1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvarparse.h"
#include "colvar.h"
#include "colvarcomp.h"
#include "colvargrid.h"
#include <ctime>
colvar_grid_count::colvar_grid_count()
: colvar_grid<size_t>()
{
mult = 1;
}
colvar_grid_count::colvar_grid_count(std::vector<int> const &nx_i,
size_t const &def_count)
: colvar_grid<size_t>(nx_i, def_count, 1)
{}
colvar_grid_count::colvar_grid_count(std::vector<colvar *> &colvars,
size_t const &def_count,
bool margin)
: colvar_grid<size_t>(colvars, def_count, 1, margin)
{}
colvar_grid_scalar::colvar_grid_scalar()
: colvar_grid<cvm::real>(), samples(NULL)
{}
colvar_grid_scalar::colvar_grid_scalar(colvar_grid_scalar const &g)
: colvar_grid<cvm::real>(g), samples(NULL)
{
}
colvar_grid_scalar::colvar_grid_scalar(std::vector<int> const &nx_i)
: colvar_grid<cvm::real>(nx_i, 0.0, 1), samples(NULL)
{
}
colvar_grid_scalar::colvar_grid_scalar(std::vector<colvar *> &colvars, bool margin)
: colvar_grid<cvm::real>(colvars, 0.0, 1, margin), samples(NULL)
{
}
colvar_grid_scalar::~colvar_grid_scalar()
{
}
cvm::real colvar_grid_scalar::maximum_value() const
{
cvm::real max = data[0];
for (size_t i = 0; i < nt; i++) {
if (data[i] > max) max = data[i];
}
return max;
}
cvm::real colvar_grid_scalar::minimum_value() const
{
cvm::real min = data[0];
for (size_t i = 0; i < nt; i++) {
if (data[i] < min) min = data[i];
}
return min;
}
cvm::real colvar_grid_scalar::minimum_pos_value() const
{
cvm::real minpos = data[0];
size_t i;
for (i = 0; i < nt; i++) {
if(data[i] > 0) {
minpos = data[i];
break;
}
}
for (i = 0; i < nt; i++) {
if (data[i] > 0 && data[i] < minpos) minpos = data[i];
}
return minpos;
}
cvm::real colvar_grid_scalar::integral() const
{
cvm::real sum = 0.0;
for (size_t i = 0; i < nt; i++) {
sum += data[i];
}
cvm::real bin_volume = 1.0;
for (size_t id = 0; id < widths.size(); id++) {
bin_volume *= widths[id];
}
return bin_volume * sum;
}
cvm::real colvar_grid_scalar::entropy() const
{
cvm::real sum = 0.0;
for (size_t i = 0; i < nt; i++) {
sum += -1.0 * data[i] * std::log(data[i]);
}
cvm::real bin_volume = 1.0;
for (size_t id = 0; id < widths.size(); id++) {
bin_volume *= widths[id];
}
return bin_volume * sum;
}
colvar_grid_gradient::colvar_grid_gradient()
: colvar_grid<cvm::real>(), samples(NULL)
{}
colvar_grid_gradient::colvar_grid_gradient(std::vector<int> const &nx_i)
: colvar_grid<cvm::real>(nx_i, 0.0, nx_i.size()), samples(NULL)
{}
colvar_grid_gradient::colvar_grid_gradient(std::vector<colvar *> &colvars)
: colvar_grid<cvm::real>(colvars, 0.0, colvars.size()), samples(NULL)
{}
void colvar_grid_gradient::write_1D_integral(std::ostream &os)
{
cvm::real bin, min, integral;
std::vector<cvm::real> int_vals;
os << "# xi A(xi)\n";
if (cv.size() != 1) {
cvm::error("Cannot write integral for multi-dimensional gradient grids.");
return;
}
integral = 0.0;
int_vals.push_back(0.0);
min = 0.0;
// correction for periodic colvars, so that the PMF is periodic
cvm::real corr;
if (periodic[0]) {
corr = average();
} else {
corr = 0.0;
}
for (std::vector<int> ix = new_index(); index_ok(ix); incr(ix)) {
if (samples) {
size_t const samples_here = samples->value(ix);
if (samples_here)
integral += (value(ix) / cvm::real(samples_here) - corr) * cv[0]->width;
} else {
integral += (value(ix) - corr) * cv[0]->width;
}
if ( integral < min ) min = integral;
int_vals.push_back(integral);
}
bin = 0.0;
for ( int i = 0; i < nx[0]; i++, bin += 1.0 ) {
os << std::setw(10) << cv[0]->lower_boundary.real_value + cv[0]->width * bin << " "
<< std::setw(cvm::cv_width)
<< std::setprecision(cvm::cv_prec)
<< int_vals[i] - min << "\n";
}
os << std::setw(10) << cv[0]->lower_boundary.real_value + cv[0]->width * bin << " "
<< std::setw(cvm::cv_width)
<< std::setprecision(cvm::cv_prec)
<< int_vals[nx[0]] - min << "\n";
return;
}
integrate_potential::integrate_potential(std::vector<colvar *> &colvars, colvar_grid_gradient * gradients)
: colvar_grid_scalar(colvars, true),
gradients(gradients)
{
// parent class colvar_grid_scalar is constructed with margin option set to true
// hence PMF grid is wider than gradient grid if non-PBC
if (nd > 1) {
divergence.resize(nt);
// Compute inverse of Laplacian diagonal for Jacobi preconditioning
// For now all code related to preconditioning is commented out
// until a method better than Jacobi is implemented
// cvm::log("Preparing inverse diagonal for preconditioning...");
// inv_lap_diag.resize(nt);
// std::vector<cvm::real> id(nt), lap_col(nt);
// for (int i = 0; i < nt; i++) {
// if (i % (nt / 100) == 0)
// cvm::log(cvm::to_str(i));
// id[i] = 1.;
// atimes(id, lap_col);
// id[i] = 0.;
// inv_lap_diag[i] = 1. / lap_col[i];
// }
// cvm::log("Done.");
}
}
int integrate_potential::integrate(const int itmax, const cvm::real &tol, cvm::real & err)
{
int iter = 0;
if (nd == 1) {
cvm::real sum = 0.0;
cvm::real corr;
if ( periodic[0] ) {
corr = gradients->average(); // Enforce PBC by subtracting average gradient
} else {
corr = 0.0;
}
std::vector<int> ix;
// Iterate over valid indices in gradient grid
for (ix = new_index(); gradients->index_ok(ix); incr(ix)) {
set_value(ix, sum);
sum += (gradients->value_output(ix) - corr) * widths[0];
}
if (index_ok(ix)) {
// This will happen if non-periodic: then PMF grid has one extra bin wrt gradient grid
set_value(ix, sum);
}
} else if (nd <= 3) {
nr_linbcg_sym(divergence, data, tol, itmax, iter, err);
cvm::log("Integrated in " + cvm::to_str(iter) + " steps, error: " + cvm::to_str(err));
} else {
cvm::error("Cannot integrate PMF in dimension > 3\n");
}
return iter;
}
void integrate_potential::set_div()
{
if (nd == 1) return;
for (std::vector<int> ix = new_index(); index_ok(ix); incr(ix)) {
update_div_local(ix);
}
}
void integrate_potential::update_div_neighbors(const std::vector<int> &ix0)
{
std::vector<int> ix(ix0);
int i, j, k;
// If not periodic, expanded grid ensures that neighbors of ix0 are valid grid points
if (nd == 1) {
return;
} else if (nd == 2) {
update_div_local(ix);
ix[0]++; wrap(ix);
update_div_local(ix);
ix[1]++; wrap(ix);
update_div_local(ix);
ix[0]--; wrap(ix);
update_div_local(ix);
} else if (nd == 3) {
for (i = 0; i<2; i++) {
ix[1] = ix0[1];
for (j = 0; j<2; j++) {
ix[2] = ix0[2];
for (k = 0; k<2; k++) {
wrap(ix);
update_div_local(ix);
ix[2]++;
}
ix[1]++;
}
ix[0]++;
}
}
}
void integrate_potential::get_grad(cvm::real * g, std::vector<int> &ix)
{
size_t count, i;
bool edge = gradients->wrap_edge(ix); // Detect edge if non-PBC
if (gradients->samples) {
count = gradients->samples->value(ix);
} else {
count = 1;
}
if (!edge && count) {
cvm::real const *grad = &(gradients->value(ix));
cvm::real const fact = 1.0 / count;
for ( i = 0; i<nd; i++ ) {
g[i] = fact * grad[i];
}
} else {
for ( i = 0; i<nd; i++ ) {
g[i] = 0.0;
}
}
}
void integrate_potential::update_div_local(const std::vector<int> &ix0)
{
const int linear_index = address(ix0);
int i, j, k;
std::vector<int> ix = ix0;
if (nd == 2) {
// gradients at grid points surrounding the current scalar grid point
cvm::real g00[2], g01[2], g10[2], g11[2];
get_grad(g11, ix);
ix[0] = ix0[0] - 1;
get_grad(g01, ix);
ix[1] = ix0[1] - 1;
get_grad(g00, ix);
ix[0] = ix0[0];
get_grad(g10, ix);
divergence[linear_index] = ((g10[0]-g00[0] + g11[0]-g01[0]) / widths[0]
+ (g01[1]-g00[1] + g11[1]-g10[1]) / widths[1]) * 0.5;
} else if (nd == 3) {
cvm::real gc[24]; // stores 3d gradients in 8 contiguous bins
int index = 0;
ix[0] = ix0[0] - 1;
for (i = 0; i<2; i++) {
ix[1] = ix0[1] - 1;
for (j = 0; j<2; j++) {
ix[2] = ix0[2] - 1;
for (k = 0; k<2; k++) {
get_grad(gc + index, ix);
index += 3;
ix[2]++;
}
ix[1]++;
}
ix[0]++;
}
divergence[linear_index] =
((gc[3*4]-gc[0] + gc[3*5]-gc[3*1] + gc[3*6]-gc[3*2] + gc[3*7]-gc[3*3])
/ widths[0]
+ (gc[3*2+1]-gc[0+1] + gc[3*3+1]-gc[3*1+1] + gc[3*6+1]-gc[3*4+1] + gc[3*7+1]-gc[3*5+1])
/ widths[1]
+ (gc[3*1+2]-gc[0+2] + gc[3*3+2]-gc[3*2+2] + gc[3*5+2]-gc[3*4+2] + gc[3*7+2]-gc[3*6+2])
/ widths[2]) * 0.25;
}
}
/// Multiplication by sparse matrix representing Laplacian
/// NOTE: Laplacian must be symmetric for solving with CG
void integrate_potential::atimes(const std::vector<cvm::real> &A, std::vector<cvm::real> &LA)
{
if (nd == 2) {
// DIMENSION 2
size_t index, index2;
int i, j;
cvm::real fact;
const cvm::real ffx = 1.0 / (widths[0] * widths[0]);
const cvm::real ffy = 1.0 / (widths[1] * widths[1]);
const int h = nx[1];
const int w = nx[0];
// offsets for 4 reference points of the Laplacian stencil
int xm = -h;
int xp = h;
int ym = -1;
int yp = 1;
// NOTE on performance: this version is slightly sub-optimal because
// it contains two double loops on the core of the array (for x and y terms)
// The slightly faster version is in commit 0254cb5a2958cb2e135f268371c4b45fad34866b
// yet it is much uglier, and probably horrible to extend to dimension 3
// All terms in the matrix are assigned (=) during the x loops, then updated (+=)
// with the y (and z) contributions
// All x components except on x edges
index = h; // Skip first column
// Halve the term on y edges (if any) to preserve symmetry of the Laplacian matrix
// (Long Chen, Finite Difference Methods, UCI, 2017)
fact = periodic[1] ? 1.0 : 0.5;
for (i=1; i<w-1; i++) {
// Full range of j, but factor may change on y edges (j == 0 and j == h-1)
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
index++;
for (j=1; j<h-1; j++) {
LA[index] = ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
index++;
}
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
index++;
}
// Edges along x (x components only)
index = 0; // Follows left edge
index2 = h * (w - 1); // Follows right edge
if (periodic[0]) {
xm = h * (w - 1);
xp = h;
fact = periodic[1] ? 1.0 : 0.5;
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
index++;
index2++;
for (j=1; j<h-1; j++) {
LA[index] = ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
LA[index2] = ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
index++;
index2++;
}
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
} else {
xm = -h;
xp = h;
fact = periodic[1] ? 1.0 : 0.5; // Halve in corners in full PBC only
// lower corner, "j == 0"
LA[index] = fact * ffx * (A[index + xp] - A[index]);
LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
index++;
index2++;
for (j=1; j<h-1; j++) {
// x gradient (+ y term of laplacian, calculated below)
LA[index] = ffx * (A[index + xp] - A[index]);
LA[index2] = ffx * (A[index2 + xm] - A[index2]);
index++;
index2++;
}
// upper corner, j == h-1
LA[index] = fact * ffx * (A[index + xp] - A[index]);
LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
}
// Now adding all y components
// All y components except on y edges
index = 1; // Skip first element (in first row)
fact = periodic[0] ? 1.0 : 0.5; // for i == 0
for (i=0; i<w; i++) {
// Factor of 1/2 on x edges if non-periodic
if (i == 1) fact = 1.0;
if (i == w - 1) fact = periodic[0] ? 1.0 : 0.5;
for (j=1; j<h-1; j++) {
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
index++;
}
index += 2; // skip the edges and move to next column
}
// Edges along y (y components only)
index = 0; // Follows bottom edge
index2 = h - 1; // Follows top edge
if (periodic[1]) {
fact = periodic[0] ? 1.0 : 0.5;
ym = h - 1;
yp = 1;
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
index += h;
index2 += h;
for (i=1; i<w-1; i++) {
LA[index] += ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
LA[index2] += ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
index += h;
index2 += h;
}
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
} else {
ym = -1;
yp = 1;
fact = periodic[0] ? 1.0 : 0.5; // Halve in corners in full PBC only
// Left corner
LA[index] += fact * ffy * (A[index + yp] - A[index]);
LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
index += h;
index2 += h;
for (i=1; i<w-1; i++) {
// y gradient (+ x term of laplacian, calculated above)
LA[index] += ffy * (A[index + yp] - A[index]);
LA[index2] += ffy * (A[index2 + ym] - A[index2]);
index += h;
index2 += h;
}
// Right corner
LA[index] += fact * ffy * (A[index + yp] - A[index]);
LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
}
} else if (nd == 3) {
// DIMENSION 3
int i, j, k;
size_t index, index2;
cvm::real fact = 1.0;
const cvm::real ffx = 1.0 / (widths[0] * widths[0]);
const cvm::real ffy = 1.0 / (widths[1] * widths[1]);
const cvm::real ffz = 1.0 / (widths[2] * widths[2]);
const int h = nx[2]; // height
const int d = nx[1]; // depth
const int w = nx[0]; // width
// offsets for 6 reference points of the Laplacian stencil
int xm = -d * h;
int xp = d * h;
int ym = -h;
int yp = h;
int zm = -1;
int zp = 1;
cvm::real factx = periodic[0] ? 1 : 0.5; // factor to be applied on x edges
cvm::real facty = periodic[1] ? 1 : 0.5; // same for y
cvm::real factz = periodic[2] ? 1 : 0.5; // same for z
cvm::real ifactx = 1 / factx;
cvm::real ifacty = 1 / facty;
cvm::real ifactz = 1 / factz;
// All x components except on x edges
index = d * h; // Skip left slab
fact = facty * factz;
for (i=1; i<w-1; i++) {
for (j=0; j<d; j++) { // full range of y
if (j == 1) fact *= ifacty;
if (j == d-1) fact *= facty;
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
index++;
fact *= ifactz;
for (k=1; k<h-1; k++) { // full range of z
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
index++;
}
fact *= factz;
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
index++;
}
}
// Edges along x (x components only)
index = 0; // Follows left slab
index2 = d * h * (w - 1); // Follows right slab
if (periodic[0]) {
xm = d * h * (w - 1);
xp = d * h;
fact = facty * factz;
for (j=0; j<d; j++) {
if (j == 1) fact *= ifacty;
if (j == d-1) fact *= facty;
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
index++;
index2++;
fact *= ifactz;
for (k=1; k<h-1; k++) {
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
index++;
index2++;
}
fact *= factz;
LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
index++;
index2++;
}
} else {
xm = -d * h;
xp = d * h;
fact = facty * factz;
for (j=0; j<d; j++) {
if (j == 1) fact *= ifacty;
if (j == d-1) fact *= facty;
LA[index] = fact * ffx * (A[index + xp] - A[index]);
LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
index++;
index2++;
fact *= ifactz;
for (k=1; k<h-1; k++) {
// x gradient (+ y, z terms of laplacian, calculated below)
LA[index] = fact * ffx * (A[index + xp] - A[index]);
LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
index++;
index2++;
}
fact *= factz;
LA[index] = fact * ffx * (A[index + xp] - A[index]);
LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
index++;
index2++;
}
}
// Now adding all y components
// All y components except on y edges
index = h; // Skip first column (in front slab)
fact = factx * factz;
for (i=0; i<w; i++) { // full range of x
if (i == 1) fact *= ifactx;
if (i == w-1) fact *= factx;
for (j=1; j<d-1; j++) {
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
index++;
fact *= ifactz;
for (k=1; k<h-1; k++) {
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
index++;
}
fact *= factz;
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
index++;
}
index += 2 * h; // skip columns in front and back slabs
}
// Edges along y (y components only)
index = 0; // Follows front slab
index2 = h * (d - 1); // Follows back slab
if (periodic[1]) {
ym = h * (d - 1);
yp = h;
fact = factx * factz;
for (i=0; i<w; i++) {
if (i == 1) fact *= ifactx;
if (i == w-1) fact *= factx;
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
index++;
index2++;
fact *= ifactz;
for (k=1; k<h-1; k++) {
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
index++;
index2++;
}
fact *= factz;
LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
index++;
index2++;
index += h * (d - 1);
index2 += h * (d - 1);
}
} else {
ym = -h;
yp = h;
fact = factx * factz;
for (i=0; i<w; i++) {
if (i == 1) fact *= ifactx;
if (i == w-1) fact *= factx;
LA[index] += fact * ffy * (A[index + yp] - A[index]);
LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
index++;
index2++;
fact *= ifactz;
for (k=1; k<h-1; k++) {
// y gradient (+ x, z terms of laplacian, calculated above and below)
LA[index] += fact * ffy * (A[index + yp] - A[index]);
LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
index++;
index2++;
}
fact *= factz;
LA[index] += fact * ffy * (A[index + yp] - A[index]);
LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
index++;
index2++;
index += h * (d - 1);
index2 += h * (d - 1);
}
}
// Now adding all z components
// All z components except on z edges
index = 1; // Skip first element (in bottom slab)
fact = factx * facty;
for (i=0; i<w; i++) { // full range of x
if (i == 1) fact *= ifactx;
if (i == w-1) fact *= factx;
for (k=1; k<h-1; k++) {
LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
index++;
}
fact *= ifacty;
index += 2; // skip edge slabs
for (j=1; j<d-1; j++) { // full range of y
for (k=1; k<h-1; k++) {
LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
index++;
}
index += 2; // skip edge slabs
}
fact *= facty;
for (k=1; k<h-1; k++) {
LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
index++;
}
index += 2; // skip edge slabs
}
// Edges along z (z components onlz)
index = 0; // Follows bottom slab
index2 = h - 1; // Follows top slab
if (periodic[2]) {
zm = h - 1;
zp = 1;
fact = factx * facty;
for (i=0; i<w; i++) {
if (i == 1) fact *= ifactx;
if (i == w-1) fact *= factx;
LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
LA[index2] += fact * ffz * (A[index2 - zp] + A[index2 - zm] - 2.0 * A[index2]);
index += h;
index2 += h;
fact *= ifacty;
for (j=1; j<d-1; j++) {
LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
LA[index2] += fact * ffz * (A[index2 - zp] + A[index2 - zm] - 2.0 * A[index2]);
index += h;
index2 += h;
}
fact *= facty;
LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
LA[index2] += fact * ffz * (A[index2 - zp] + A[index2 - zm] - 2.0 * A[index2]);
index += h;
index2 += h;
}
} else {
zm = -1;
zp = 1;
fact = factx * facty;
for (i=0; i<w; i++) {
if (i == 1) fact *= ifactx;
if (i == w-1) fact *= factx;
LA[index] += fact * ffz * (A[index + zp] - A[index]);
LA[index2] += fact * ffz * (A[index2 + zm] - A[index2]);
index += h;
index2 += h;
fact *= ifacty;
for (j=1; j<d-1; j++) {
// z gradient (+ x, y terms of laplacian, calculated above)
LA[index] += fact * ffz * (A[index + zp] - A[index]);
LA[index2] += fact * ffz * (A[index2 + zm] - A[index2]);
index += h;
index2 += h;
}
fact *= facty;
LA[index] += fact * ffz * (A[index + zp] - A[index]);
LA[index2] += fact * ffz * (A[index2 + zm] - A[index2]);
index += h;
index2 += h;
}
}
}
}
/*
/// Inversion of preconditioner matrix (e.g. diagonal of the Laplacian)
void integrate_potential::asolve(const std::vector<cvm::real> &b, std::vector<cvm::real> &x)
{
for (size_t i=0; i<int(nt); i++) {
x[i] = b[i] * inv_lap_diag[i]; // Jacobi preconditioner - little benefit in tests so far
}
return;
}*/
// b : RHS of equation
// x : initial guess for the solution; output is solution
// itol : convergence criterion
void integrate_potential::nr_linbcg_sym(const std::vector<cvm::real> &b, std::vector<cvm::real> &x, const cvm::real &tol,
const int itmax, int &iter, cvm::real &err)
{
cvm::real ak,akden,bk,bkden,bknum,bnrm;
const cvm::real EPS=1.0e-14;
int j;
std::vector<cvm::real> p(nt), r(nt), z(nt);
iter=0;
atimes(x,r);
for (j=0;j<int(nt);j++) {
r[j]=b[j]-r[j];
}
bnrm=l2norm(b);
if (bnrm < EPS) {
return; // Target is zero, will break relative error calc
}
// asolve(r,z); // precon
bkden = 1.0;
while (iter < itmax) {
++iter;
for (bknum=0.0,j=0;j<int(nt);j++) {
bknum += r[j]*r[j]; // precon: z[j]*r[j]
}
if (iter == 1) {
for (j=0;j<int(nt);j++) {
p[j] = r[j]; // precon: p[j] = z[j]
}
} else {
bk=bknum/bkden;
for (j=0;j<int(nt);j++) {
p[j] = bk*p[j] + r[j]; // precon: bk*p[j] + z[j]
}
}
bkden = bknum;
atimes(p,z);
for (akden=0.0,j=0;j<int(nt);j++) {
akden += z[j]*p[j];
}
ak = bknum/akden;
for (j=0;j<int(nt);j++) {
x[j] += ak*p[j];
r[j] -= ak*z[j];
}
// asolve(r,z); // precon
err = l2norm(r)/bnrm;
if (cvm::debug())
std::cout << "iter=" << std::setw(4) << iter+1 << std::setw(12) << err << std::endl;
if (err <= tol)
break;
}
}
cvm::real integrate_potential::l2norm(const std::vector<cvm::real> &x)
{
size_t i;
cvm::real sum = 0.0;
for (i=0;i<x.size();i++)
sum += x[i]*x[i];
return sqrt(sum);
}
|