1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
|
// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#ifndef COLVARTYPES_H
#define COLVARTYPES_H
#include <cmath>
#include <vector>
#include "colvarmodule.h"
#ifndef PI
#define PI 3.14159265358979323846
#endif
// ----------------------------------------------------------------------
/// Linear algebra functions and data types used in the collective
/// variables implemented so far
// ----------------------------------------------------------------------
/// \brief Arbitrary size array (one dimensions) suitable for linear
/// algebra operations (i.e. for floating point numbers it can be used
/// with library functions)
template <class T> class colvarmodule::vector1d
{
protected:
std::vector<T> data;
public:
/// Default constructor
inline vector1d(size_t const n = 0)
{
data.resize(n);
reset();
}
/// Constructor from C array
inline vector1d(size_t const n, T const *t)
{
data.resize(n);
reset();
size_t i;
for (i = 0; i < size(); i++) {
data[i] = t[i];
}
}
/// Return a pointer to the data location
inline T * c_array()
{
if (data.size() > 0) {
return &(data[0]);
} else {
return NULL;
}
}
/// Return a reference to the data
inline std::vector<T> &data_array()
{
return data;
}
inline ~vector1d()
{
data.clear();
}
/// Set all elements to zero
inline void reset()
{
data.assign(data.size(), T(0.0));
}
inline size_t size() const
{
return data.size();
}
inline void resize(size_t const n)
{
data.resize(n);
}
inline void clear()
{
data.clear();
}
inline T & operator [] (size_t const i) {
return data[i];
}
inline T const & operator [] (size_t const i) const {
return data[i];
}
inline static void check_sizes(vector1d<T> const &v1, vector1d<T> const &v2)
{
if (v1.size() != v2.size()) {
cvm::error("Error: trying to perform an operation between vectors of different sizes, "+
cvm::to_str(v1.size())+" and "+cvm::to_str(v2.size())+".\n");
}
}
inline void operator += (vector1d<T> const &v)
{
check_sizes(*this, v);
size_t i;
for (i = 0; i < this->size(); i++) {
(*this)[i] += v[i];
}
}
inline void operator -= (vector1d<T> const &v)
{
check_sizes(*this, v);
size_t i;
for (i = 0; i < this->size(); i++) {
(*this)[i] -= v[i];
}
}
inline void operator *= (cvm::real a)
{
size_t i;
for (i = 0; i < this->size(); i++) {
(*this)[i] *= a;
}
}
inline void operator /= (cvm::real a)
{
size_t i;
for (i = 0; i < this->size(); i++) {
(*this)[i] /= a;
}
}
inline friend vector1d<T> operator + (vector1d<T> const &v1,
vector1d<T> const &v2)
{
check_sizes(v1.size(), v2.size());
vector1d<T> result(v1.size());
size_t i;
for (i = 0; i < v1.size(); i++) {
result[i] = v1[i] + v2[i];
}
return result;
}
inline friend vector1d<T> operator - (vector1d<T> const &v1,
vector1d<T> const &v2)
{
check_sizes(v1.size(), v2.size());
vector1d<T> result(v1.size());
size_t i;
for (i = 0; i < v1.size(); i++) {
result[i] = v1[i] - v2[i];
}
return result;
}
inline friend vector1d<T> operator * (vector1d<T> const &v, cvm::real a)
{
vector1d<T> result(v.size());
size_t i;
for (i = 0; i < v.size(); i++) {
result[i] = v[i] * a;
}
return result;
}
inline friend vector1d<T> operator * (cvm::real a, vector1d<T> const &v)
{
return v * a;
}
inline friend vector1d<T> operator / (vector1d<T> const &v, cvm::real a)
{
vector1d<T> result(v.size());
size_t i;
for (i = 0; i < v.size(); i++) {
result[i] = v[i] / a;
}
return result;
}
/// Inner product
inline friend T operator * (vector1d<T> const &v1, vector1d<T> const &v2)
{
check_sizes(v1.size(), v2.size());
T prod(0.0);
size_t i;
for (i = 0; i < v1.size(); i++) {
prod += v1[i] * v2[i];
}
return prod;
}
/// Squared norm
inline cvm::real norm2() const
{
cvm::real result = 0.0;
size_t i;
for (i = 0; i < this->size(); i++) {
result += (*this)[i] * (*this)[i];
}
return result;
}
inline cvm::real norm() const
{
return std::sqrt(this->norm2());
}
inline cvm::real sum() const
{
cvm::real result = 0.0;
size_t i;
for (i = 0; i < this->size(); i++) {
result += (*this)[i];
}
return result;
}
/// Slicing
inline vector1d<T> const slice(size_t const i1, size_t const i2) const
{
if ((i2 < i1) || (i2 >= this->size())) {
cvm::error("Error: trying to slice a vector using incorrect boundaries.\n");
}
vector1d<T> result(i2 - i1);
size_t i;
for (i = 0; i < (i2 - i1); i++) {
result[i] = (*this)[i1+i];
}
return result;
}
/// Assign a vector to a slice of this vector
inline void sliceassign(size_t const i1, size_t const i2,
vector1d<T> const &v)
{
if ((i2 < i1) || (i2 >= this->size())) {
cvm::error("Error: trying to slice a vector using incorrect boundaries.\n");
}
size_t i;
for (i = 0; i < (i2 - i1); i++) {
(*this)[i1+i] = v[i];
}
}
/// Formatted output
inline size_t output_width(size_t real_width) const
{
return real_width*(this->size()) + 3*(this->size()-1) + 4;
}
inline friend std::istream & operator >> (std::istream &is,
cvm::vector1d<T> &v)
{
if (v.size() == 0) return is;
size_t const start_pos = is.tellg();
char sep;
if ( !(is >> sep) || !(sep == '(') ) {
is.clear();
is.seekg(start_pos, std::ios::beg);
is.setstate(std::ios::failbit);
return is;
}
size_t count = 0;
while ( (is >> v[count]) &&
(count < (v.size()-1) ? ((is >> sep) && (sep == ',')) : true) ) {
if (++count == v.size()) break;
}
if (count < v.size()) {
is.clear();
is.seekg(start_pos, std::ios::beg);
is.setstate(std::ios::failbit);
}
return is;
}
inline friend std::ostream & operator << (std::ostream &os,
cvm::vector1d<T> const &v)
{
std::streamsize const w = os.width();
std::streamsize const p = os.precision();
os.width(2);
os << "( ";
size_t i;
for (i = 0; i < v.size()-1; i++) {
os.width(w); os.precision(p);
os << v[i] << " , ";
}
os.width(w); os.precision(p);
os << v[v.size()-1] << " )";
return os;
}
inline std::string to_simple_string() const
{
if (this->size() == 0) return std::string("");
std::ostringstream os;
os.setf(std::ios::scientific, std::ios::floatfield);
os.precision(cvm::cv_prec);
os << (*this)[0];
size_t i;
for (i = 1; i < this->size(); i++) {
os << " " << (*this)[i];
}
return os.str();
}
inline int from_simple_string(std::string const &s)
{
std::stringstream stream(s);
size_t i = 0;
if (this->size()) {
while ((stream >> (*this)[i]) && (i < this->size())) {
i++;
}
if (i < this->size()) {
return COLVARS_ERROR;
}
} else {
T input;
while (stream >> input) {
if ((i % 100) == 0) {
data.reserve(data.size()+100);
}
data.resize(data.size()+1);
data[i] = input;
i++;
}
}
return COLVARS_OK;
}
};
/// \brief Arbitrary size array (two dimensions) suitable for linear
/// algebra operations (i.e. for floating point numbers it can be used
/// with library functions)
template <class T> class colvarmodule::matrix2d
{
public:
friend class row;
size_t outer_length;
size_t inner_length;
protected:
class row {
public:
T * data;
size_t length;
inline row(T * const row_data, size_t const inner_length)
: data(row_data), length(inner_length)
{}
inline T & operator [] (size_t const j) {
return *(data+j);
}
inline T const & operator [] (size_t const j) const {
return *(data+j);
}
inline operator vector1d<T>() const
{
return vector1d<T>(length, data);
}
inline int set(cvm::vector1d<T> const &v) const
{
if (v.size() != length) {
return cvm::error("Error: setting a matrix row from a vector of "
"incompatible size.\n", BUG_ERROR);
}
for (size_t i = 0; i < length; i++) data[i] = v[i];
return COLVARS_OK;
}
};
std::vector<T> data;
std::vector<row> rows;
std::vector<T *> pointers;
public:
/// Allocation routine, used by all constructors
inline void resize(size_t const ol, size_t const il)
{
if ((ol > 0) && (il > 0)) {
if (data.size() > 0) {
// copy previous data
size_t i, j;
std::vector<T> new_data(ol * il);
for (i = 0; i < outer_length; i++) {
for (j = 0; j < inner_length; j++) {
new_data[il*i+j] = data[inner_length*i+j];
}
}
data.resize(ol * il);
// copy them back
data = new_data;
} else {
data.resize(ol * il);
}
outer_length = ol;
inner_length = il;
if (data.size() > 0) {
// rebuild rows
size_t i;
rows.clear();
rows.reserve(outer_length);
pointers.clear();
pointers.reserve(outer_length);
for (i = 0; i < outer_length; i++) {
rows.push_back(row(&(data[0])+inner_length*i, inner_length));
pointers.push_back(&(data[0])+inner_length*i);
}
}
} else {
// zero size
data.clear();
rows.clear();
}
}
/// Deallocation routine
inline void clear() {
rows.clear();
data.clear();
}
/// Set all elements to zero
inline void reset()
{
data.assign(data.size(), T(0.0));
}
inline size_t size() const
{
return data.size();
}
/// Default constructor
inline matrix2d()
: outer_length(0), inner_length(0)
{
this->resize(0, 0);
}
inline matrix2d(size_t const ol, size_t const il)
: outer_length(ol), inner_length(il)
{
this->resize(outer_length, inner_length);
reset();
}
/// Copy constructor
inline matrix2d(matrix2d<T> const &m)
: outer_length(m.outer_length), inner_length(m.inner_length)
{
// reinitialize data and rows arrays
this->resize(outer_length, inner_length);
// copy data
data = m.data;
}
/// Destructor
inline ~matrix2d() {
this->clear();
}
/// Return a reference to the data
inline std::vector<T> &data_array()
{
return data;
}
inline row & operator [] (size_t const i)
{
return rows[i];
}
inline row const & operator [] (size_t const i) const
{
return rows[i];
}
/// Assignment
inline matrix2d<T> & operator = (matrix2d<T> const &m)
{
if ((outer_length != m.outer_length) || (inner_length != m.inner_length)){
this->clear();
outer_length = m.outer_length;
inner_length = m.inner_length;
this->resize(outer_length, inner_length);
}
data = m.data;
return *this;
}
/// Return the 2-d C array
inline T ** c_array() {
if (rows.size() > 0) {
return &(pointers[0]);
} else {
return NULL;
}
}
inline static void check_sizes(matrix2d<T> const &m1, matrix2d<T> const &m2)
{
if ((m1.outer_length != m2.outer_length) ||
(m1.inner_length != m2.inner_length)) {
cvm::error("Error: trying to perform an operation between "
"matrices of different sizes, "+
cvm::to_str(m1.outer_length)+"x"+
cvm::to_str(m1.inner_length)+" and "+
cvm::to_str(m2.outer_length)+"x"+
cvm::to_str(m2.inner_length)+".\n");
}
}
inline void operator += (matrix2d<T> const &m)
{
check_sizes(*this, m);
size_t i;
for (i = 0; i < data.size(); i++) {
data[i] += m.data[i];
}
}
inline void operator -= (matrix2d<T> const &m)
{
check_sizes(*this, m);
size_t i;
for (i = 0; i < data.size(); i++) {
data[i] -= m.data[i];
}
}
inline void operator *= (cvm::real a)
{
size_t i;
for (i = 0; i < data.size(); i++) {
data[i] *= a;
}
}
inline void operator /= (cvm::real a)
{
size_t i;
for (i = 0; i < data.size(); i++) {
data[i] /= a;
}
}
inline friend matrix2d<T> operator + (matrix2d<T> const &m1,
matrix2d<T> const &m2)
{
check_sizes(m1, m2);
matrix2d<T> result(m1.outer_length, m1.inner_length);
size_t i;
for (i = 0; i < m1.data.size(); i++) {
result.data[i] = m1.data[i] + m2.data[i];
}
return result;
}
inline friend matrix2d<T> operator - (matrix2d<T> const &m1,
matrix2d<T> const &m2)
{
check_sizes(m1, m2);
matrix2d<T> result(m1.outer_length, m1.inner_length);
size_t i;
for (i = 0; i < m1.data.size(); i++) {
result.data[i] = m1.data[i] - m1.data[i];
}
return result;
}
inline friend matrix2d<T> operator * (matrix2d<T> const &m, cvm::real a)
{
matrix2d<T> result(m.outer_length, m.inner_length);
size_t i;
for (i = 0; i < m.data.size(); i++) {
result.data[i] = m.data[i] * a;
}
return result;
}
inline friend matrix2d<T> operator * (cvm::real a, matrix2d<T> const &m)
{
return m * a;
}
inline friend matrix2d<T> operator / (matrix2d<T> const &m, cvm::real a)
{
matrix2d<T> result(m.outer_length, m.inner_length);
size_t i;
for (i = 0; i < m.data.size(); i++) {
result.data[i] = m.data[i] * a;
}
return result;
}
/// vector-matrix multiplication
inline friend vector1d<T> operator * (vector1d<T> const &v,
matrix2d<T> const &m)
{
vector1d<T> result(m.inner_length);
if (m.outer_length != v.size()) {
cvm::error("Error: trying to multiply a vector and a matrix "
"of incompatible sizes, "+
cvm::to_str(v.size()) + " and " +
cvm::to_str(m.outer_length)+"x"+cvm::to_str(m.inner_length) +
".\n");
} else {
size_t i, k;
for (i = 0; i < m.inner_length; i++) {
for (k = 0; k < m.outer_length; k++) {
result[i] += m[k][i] * v[k];
}
}
}
return result;
}
/// Formatted output
friend std::ostream & operator << (std::ostream &os,
matrix2d<T> const &m)
{
std::streamsize const w = os.width();
std::streamsize const p = os.precision();
os.width(2);
os << "( ";
size_t i;
for (i = 0; i < m.outer_length; i++) {
os << " ( ";
size_t j;
for (j = 0; j < m.inner_length-1; j++) {
os.width(w);
os.precision(p);
os << m[i][j] << " , ";
}
os.width(w);
os.precision(p);
os << m[i][m.inner_length-1] << " )";
}
os << " )";
return os;
}
inline std::string to_simple_string() const
{
if (this->size() == 0) return std::string("");
std::ostringstream os;
os.setf(std::ios::scientific, std::ios::floatfield);
os.precision(cvm::cv_prec);
os << (*this)[0];
size_t i;
for (i = 1; i < data.size(); i++) {
os << " " << data[i];
}
return os.str();
}
inline int from_simple_string(std::string const &s)
{
std::stringstream stream(s);
size_t i = 0;
while ((i < data.size()) && (stream >> data[i])) {
i++;
}
if (i < data.size()) {
return COLVARS_ERROR;
}
return COLVARS_OK;
}
};
/// vector of real numbers with three components
class colvarmodule::rvector {
public:
cvm::real x, y, z;
inline rvector()
{
reset();
}
/// \brief Set all components to zero
inline void reset()
{
set(0.0);
}
inline rvector(cvm::real x_i, cvm::real y_i, cvm::real z_i)
{
set(x_i, y_i, z_i);
}
inline rvector(cvm::vector1d<cvm::real> const &v)
{
set(v[0], v[1], v[2]);
}
inline rvector(cvm::real t)
{
set(t);
}
/// \brief Set all components to a scalar
inline void set(cvm::real value)
{
x = y = z = value;
}
/// \brief Assign all components
inline void set(cvm::real x_i, cvm::real y_i, cvm::real z_i)
{
x = x_i;
y = y_i;
z = z_i;
}
/// \brief Access cartesian components by index
inline cvm::real & operator [] (int i) {
return (i == 0) ? x : (i == 1) ? y : (i == 2) ? z : x;
}
/// \brief Access cartesian components by index
inline cvm::real operator [] (int i) const {
return (i == 0) ? x : (i == 1) ? y : (i == 2) ? z : x;
}
inline cvm::vector1d<cvm::real> const as_vector() const
{
cvm::vector1d<cvm::real> result(3);
result[0] = this->x;
result[1] = this->y;
result[2] = this->z;
return result;
}
inline void operator += (cvm::rvector const &v)
{
x += v.x;
y += v.y;
z += v.z;
}
inline void operator -= (cvm::rvector const &v)
{
x -= v.x;
y -= v.y;
z -= v.z;
}
inline void operator *= (cvm::real v)
{
x *= v;
y *= v;
z *= v;
}
inline void operator /= (cvm::real const& v)
{
x /= v;
y /= v;
z /= v;
}
inline cvm::real norm2() const
{
return (x*x + y*y + z*z);
}
inline cvm::real norm() const
{
return std::sqrt(this->norm2());
}
inline cvm::rvector unit() const
{
const cvm::real n = this->norm();
return (n > 0. ? cvm::rvector(x, y, z)/n : cvm::rvector(1., 0., 0.));
}
static inline size_t output_width(size_t real_width)
{
return 3*real_width + 10;
}
static inline cvm::rvector outer(cvm::rvector const &v1,
cvm::rvector const &v2)
{
return cvm::rvector( v1.y*v2.z - v2.y*v1.z,
-v1.x*v2.z + v2.x*v1.z,
v1.x*v2.y - v2.x*v1.y);
}
friend inline cvm::rvector operator - (cvm::rvector const &v)
{
return cvm::rvector(-v.x, -v.y, -v.z);
}
friend inline cvm::rvector operator + (cvm::rvector const &v1,
cvm::rvector const &v2)
{
return cvm::rvector(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);
}
friend inline cvm::rvector operator - (cvm::rvector const &v1,
cvm::rvector const &v2)
{
return cvm::rvector(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
}
/// Inner (dot) product
friend inline cvm::real operator * (cvm::rvector const &v1,
cvm::rvector const &v2)
{
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
friend inline cvm::rvector operator * (cvm::real a, cvm::rvector const &v)
{
return cvm::rvector(a*v.x, a*v.y, a*v.z);
}
friend inline cvm::rvector operator * (cvm::rvector const &v, cvm::real a)
{
return cvm::rvector(a*v.x, a*v.y, a*v.z);
}
friend inline cvm::rvector operator / (cvm::rvector const &v, cvm::real a)
{
return cvm::rvector(v.x/a, v.y/a, v.z/a);
}
std::string to_simple_string() const;
int from_simple_string(std::string const &s);
};
/// \brief 2-dimensional array of real numbers with three components
/// along each dimension (works with colvarmodule::rvector)
class colvarmodule::rmatrix
: public colvarmodule::matrix2d<colvarmodule::real> {
private:
public:
/// Return the xx element
inline cvm::real & xx() { return (*this)[0][0]; }
/// Return the xy element
inline cvm::real & xy() { return (*this)[0][1]; }
/// Return the xz element
inline cvm::real & xz() { return (*this)[0][2]; }
/// Return the yx element
inline cvm::real & yx() { return (*this)[1][0]; }
/// Return the yy element
inline cvm::real & yy() { return (*this)[1][1]; }
/// Return the yz element
inline cvm::real & yz() { return (*this)[1][2]; }
/// Return the zx element
inline cvm::real & zx() { return (*this)[2][0]; }
/// Return the zy element
inline cvm::real & zy() { return (*this)[2][1]; }
/// Return the zz element
inline cvm::real & zz() { return (*this)[2][2]; }
/// Return the xx element
inline cvm::real xx() const { return (*this)[0][0]; }
/// Return the xy element
inline cvm::real xy() const { return (*this)[0][1]; }
/// Return the xz element
inline cvm::real xz() const { return (*this)[0][2]; }
/// Return the yx element
inline cvm::real yx() const { return (*this)[1][0]; }
/// Return the yy element
inline cvm::real yy() const { return (*this)[1][1]; }
/// Return the yz element
inline cvm::real yz() const { return (*this)[1][2]; }
/// Return the zx element
inline cvm::real zx() const { return (*this)[2][0]; }
/// Return the zy element
inline cvm::real zy() const { return (*this)[2][1]; }
/// Return the zz element
inline cvm::real zz() const { return (*this)[2][2]; }
/// Default constructor
inline rmatrix()
: cvm::matrix2d<cvm::real>(3, 3)
{}
/// Constructor component by component
inline rmatrix(cvm::real xxi, cvm::real xyi, cvm::real xzi,
cvm::real yxi, cvm::real yyi, cvm::real yzi,
cvm::real zxi, cvm::real zyi, cvm::real zzi)
: cvm::matrix2d<cvm::real>(3, 3)
{
this->xx() = xxi;
this->xy() = xyi;
this->xz() = xzi;
this->yx() = yxi;
this->yy() = yyi;
this->yz() = yzi;
this->zx() = zxi;
this->zy() = zyi;
this->zz() = zzi;
}
/// Destructor
inline ~rmatrix()
{}
/// Return the determinant
inline cvm::real determinant() const
{
return
( xx() * (yy()*zz() - zy()*yz()))
- (yx() * (xy()*zz() - zy()*xz()))
+ (zx() * (xy()*yz() - yy()*xz()));
}
inline cvm::rmatrix transpose() const
{
return cvm::rmatrix(this->xx(), this->yx(), this->zx(),
this->xy(), this->yy(), this->zy(),
this->xz(), this->yz(), this->zz());
}
friend cvm::rvector operator * (cvm::rmatrix const &m, cvm::rvector const &r);
};
inline cvm::rvector operator * (cvm::rmatrix const &m,
cvm::rvector const &r)
{
return cvm::rvector(m.xx()*r.x + m.xy()*r.y + m.xz()*r.z,
m.yx()*r.x + m.yy()*r.y + m.yz()*r.z,
m.zx()*r.x + m.zy()*r.y + m.zz()*r.z);
}
/// \brief 1-dimensional vector of real numbers with four components and
/// a quaternion algebra
class colvarmodule::quaternion {
public:
cvm::real q0, q1, q2, q3;
/// Constructor from a 3-d vector
inline quaternion(cvm::real x, cvm::real y, cvm::real z)
: q0(0.0), q1(x), q2(y), q3(z)
{}
/// Constructor component by component
inline quaternion(cvm::real const qv[4])
: q0(qv[0]), q1(qv[1]), q2(qv[2]), q3(qv[3])
{}
/// Constructor component by component
inline quaternion(cvm::real q0i,
cvm::real q1i,
cvm::real q2i,
cvm::real q3i)
: q0(q0i), q1(q1i), q2(q2i), q3(q3i)
{}
inline quaternion(cvm::vector1d<cvm::real> const &v)
: q0(v[0]), q1(v[1]), q2(v[2]), q3(v[3])
{}
/// "Constructor" after Euler angles (in radians)
///
/// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
inline void set_from_euler_angles(cvm::real phi_in,
cvm::real theta_in,
cvm::real psi_in)
{
q0 = ( (std::cos(phi_in/2.0)) * (std::cos(theta_in/2.0)) * (std::cos(psi_in/2.0)) +
(std::sin(phi_in/2.0)) * (std::sin(theta_in/2.0)) * (std::sin(psi_in/2.0)) );
q1 = ( (std::sin(phi_in/2.0)) * (std::cos(theta_in/2.0)) * (std::cos(psi_in/2.0)) -
(std::cos(phi_in/2.0)) * (std::sin(theta_in/2.0)) * (std::sin(psi_in/2.0)) );
q2 = ( (std::cos(phi_in/2.0)) * (std::sin(theta_in/2.0)) * (std::cos(psi_in/2.0)) +
(std::sin(phi_in/2.0)) * (std::cos(theta_in/2.0)) * (std::sin(psi_in/2.0)) );
q3 = ( (std::cos(phi_in/2.0)) * (std::cos(theta_in/2.0)) * (std::sin(psi_in/2.0)) -
(std::sin(phi_in/2.0)) * (std::sin(theta_in/2.0)) * (std::cos(psi_in/2.0)) );
}
/// \brief Default constructor
inline quaternion()
{
reset();
}
/// \brief Set all components to a scalar
inline void set(cvm::real value)
{
q0 = q1 = q2 = q3 = value;
}
/// \brief Set all components to zero (null quaternion)
inline void reset()
{
set(0.0);
}
/// \brief Set the q0 component to 1 and the others to 0 (quaternion
/// representing no rotation)
inline void reset_rotation()
{
q0 = 1.0;
q1 = q2 = q3 = 0.0;
}
/// Tell the number of characters required to print a quaternion, given that of a real number
static inline size_t output_width(size_t real_width)
{
return 4*real_width + 13;
}
std::string to_simple_string() const;
int from_simple_string(std::string const &s);
/// \brief Formatted output operator
friend std::ostream & operator << (std::ostream &os, cvm::quaternion const &q);
/// \brief Formatted input operator
friend std::istream & operator >> (std::istream &is, cvm::quaternion &q);
/// Access the quaternion as a 4-d array (return a reference)
inline cvm::real & operator [] (int i) {
switch (i) {
case 0:
return this->q0;
case 1:
return this->q1;
case 2:
return this->q2;
case 3:
return this->q3;
default:
cvm::error("Error: incorrect quaternion component.\n");
return q0;
}
}
/// Access the quaternion as a 4-d array (return a value)
inline cvm::real operator [] (int i) const {
switch (i) {
case 0:
return this->q0;
case 1:
return this->q1;
case 2:
return this->q2;
case 3:
return this->q3;
default:
cvm::error("Error: trying to access a quaternion "
"component which is not between 0 and 3.\n");
return 0.0;
}
}
inline cvm::vector1d<cvm::real> const as_vector() const
{
cvm::vector1d<cvm::real> result(4);
result[0] = q0;
result[1] = q1;
result[2] = q2;
result[3] = q3;
return result;
}
/// Square norm of the quaternion
inline cvm::real norm2() const
{
return q0*q0 + q1*q1 + q2*q2 + q3*q3;
}
/// Norm of the quaternion
inline cvm::real norm() const
{
return std::sqrt(this->norm2());
}
/// Return the conjugate quaternion
inline cvm::quaternion conjugate() const
{
return cvm::quaternion(q0, -q1, -q2, -q3);
}
inline void operator *= (cvm::real a)
{
q0 *= a; q1 *= a; q2 *= a; q3 *= a;
}
inline void operator /= (cvm::real a)
{
q0 /= a; q1 /= a; q2 /= a; q3 /= a;
}
inline void set_positive()
{
if (q0 > 0.0) return;
q0 = -q0;
q1 = -q1;
q2 = -q2;
q3 = -q3;
}
inline void operator += (cvm::quaternion const &h)
{
q0+=h.q0; q1+=h.q1; q2+=h.q2; q3+=h.q3;
}
inline void operator -= (cvm::quaternion const &h)
{
q0-=h.q0; q1-=h.q1; q2-=h.q2; q3-=h.q3;
}
/// Promote a 3-vector to a quaternion
static inline cvm::quaternion promote(cvm::rvector const &v)
{
return cvm::quaternion(0.0, v.x, v.y, v.z);
}
/// Return the vector component
inline cvm::rvector get_vector() const
{
return cvm::rvector(q1, q2, q3);
}
friend inline cvm::quaternion operator + (cvm::quaternion const &h,
cvm::quaternion const &q)
{
return cvm::quaternion(h.q0+q.q0, h.q1+q.q1, h.q2+q.q2, h.q3+q.q3);
}
friend inline cvm::quaternion operator - (cvm::quaternion const &h,
cvm::quaternion const &q)
{
return cvm::quaternion(h.q0-q.q0, h.q1-q.q1, h.q2-q.q2, h.q3-q.q3);
}
/// \brief Provides the quaternion product. \b NOTE: for the inner
/// product use: \code h.inner (q); \endcode
friend inline cvm::quaternion operator * (cvm::quaternion const &h,
cvm::quaternion const &q)
{
return cvm::quaternion(h.q0*q.q0 - h.q1*q.q1 - h.q2*q.q2 - h.q3*q.q3,
h.q0*q.q1 + h.q1*q.q0 + h.q2*q.q3 - h.q3*q.q2,
h.q0*q.q2 + h.q2*q.q0 + h.q3*q.q1 - h.q1*q.q3,
h.q0*q.q3 + h.q3*q.q0 + h.q1*q.q2 - h.q2*q.q1);
}
friend inline cvm::quaternion operator * (cvm::real c,
cvm::quaternion const &q)
{
return cvm::quaternion(c*q.q0, c*q.q1, c*q.q2, c*q.q3);
}
friend inline cvm::quaternion operator * (cvm::quaternion const &q,
cvm::real c)
{
return cvm::quaternion(q.q0*c, q.q1*c, q.q2*c, q.q3*c);
}
friend inline cvm::quaternion operator / (cvm::quaternion const &q,
cvm::real c)
{
return cvm::quaternion(q.q0/c, q.q1/c, q.q2/c, q.q3/c);
}
/// \brief Rotate v through this quaternion (put it in the rotated
/// reference frame)
inline cvm::rvector rotate(cvm::rvector const &v) const
{
return ((*this) * promote(v) * ((*this).conjugate())).get_vector();
}
/// \brief Rotate Q2 through this quaternion (put it in the rotated
/// reference frame)
inline cvm::quaternion rotate(cvm::quaternion const &Q2) const
{
cvm::rvector const vq_rot = this->rotate(Q2.get_vector());
return cvm::quaternion(Q2.q0, vq_rot.x, vq_rot.y, vq_rot.z);
}
/// Return the 3x3 matrix associated to this quaternion
inline cvm::rmatrix rotation_matrix() const
{
cvm::rmatrix R;
R.xx() = q0*q0 + q1*q1 - q2*q2 - q3*q3;
R.yy() = q0*q0 - q1*q1 + q2*q2 - q3*q3;
R.zz() = q0*q0 - q1*q1 - q2*q2 + q3*q3;
R.xy() = 2.0 * (q1*q2 - q0*q3);
R.xz() = 2.0 * (q0*q2 + q1*q3);
R.yx() = 2.0 * (q0*q3 + q1*q2);
R.yz() = 2.0 * (q2*q3 - q0*q1);
R.zx() = 2.0 * (q1*q3 - q0*q2);
R.zy() = 2.0 * (q0*q1 + q2*q3);
return R;
}
/// \brief Multiply the given vector by the derivative of the given
/// (rotated) position with respect to the quaternion
cvm::quaternion position_derivative_inner(cvm::rvector const &pos,
cvm::rvector const &vec) const;
/// \brief Return the cosine between the orientation frame
/// associated to this quaternion and another
inline cvm::real cosine(cvm::quaternion const &q) const
{
cvm::real const iprod = this->inner(q);
return 2.0*iprod*iprod - 1.0;
}
/// \brief Square distance from another quaternion on the
/// 4-dimensional unit sphere: returns the square of the angle along
/// the shorter of the two geodesics
inline cvm::real dist2(cvm::quaternion const &Q2) const
{
cvm::real const cos_omega = this->q0*Q2.q0 + this->q1*Q2.q1 +
this->q2*Q2.q2 + this->q3*Q2.q3;
cvm::real const omega = std::acos( (cos_omega > 1.0) ? 1.0 :
( (cos_omega < -1.0) ? -1.0 : cos_omega) );
// get the minimum distance: x and -x are the same quaternion
if (cos_omega > 0.0)
return omega * omega;
else
return (PI-omega) * (PI-omega);
}
/// Gradient of the square distance: returns a 4-vector equivalent
/// to that provided by slerp
inline cvm::quaternion dist2_grad(cvm::quaternion const &Q2) const
{
cvm::real const cos_omega = this->q0*Q2.q0 + this->q1*Q2.q1 + this->q2*Q2.q2 + this->q3*Q2.q3;
cvm::real const omega = std::acos( (cos_omega > 1.0) ? 1.0 :
( (cos_omega < -1.0) ? -1.0 : cos_omega) );
cvm::real const sin_omega = std::sin(omega);
if (std::fabs(sin_omega) < 1.0E-14) {
// return a null 4d vector
return cvm::quaternion(0.0, 0.0, 0.0, 0.0);
}
cvm::quaternion const
grad1((-1.0)*sin_omega*Q2.q0 + cos_omega*(this->q0-cos_omega*Q2.q0)/sin_omega,
(-1.0)*sin_omega*Q2.q1 + cos_omega*(this->q1-cos_omega*Q2.q1)/sin_omega,
(-1.0)*sin_omega*Q2.q2 + cos_omega*(this->q2-cos_omega*Q2.q2)/sin_omega,
(-1.0)*sin_omega*Q2.q3 + cos_omega*(this->q3-cos_omega*Q2.q3)/sin_omega);
if (cos_omega > 0.0) {
return 2.0*omega*grad1;
}
else {
return -2.0*(PI-omega)*grad1;
}
}
/// \brief Choose the closest between Q2 and -Q2 and save it back.
/// Not required for dist2() and dist2_grad()
inline void match(cvm::quaternion &Q2) const
{
cvm::real const cos_omega = this->q0*Q2.q0 + this->q1*Q2.q1 +
this->q2*Q2.q2 + this->q3*Q2.q3;
if (cos_omega < 0.0) Q2 *= -1.0;
}
/// \brief Inner product (as a 4-d vector) with Q2; requires match()
/// if the largest overlap is looked for
inline cvm::real inner(cvm::quaternion const &Q2) const
{
cvm::real const prod = this->q0*Q2.q0 + this->q1*Q2.q1 +
this->q2*Q2.q2 + this->q3*Q2.q3;
return prod;
}
};
/// \brief A rotation between two sets of coordinates (for the moment
/// a wrapper for colvarmodule::quaternion)
class colvarmodule::rotation
{
public:
/// \brief The rotation itself (implemented as a quaternion)
cvm::quaternion q;
/// \brief Eigenvalue corresponding to the optimal rotation
cvm::real lambda;
/// \brief Perform gradient tests
bool b_debug_gradients;
/// \brief Positions to superimpose: the rotation should brings pos1
/// into pos2
std::vector<cvm::atom_pos> pos1, pos2;
cvm::rmatrix C;
cvm::matrix2d<cvm::real> S;
cvm::vector1d<cvm::real> S_eigval;
cvm::matrix2d<cvm::real> S_eigvec;
/// Used for debugging gradients
cvm::matrix2d<cvm::real> S_backup;
/// Derivatives of S
std::vector< cvm::matrix2d<cvm::rvector> > dS_1, dS_2;
/// Derivatives of leading eigenvalue
std::vector< cvm::rvector > dL0_1, dL0_2;
/// Derivatives of leading eigenvector
std::vector< cvm::vector1d<cvm::rvector> > dQ0_1, dQ0_2;
/// Allocate space for the derivatives of the rotation
inline void request_group1_gradients(size_t n)
{
dS_1.resize(n, cvm::matrix2d<cvm::rvector>(4, 4));
dL0_1.resize(n, cvm::rvector(0.0, 0.0, 0.0));
dQ0_1.resize(n, cvm::vector1d<cvm::rvector>(4));
}
/// Allocate space for the derivatives of the rotation
inline void request_group2_gradients(size_t n)
{
dS_2.resize(n, cvm::matrix2d<cvm::rvector>(4, 4));
dL0_2.resize(n, cvm::rvector(0.0, 0.0, 0.0));
dQ0_2.resize(n, cvm::vector1d<cvm::rvector>(4));
}
/// \brief Calculate the optimal rotation and store the
/// corresponding eigenvalue and eigenvector in the arguments l0 and
/// q0; if the gradients have been previously requested, calculate
/// them as well
///
/// The method to derive the optimal rotation is defined in:
/// Coutsias EA, Seok C, Dill KA.
/// Using quaternions to calculate RMSD.
/// J Comput Chem. 25(15):1849-57 (2004)
/// DOI: 10.1002/jcc.20110 PubMed: 15376254
void calc_optimal_rotation(std::vector<atom_pos> const &pos1,
std::vector<atom_pos> const &pos2);
/// Default constructor
inline rotation()
: b_debug_gradients(false)
{}
/// Constructor after a quaternion
inline rotation(cvm::quaternion const &qi)
: q(qi),
b_debug_gradients(false)
{
}
/// Constructor after an axis of rotation and an angle (in radians)
inline rotation(cvm::real angle, cvm::rvector const &axis)
: b_debug_gradients(false)
{
cvm::rvector const axis_n = axis.unit();
cvm::real const sina = std::sin(angle/2.0);
q = cvm::quaternion(std::cos(angle/2.0),
sina * axis_n.x, sina * axis_n.y, sina * axis_n.z);
}
/// Destructor
inline ~rotation()
{}
/// Return the rotated vector
inline cvm::rvector rotate(cvm::rvector const &v) const
{
return q.rotate(v);
}
/// Return the inverse of this rotation
inline cvm::rotation inverse() const
{
return cvm::rotation(this->q.conjugate());
}
/// Return the associated 3x3 matrix
inline cvm::rmatrix matrix() const
{
return q.rotation_matrix();
}
/// \brief Return the spin angle (in degrees) with respect to the
/// provided axis (which MUST be normalized)
inline cvm::real spin_angle(cvm::rvector const &axis) const
{
cvm::rvector const q_vec = q.get_vector();
cvm::real alpha = (180.0/PI) * 2.0 * std::atan2(axis * q_vec, q.q0);
while (alpha > 180.0) alpha -= 360;
while (alpha < -180.0) alpha += 360;
return alpha;
}
/// \brief Return the derivative of the spin angle with respect to
/// the quaternion
inline cvm::quaternion dspin_angle_dq(cvm::rvector const &axis) const
{
cvm::rvector const q_vec = q.get_vector();
cvm::real const iprod = axis * q_vec;
if (q.q0 != 0.0) {
cvm::real const dspindx =
(180.0/PI) * 2.0 * (1.0 / (1.0 + (iprod*iprod)/(q.q0*q.q0)));
return cvm::quaternion( dspindx * (iprod * (-1.0) / (q.q0*q.q0)),
dspindx * ((1.0/q.q0) * axis.x),
dspindx * ((1.0/q.q0) * axis.y),
dspindx * ((1.0/q.q0) * axis.z));
} else {
// (1/(1+x^2)) ~ (1/x)^2
// The documentation of spinAngle discourages its use when q_vec and
// axis are not close
return cvm::quaternion((180.0/PI) * 2.0 * ((-1.0)/iprod), 0.0, 0.0, 0.0);
}
}
/// \brief Return the projection of the orientation vector onto a
/// predefined axis
inline cvm::real cos_theta(cvm::rvector const &axis) const
{
cvm::rvector const q_vec = q.get_vector();
cvm::real const alpha =
(180.0/PI) * 2.0 * std::atan2(axis * q_vec, q.q0);
cvm::real const cos_spin_2 = std::cos(alpha * (PI/180.0) * 0.5);
cvm::real const cos_theta_2 = ( (cos_spin_2 != 0.0) ?
(q.q0 / cos_spin_2) :
(0.0) );
// cos(2t) = 2*cos(t)^2 - 1
return 2.0 * (cos_theta_2*cos_theta_2) - 1.0;
}
/// Return the derivative of the tilt wrt the quaternion
inline cvm::quaternion dcos_theta_dq(cvm::rvector const &axis) const
{
cvm::rvector const q_vec = q.get_vector();
cvm::real const iprod = axis * q_vec;
cvm::real const cos_spin_2 = std::cos(std::atan2(iprod, q.q0));
if (q.q0 != 0.0) {
cvm::real const d_cos_theta_dq0 =
(4.0 * q.q0 / (cos_spin_2*cos_spin_2)) *
(1.0 - (iprod*iprod)/(q.q0*q.q0) / (1.0 + (iprod*iprod)/(q.q0*q.q0)));
cvm::real const d_cos_theta_dqn =
(4.0 * q.q0 / (cos_spin_2*cos_spin_2) *
(iprod/q.q0) / (1.0 + (iprod*iprod)/(q.q0*q.q0)));
return cvm::quaternion(d_cos_theta_dq0,
d_cos_theta_dqn * axis.x,
d_cos_theta_dqn * axis.y,
d_cos_theta_dqn * axis.z);
} else {
cvm::real const d_cos_theta_dqn =
(4.0 / (cos_spin_2*cos_spin_2 * iprod));
return cvm::quaternion(0.0,
d_cos_theta_dqn * axis.x,
d_cos_theta_dqn * axis.y,
d_cos_theta_dqn * axis.z);
}
}
/// \brief Whether to test for eigenvalue crossing
static bool monitor_crossings;
/// \brief Threshold for the eigenvalue crossing test
static cvm::real crossing_threshold;
protected:
/// \brief Previous value of the rotation (used to warn the user
/// when the structure changes too much, and there may be an
/// eigenvalue crossing)
cvm::quaternion q_old;
/// Build the overlap matrix S (used by calc_optimal_rotation())
void build_matrix(std::vector<cvm::atom_pos> const &pos1,
std::vector<cvm::atom_pos> const &pos2,
cvm::matrix2d<cvm::real> &S);
/// Diagonalize the overlap matrix S (used by calc_optimal_rotation())
void diagonalize_matrix(cvm::matrix2d<cvm::real> &S,
cvm::vector1d<cvm::real> &S_eigval,
cvm::matrix2d<cvm::real> &S_eigvec);
};
#endif
|