {
cvm::real const hb_norm =
hb_coeff / cvm::real(hb.size());
for (size_t i = 0; i < hb.size(); i++) {
(hb[i])->calc_value();
x.real_value += hb_norm * (hb[i])->value().real_value;
if (cvm::debug())
cvm::log("Hydrogen bond no. "+cvm::to_str(i+1)+" in \""+
this->name+"\" has a value of "+
(cvm::to_str((hb[i])->value().real_value))+".\n");
}
}
}
void colvar::alpha_angles::calc_gradients()
{
size_t i;
for (i = 0; i < theta.size(); i++)
(theta[i])->calc_gradients();
for (i = 0; i < hb.size(); i++)
(hb[i])->calc_gradients();
}
void colvar::alpha_angles::apply_force(colvarvalue const &force)
{
if (theta.size()) {
cvm::real const theta_norm =
(1.0-hb_coeff) / cvm::real(theta.size());
for (size_t i = 0; i < theta.size(); i++) {
cvm::real const t = ((theta[i])->value().real_value-theta_ref)/theta_tol;
cvm::real const f = ( (1.0 - (t*t)) /
(1.0 - (t*t*t*t)) );
cvm::real const dfdt =
1.0/(1.0 - (t*t*t*t)) *
( (-2.0 * t) + (-1.0*f)*(-4.0 * (t*t*t)) );
(theta[i])->apply_force(theta_norm *
dfdt * (1.0/theta_tol) *
force.real_value );
}
}
if (hb.size()) {
cvm::real const hb_norm =
hb_coeff / cvm::real(hb.size());
for (size_t i = 0; i < hb.size(); i++) {
(hb[i])->apply_force(0.5 * hb_norm * force.real_value);
}
}
}
simple_scalar_dist_functions(alpha_angles)
//////////////////////////////////////////////////////////////////////
// dihedral principal component
//////////////////////////////////////////////////////////////////////
colvar::dihedPC::dihedPC(std::string const &conf)
: cvc(conf)
{
if (cvm::debug())
cvm::log("Initializing dihedral PC object.\n");
function_type = "dihedPC";
enable(f_cvc_implicit_gradient);
x.type(colvarvalue::type_scalar);
std::string segment_id;
get_keyval(conf, "psfSegID", segment_id, std::string("MAIN"));
std::vector<int> residues;
{
std::string residues_conf = "";
key_lookup(conf, "residueRange", &residues_conf);
if (residues_conf.size()) {
std::istringstream is(residues_conf);
int initial, final;
char dash;
if ( (is >> initial) && (initial > 0) &&
(is >> dash) && (dash == '-') &&
(is >> final) && (final > 0) ) {
for (int rnum = initial; rnum <= final; rnum++) {
residues.push_back(rnum);
}
}
} else {
cvm::error("Error: no residues defined in \"residueRange\".\n");
return;
}
}
if (residues.size() < 2) {
cvm::error("Error: dihedralPC requires at least two residues.\n");
return;
}
std::string const &sid = segment_id;
std::vector<int> const &r = residues;
std::string vecFileName;
int vecNumber;
if (get_keyval(conf, "vectorFile", vecFileName, vecFileName)) {
get_keyval(conf, "vectorNumber", vecNumber, 0);
if (vecNumber < 1) {
cvm::error("A positive value of vectorNumber is required.");
return;
}
std::ifstream vecFile;
vecFile.open(vecFileName.c_str());
if (!vecFile.good()) {
cvm::error("Error opening dihedral PCA vector file " + vecFileName + " for reading");
}
// TODO: adapt to different formats by setting this flag
bool eigenvectors_as_columns = true;
if (eigenvectors_as_columns) {
// Carma-style dPCA file
std::string line;
cvm::real c;
while (vecFile.good()) {
getline(vecFile, line);
if (line.length() < 2) break;
std::istringstream ls(line);
for (int i=0; i<vecNumber; i++) ls >> c;
coeffs.push_back(c);
}
}
/* TODO Uncomment this when different formats are recognized
else {
// Eigenvectors as lines
// Skip to the right line
for (int i = 1; i<vecNumber; i++)
vecFile.ignore(999999, '\n');
if (!vecFile.good()) {
cvm::error("Error reading dihedral PCA vector file " + vecFileName);
}
std::string line;
getline(vecFile, line);
std::istringstream ls(line);
cvm::real c;
while (ls.good()) {
ls >> c;
coeffs.push_back(c);
}
}
*/
vecFile.close();
} else {
get_keyval(conf, "vector", coeffs, coeffs);
}
if ( coeffs.size() != 4 * (residues.size() - 1)) {
cvm::error("Error: wrong number of coefficients: " +
cvm::to_str(coeffs.size()) + ". Expected " +
cvm::to_str(4 * (residues.size() - 1)) +
" (4 coeffs per residue, minus one residue).\n");
return;
}
for (size_t i = 0; i < residues.size()-1; i++) {
// Psi
theta.push_back(new colvar::dihedral(cvm::atom(r[i ], "N", sid),
cvm::atom(r[i ], "CA", sid),
cvm::atom(r[i ], "C", sid),
cvm::atom(r[i+1], "N", sid)));
register_atom_group(theta.back()->atom_groups[0]);
register_atom_group(theta.back()->atom_groups[1]);
register_atom_group(theta.back()->atom_groups[2]);
register_atom_group(theta.back()->atom_groups[3]);
// Phi (next res)
theta.push_back(new colvar::dihedral(cvm::atom(r[i ], "C", sid),
cvm::atom(r[i+1], "N", sid),
cvm::atom(r[i+1], "CA", sid),
cvm::atom(r[i+1], "C", sid)));
register_atom_group(theta.back()->atom_groups[0]);
register_atom_group(theta.back()->atom_groups[1]);
register_atom_group(theta.back()->atom_groups[2]);
register_atom_group(theta.back()->atom_groups[3]);
}
if (cvm::debug())
cvm::log("Done initializing dihedPC object.\n");
}
colvar::dihedPC::dihedPC()
: cvc()
{
function_type = "dihedPC";
enable(f_cvc_implicit_gradient);
x.type(colvarvalue::type_scalar);
}
colvar::dihedPC::~dihedPC()
{
while (theta.size() != 0) {
delete theta.back();
theta.pop_back();
}
}
void colvar::dihedPC::calc_value()
{
x.real_value = 0.0;
for (size_t i = 0; i < theta.size(); i++) {
theta[i]->calc_value();
cvm::real const t = (PI / 180.) * theta[i]->value().real_value;
x.real_value += coeffs[2*i ] * std::cos(t)
+ coeffs[2*i+1] * std::sin(t);
}
}
void colvar::dihedPC::calc_gradients()
{
for (size_t i = 0; i < theta.size(); i++) {
theta[i]->calc_gradients();
}
}
void colvar::dihedPC::apply_force(colvarvalue const &force)
{
for (size_t i = 0; i < theta.size(); i++) {
cvm::real const t = (PI / 180.) * theta[i]->value().real_value;
cvm::real const dcosdt = - (PI / 180.) * std::sin(t);
cvm::real const dsindt = (PI / 180.) * std::cos(t);
theta[i]->apply_force((coeffs[2*i ] * dcosdt +
coeffs[2*i+1] * dsindt) * force);
}
}
simple_scalar_dist_functions(dihedPC)
|