File: meam_dens_final.F

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (296 lines) | stat: -rw-r--r-- 9,541 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
c Extern "C" declaration has the form:
c
c  void meam_dens_final_(int *, int *, int *, int *, int *, double *, double *,
c                int *, int *, int *,
c		 double *, double *, double *, double *, double *, double *,
c		 double *, double *, double *, double *, double *, double *,
c		 double *, double *, double *, double *, double *, int *);
c
c Call from pair_meam.cpp has the form:
c
c  meam_dens_final_(&nlocal,&nmax,&eflag_either,&eflag_global,&eflag_atom,
c            &eng_vdwl,eatom,ntype,type,fmap,
c	     &arho1[0][0],&arho2[0][0],arho2b,&arho3[0][0],
c	     &arho3b[0][0],&t_ave[0][0],&tsq_ave[0][0],gamma,dgamma1,
c	     dgamma2,dgamma3,rho,rho0,rho1,rho2,rho3,frhop,&errorflag);
c

      subroutine meam_dens_final(nlocal, nmax,
     $     eflag_either, eflag_global, eflag_atom, eng_vdwl, eatom,
     $     ntype, type, fmap,
     $     Arho1, Arho2, Arho2b, Arho3, Arho3b, t_ave, tsq_ave,
     $     Gamma, dGamma1, dGamma2, dGamma3,
     $     rho, rho0, rho1, rho2, rho3, fp, errorflag)

      use meam_data
      implicit none

      integer nlocal, nmax, eflag_either, eflag_global, eflag_atom
      integer ntype, type, fmap
      real*8 eng_vdwl, eatom, Arho1, Arho2
      real*8 Arho2b, Arho3, Arho3b
      real*8 t_ave, tsq_ave
      real*8 Gamma, dGamma1, dGamma2, dGamma3
      real*8 rho, rho0, rho1, rho2, rho3
      real*8 fp
      integer errorflag

      dimension eatom(nmax)
      dimension type(nmax), fmap(ntype)
      dimension Arho1(3,nmax), Arho2(6,nmax), Arho2b(nmax)
      dimension Arho3(10,nmax), Arho3b(3,nmax), t_ave(3,nmax)
      dimension tsq_ave(3,nmax)
      dimension Gamma(nmax), dGamma1(nmax), dGamma2(nmax)
      dimension dGamma3(nmax), rho(nmax), rho0(nmax)
      dimension rho1(nmax), rho2(nmax), rho3(nmax)
      dimension fp(nmax)

      integer i, elti
      integer m
      real*8  rhob, G, dG, Gbar, dGbar, gam, shp(3), shpi(3), Z
      real*8  B, denom, rho_bkgd

c     Complete the calculation of density

      do i = 1,nlocal

        elti = fmap(type(i))
        if (elti.gt.0) then
          rho1(i) = 0.d0
          rho2(i) = -1.d0/3.d0*Arho2b(i)*Arho2b(i)
          rho3(i) = 0.d0
          do m = 1,3
            rho1(i) = rho1(i) + Arho1(m,i)*Arho1(m,i)
            rho3(i) = rho3(i) - 3.d0/5.d0*Arho3b(m,i)*Arho3b(m,i)
          enddo
          do m = 1,6
            rho2(i) = rho2(i) + v2D(m)*Arho2(m,i)*Arho2(m,i)
          enddo
          do m = 1,10
            rho3(i) = rho3(i) + v3D(m)*Arho3(m,i)*Arho3(m,i)
          enddo

          if( rho0(i) .gt. 0.0 ) then
            if (ialloy.eq.1) then
              if (tsq_ave(1,i) .ne. 0.0d0) then
                t_ave(1,i) = t_ave(1,i)/tsq_ave(1,i)
              else
                t_ave(1,i) = 0.0d0
              endif
              if (tsq_ave(2,i) .ne. 0.0d0) then
                t_ave(2,i) = t_ave(2,i)/tsq_ave(2,i)
              else
                t_ave(2,i) = 0.0d0
              endif
              if (tsq_ave(3,i) .ne. 0.0d0) then
                t_ave(3,i) = t_ave(3,i)/tsq_ave(3,i)
              else
                t_ave(3,i) = 0.0d0
              endif
            else if (ialloy.eq.2) then
              t_ave(1,i) = t1_meam(elti)
              t_ave(2,i) = t2_meam(elti)
              t_ave(3,i) = t3_meam(elti)
            else
              t_ave(1,i) = t_ave(1,i)/rho0(i)
              t_ave(2,i) = t_ave(2,i)/rho0(i)
              t_ave(3,i) = t_ave(3,i)/rho0(i)
            endif
          endif

          Gamma(i) = t_ave(1,i)*rho1(i)
     $         + t_ave(2,i)*rho2(i) + t_ave(3,i)*rho3(i)

          if( rho0(i) .gt. 0.0 ) then
            Gamma(i) = Gamma(i)/(rho0(i)*rho0(i))
          end if

          Z = Z_meam(elti)

          call G_gam(Gamma(i),ibar_meam(elti),
     $         gsmooth_factor,G,errorflag)
          if (errorflag.ne.0) return
          call get_shpfcn(shp,lattce_meam(elti,elti))
          if (ibar_meam(elti).le.0) then
            Gbar = 1.d0
            dGbar = 0.d0
          else
            if (mix_ref_t.eq.1) then
              gam = (t_ave(1,i)*shp(1)+t_ave(2,i)*shp(2)
     $             +t_ave(3,i)*shp(3))/(Z*Z)
            else
              gam = (t1_meam(elti)*shp(1)+t2_meam(elti)*shp(2)
     $             +t3_meam(elti)*shp(3))/(Z*Z)
            endif
            call G_gam(gam,ibar_meam(elti),gsmooth_factor,
     $           Gbar,errorflag)
          endif
          rho(i) = rho0(i) * G

          if (mix_ref_t.eq.1) then
            if (ibar_meam(elti).le.0) then
              Gbar = 1.d0
              dGbar = 0.d0
            else
              gam = (t_ave(1,i)*shp(1)+t_ave(2,i)*shp(2)
     $             +t_ave(3,i)*shp(3))/(Z*Z)
              call dG_gam(gam,ibar_meam(elti),gsmooth_factor,
     $             Gbar,dGbar)
            endif
            rho_bkgd = rho0_meam(elti)*Z*Gbar
          else
            if (bkgd_dyn.eq.1) then
              rho_bkgd = rho0_meam(elti)*Z
            else
              rho_bkgd = rho_ref_meam(elti)
            endif
          endif
          rhob = rho(i)/rho_bkgd
          denom = 1.d0/rho_bkgd

          call dG_gam(Gamma(i),ibar_meam(elti),gsmooth_factor,G,dG)

          dGamma1(i) = (G - 2*dG*Gamma(i))*denom

          if( rho0(i) .ne. 0.d0 ) then
            dGamma2(i) = (dG/rho0(i))*denom
          else
            dGamma2(i) = 0.d0
          end if

c     dGamma3 is nonzero only if we are using the "mixed" rule for
c     computing t in the reference system (which is not correct, but
c     included for backward compatibility
          if (mix_ref_t.eq.1) then
            dGamma3(i) = rho0(i)*G*dGbar/(Gbar*Z*Z)*denom
          else
            dGamma3(i) = 0.0
          endif

          B = A_meam(elti)*Ec_meam(elti,elti)

          if( rhob .ne. 0.d0 ) then
            if (emb_lin_neg.eq.1 .and. rhob.le.0) then
              fp(i) = -B
            else
              fp(i) = B*(log(rhob)+1.d0)
            endif
            if (eflag_either.ne.0) then
              if (eflag_global.ne.0) then
                if (emb_lin_neg.eq.1 .and. rhob.le.0) then
                  eng_vdwl = eng_vdwl - B*rhob
                else
                  eng_vdwl = eng_vdwl + B*rhob*log(rhob)
                endif
              endif
              if (eflag_atom.ne.0) then
                if (emb_lin_neg.eq.1 .and. rhob.le.0) then
                  eatom(i) = eatom(i) - B*rhob
                else
                  eatom(i) = eatom(i) + B*rhob*log(rhob)
                endif
              endif
            endif
          else
            if (emb_lin_neg.eq.1) then
              fp(i) = -B
            else
              fp(i) = B
            endif
          endif
        endif
      enddo

      return
      end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

      subroutine G_gam(Gamma,ibar,gsmooth_factor,G,errorflag)
c     Compute G(Gamma) based on selection flag ibar:
c   0 => G = sqrt(1+Gamma)
c   1 => G = exp(Gamma/2)
c   2 => not implemented
c   3 => G = 2/(1+exp(-Gamma))
c   4 => G = sqrt(1+Gamma)
c  -5 => G = +-sqrt(abs(1+Gamma))
      use meam_data , only: fm_exp
      implicit none
      real*8 Gamma,G
      real*8 gsmooth_factor, gsmooth_switchpoint
      integer ibar, errorflag
      if (ibar.eq.0.or.ibar.eq.4) then
        gsmooth_switchpoint = -gsmooth_factor / (gsmooth_factor+1)
        if (Gamma.lt.gsmooth_switchpoint) then
c         e.g. gsmooth_factor is 99, then:
c         gsmooth_switchpoint = -0.99
c         G = 0.01*(-0.99/Gamma)**99
          G = 1/(gsmooth_factor+1)
     $         *(gsmooth_switchpoint/Gamma)**gsmooth_factor
          G = sqrt(G)
        else
          G = sqrt(1.d0+Gamma)
        endif
      else if (ibar.eq.1) then
        G = fm_exp(Gamma/2.d0)
      else if (ibar.eq.3) then
        G = 2.d0/(1.d0+exp(-Gamma))
      else if (ibar.eq.-5) then
        if ((1.d0+Gamma).ge.0) then
           G = sqrt(1.d0+Gamma)
        else
           G = -sqrt(-1.d0-Gamma)
        endif
      else
         errorflag = 1
      endif
      return
      end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

      subroutine dG_gam(Gamma,ibar,gsmooth_factor,G,dG)
c Compute G(Gamma) and dG(gamma) based on selection flag ibar:
c   0 => G = sqrt(1+Gamma)
c   1 => G = fm_exp(Gamma/2)
c   2 => not implemented
c   3 => G = 2/(1+fm_exp(-Gamma))
c   4 => G = sqrt(1+Gamma)
c  -5 => G = +-sqrt(abs(1+Gamma))
      use meam_data , only: fm_exp
      real*8 Gamma,G,dG
      real*8 gsmooth_factor, gsmooth_switchpoint
      integer ibar
      if (ibar.eq.0.or.ibar.eq.4) then
        gsmooth_switchpoint = -gsmooth_factor / (gsmooth_factor+1)
        if (Gamma.lt.gsmooth_switchpoint) then
c         e.g. gsmooth_factor is 99, then:
c         gsmooth_switchpoint = -0.99
c         G = 0.01*(-0.99/Gamma)**99
          G = 1/(gsmooth_factor+1)
     $         *(gsmooth_switchpoint/Gamma)**gsmooth_factor
          G = sqrt(G)
          dG = -gsmooth_factor*G/(2.0*Gamma)
        else
          G = sqrt(1.d0+Gamma)
          dG = 1.d0/(2.d0*G)
        endif
      else if (ibar.eq.1) then
        G = fm_exp(Gamma/2.d0)
        dG = G/2.d0
      else if (ibar.eq.3) then
        G = 2.d0/(1.d0+fm_exp(-Gamma))
        dG = G*(2.d0-G)/2
      else if (ibar.eq.-5) then
        if ((1.d0+Gamma).ge.0) then
           G = sqrt(1.d0+Gamma)
           dG = 1.d0/(2.d0*G)
        else
           G = -sqrt(-1.d0-Gamma)
           dG = -1.d0/(2.d0*G)
        endif
      endif
      return
      end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc