1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
c Extern "C" declaration has the form:
c
c void meam_dens_init_(int *, int *, int *, double *, int *, int *, int *, double *,
c int *, int *, int *, int *,
c double *, double *, double *, double *, double *, double *,
c double *, double *, double *, double *, double *, int *);
c
c
c Call from pair_meam.cpp has the form:
c
c meam_dens_init_(&i,&nmax,ntype,type,fmap,&x[0][0],
c &numneigh[i],firstneigh[i],&numneigh_full[i],firstneigh_full[i],
c &scrfcn[offset],&dscrfcn[offset],&fcpair[offset],
c rho0,&arho1[0][0],&arho2[0][0],arho2b,
c &arho3[0][0],&arho3b[0][0],&t_ave[0][0],&tsq_ave[0][0],&errorflag);
c
subroutine meam_dens_init(i, nmax,
$ ntype, type, fmap, x,
$ numneigh, firstneigh,
$ numneigh_full, firstneigh_full,
$ scrfcn, dscrfcn, fcpair, rho0, arho1, arho2, arho2b,
$ arho3, arho3b, t_ave, tsq_ave, errorflag)
use meam_data
implicit none
integer i, nmax, ntype, type, fmap
real*8 x
integer numneigh, firstneigh, numneigh_full, firstneigh_full
real*8 scrfcn, dscrfcn, fcpair
real*8 rho0, arho1, arho2
real*8 arho2b, arho3, arho3b, t_ave, tsq_ave
integer errorflag
integer j,jn
dimension x(3,nmax)
dimension type(nmax), fmap(ntype)
dimension firstneigh(numneigh), firstneigh_full(numneigh_full)
dimension scrfcn(numneigh), dscrfcn(numneigh), fcpair(numneigh)
dimension rho0(nmax), arho1(3,nmax), arho2(6,nmax)
dimension arho2b(nmax), arho3(10,nmax), arho3b(3,nmax)
dimension t_ave(3,nmax), tsq_ave(3,nmax)
errorflag = 0
c Compute screening function and derivatives
call getscreen(i, nmax, scrfcn, dscrfcn, fcpair, x,
$ numneigh, firstneigh,
$ numneigh_full, firstneigh_full,
$ ntype, type, fmap)
c Calculate intermediate density terms to be communicated
call calc_rho1(i, nmax, ntype, type, fmap, x,
$ numneigh, firstneigh,
$ scrfcn, fcpair, rho0, arho1, arho2, arho2b,
$ arho3, arho3b, t_ave, tsq_ave)
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine getscreen(i, nmax, scrfcn, dscrfcn, fcpair, x,
$ numneigh, firstneigh,
$ numneigh_full, firstneigh_full,
$ ntype, type, fmap)
use meam_data
implicit none
integer i, nmax
real*8 scrfcn, dscrfcn, fcpair, x
integer numneigh, firstneigh, numneigh_full, firstneigh_full
integer ntype, type, fmap
dimension scrfcn(numneigh), dscrfcn(numneigh)
dimension fcpair(numneigh), x(3,nmax)
dimension firstneigh(numneigh), firstneigh_full(numneigh_full)
dimension type(nmax), fmap(ntype)
integer jn,j,kn,k
integer elti,eltj,eltk
real*8 xitmp,yitmp,zitmp,delxij,delyij,delzij,rij2,rij
real*8 xjtmp,yjtmp,zjtmp,delxik,delyik,delzik,rik2,rik
real*8 xktmp,yktmp,zktmp,delxjk,delyjk,delzjk,rjk2,rjk
real*8 xik,xjk,sij,fcij,sfcij,dfcij,sikj,dfikj,cikj
real*8 Cmin,Cmax,delc,ebound,rbound,a,coef1,coef2
real*8 coef1a,coef1b,coef2a,coef2b
real*8 dcikj
real*8 dC1a,dC1b,dC2a,dC2b
real*8 rnorm,fc,dfc,drinv
drinv = 1.d0/delr_meam
elti = fmap(type(i))
if (elti.gt.0) then
xitmp = x(1,i)
yitmp = x(2,i)
zitmp = x(3,i)
do jn = 1,numneigh
j = firstneigh(jn)
eltj = fmap(type(j))
if (eltj.gt.0) then
c First compute screening function itself, sij
xjtmp = x(1,j)
yjtmp = x(2,j)
zjtmp = x(3,j)
delxij = xjtmp - xitmp
delyij = yjtmp - yitmp
delzij = zjtmp - zitmp
rij2 = delxij*delxij + delyij*delyij + delzij*delzij
rij = sqrt(rij2)
if (rij.gt.rc_meam) then
fcij = 0.0
dfcij = 0.d0
sij = 0.d0
else
rnorm = (rc_meam-rij)*drinv
call screen(i, j, nmax, x, rij2, sij,
$ numneigh_full, firstneigh_full, ntype, type, fmap)
call dfcut(rnorm,fc,dfc)
fcij = fc
dfcij = dfc*drinv
endif
c Now compute derivatives
dscrfcn(jn) = 0.d0
sfcij = sij*fcij
if (sfcij.eq.0.d0.or.sfcij.eq.1.d0) goto 100
rbound = ebound_meam(elti,eltj) * rij2
do kn = 1,numneigh_full
k = firstneigh_full(kn)
if (k.eq.j) goto 10
eltk = fmap(type(k))
if (eltk.eq.0) goto 10
xktmp = x(1,k)
yktmp = x(2,k)
zktmp = x(3,k)
delxjk = xktmp - xjtmp
delyjk = yktmp - yjtmp
delzjk = zktmp - zjtmp
rjk2 = delxjk*delxjk + delyjk*delyjk + delzjk*delzjk
if (rjk2.gt.rbound) goto 10
delxik = xktmp - xitmp
delyik = yktmp - yitmp
delzik = zktmp - zitmp
rik2 = delxik*delxik + delyik*delyik + delzik*delzik
if (rik2.gt.rbound) goto 10
xik = rik2/rij2
xjk = rjk2/rij2
a = 1 - (xik-xjk)*(xik-xjk)
c if a < 0, then ellipse equation doesn't describe this case and
c atom k can't possibly screen i-j
if (a.le.0.d0) goto 10
cikj = (2.d0*(xik+xjk) + a - 2.d0)/a
Cmax = Cmax_meam(elti,eltj,eltk)
Cmin = Cmin_meam(elti,eltj,eltk)
if (cikj.ge.Cmax) then
goto 10
c Note that cikj may be slightly negative (within numerical
c tolerance) if atoms are colinear, so don't reject that case here
c (other negative cikj cases were handled by the test on "a" above)
c Note that we never have 0<cikj<Cmin here, else sij=0 (rejected above)
else
delc = Cmax - Cmin
cikj = (cikj-Cmin)/delc
call dfcut(cikj,sikj,dfikj)
coef1 = dfikj/(delc*sikj)
call dCfunc(rij2,rik2,rjk2,dCikj)
dscrfcn(jn) = dscrfcn(jn) + coef1*dCikj
endif
10 continue
enddo
coef1 = sfcij
coef2 = sij*dfcij/rij
dscrfcn(jn) = dscrfcn(jn)*coef1 - coef2
100 continue
scrfcn(jn) = sij
fcpair(jn) = fcij
endif
enddo
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine calc_rho1(i, nmax, ntype, type, fmap, x,
$ numneigh, firstneigh,
$ scrfcn, fcpair, rho0, arho1, arho2, arho2b,
$ arho3, arho3b, t_ave, tsq_ave)
use meam_data
implicit none
integer i, nmax, ntype, type, fmap
real*8 x
integer numneigh, firstneigh
real*8 scrfcn, fcpair, rho0, arho1, arho2
real*8 arho2b, arho3, arho3b, t_ave, tsq_ave
dimension type(nmax), fmap(ntype), x(3,nmax)
dimension firstneigh(numneigh)
dimension scrfcn(numneigh), fcpair(numneigh)
dimension rho0(nmax), arho1(3,nmax), arho2(6,nmax)
dimension arho2b(nmax), arho3(10,nmax), arho3b(3,nmax)
dimension t_ave(3,nmax), tsq_ave(3,nmax)
integer jn,j,m,n,p,elti,eltj
integer nv2,nv3
real*8 xtmp,ytmp,ztmp,delij(3),rij2,rij,sij
real*8 ai,aj,rhoa0j,rhoa1j,rhoa2j,rhoa3j,A1j,A2j,A3j
real*8 G,Gbar,gam,shp(3)
real*8 ro0i,ro0j
real*8 rhoa0i,rhoa1i,rhoa2i,rhoa3i,A1i,A2i,A3i
elti = fmap(type(i))
xtmp = x(1,i)
ytmp = x(2,i)
ztmp = x(3,i)
do jn = 1,numneigh
if (scrfcn(jn).ne.0.d0) then
j = firstneigh(jn)
sij = scrfcn(jn)*fcpair(jn)
delij(1) = x(1,j) - xtmp
delij(2) = x(2,j) - ytmp
delij(3) = x(3,j) - ztmp
rij2 = delij(1)*delij(1) + delij(2)*delij(2)
$ + delij(3)*delij(3)
if (rij2.lt.cutforcesq) then
eltj = fmap(type(j))
rij = sqrt(rij2)
ai = rij/re_meam(elti,elti) - 1.d0
aj = rij/re_meam(eltj,eltj) - 1.d0
ro0i = rho0_meam(elti)
ro0j = rho0_meam(eltj)
rhoa0j = ro0j*fm_exp(-beta0_meam(eltj)*aj)*sij
rhoa1j = ro0j*fm_exp(-beta1_meam(eltj)*aj)*sij
rhoa2j = ro0j*fm_exp(-beta2_meam(eltj)*aj)*sij
rhoa3j = ro0j*fm_exp(-beta3_meam(eltj)*aj)*sij
rhoa0i = ro0i*fm_exp(-beta0_meam(elti)*ai)*sij
rhoa1i = ro0i*fm_exp(-beta1_meam(elti)*ai)*sij
rhoa2i = ro0i*fm_exp(-beta2_meam(elti)*ai)*sij
rhoa3i = ro0i*fm_exp(-beta3_meam(elti)*ai)*sij
if (ialloy.eq.1) then
rhoa1j = rhoa1j * t1_meam(eltj)
rhoa2j = rhoa2j * t2_meam(eltj)
rhoa3j = rhoa3j * t3_meam(eltj)
rhoa1i = rhoa1i * t1_meam(elti)
rhoa2i = rhoa2i * t2_meam(elti)
rhoa3i = rhoa3i * t3_meam(elti)
endif
rho0(i) = rho0(i) + rhoa0j
rho0(j) = rho0(j) + rhoa0i
c For ialloy = 2, use single-element value (not average)
if (ialloy.ne.2) then
t_ave(1,i) = t_ave(1,i) + t1_meam(eltj)*rhoa0j
t_ave(2,i) = t_ave(2,i) + t2_meam(eltj)*rhoa0j
t_ave(3,i) = t_ave(3,i) + t3_meam(eltj)*rhoa0j
t_ave(1,j) = t_ave(1,j) + t1_meam(elti)*rhoa0i
t_ave(2,j) = t_ave(2,j) + t2_meam(elti)*rhoa0i
t_ave(3,j) = t_ave(3,j) + t3_meam(elti)*rhoa0i
endif
if (ialloy.eq.1) then
tsq_ave(1,i) = tsq_ave(1,i) +
$ t1_meam(eltj)*t1_meam(eltj)*rhoa0j
tsq_ave(2,i) = tsq_ave(2,i) +
$ t2_meam(eltj)*t2_meam(eltj)*rhoa0j
tsq_ave(3,i) = tsq_ave(3,i) +
$ t3_meam(eltj)*t3_meam(eltj)*rhoa0j
tsq_ave(1,j) = tsq_ave(1,j) +
$ t1_meam(elti)*t1_meam(elti)*rhoa0i
tsq_ave(2,j) = tsq_ave(2,j) +
$ t2_meam(elti)*t2_meam(elti)*rhoa0i
tsq_ave(3,j) = tsq_ave(3,j) +
$ t3_meam(elti)*t3_meam(elti)*rhoa0i
endif
Arho2b(i) = Arho2b(i) + rhoa2j
Arho2b(j) = Arho2b(j) + rhoa2i
A1j = rhoa1j/rij
A2j = rhoa2j/rij2
A3j = rhoa3j/(rij2*rij)
A1i = rhoa1i/rij
A2i = rhoa2i/rij2
A3i = rhoa3i/(rij2*rij)
nv2 = 1
nv3 = 1
do m = 1,3
Arho1(m,i) = Arho1(m,i) + A1j*delij(m)
Arho1(m,j) = Arho1(m,j) - A1i*delij(m)
Arho3b(m,i) = Arho3b(m,i) + rhoa3j*delij(m)/rij
Arho3b(m,j) = Arho3b(m,j) - rhoa3i*delij(m)/rij
do n = m,3
Arho2(nv2,i) = Arho2(nv2,i) + A2j*delij(m)*delij(n)
Arho2(nv2,j) = Arho2(nv2,j) + A2i*delij(m)*delij(n)
nv2 = nv2+1
do p = n,3
Arho3(nv3,i) = Arho3(nv3,i)
$ + A3j*delij(m)*delij(n)*delij(p)
Arho3(nv3,j) = Arho3(nv3,j)
$ - A3i*delij(m)*delij(n)*delij(p)
nv3 = nv3+1
enddo
enddo
enddo
endif
endif
enddo
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine screen(i, j, nmax, x, rijsq, sij,
$ numneigh_full, firstneigh_full, ntype, type, fmap)
c Screening function
c Inputs: i = atom 1 id (integer)
c j = atom 2 id (integer)
c rijsq = squared distance between i and j
c Outputs: sij = screening function
use meam_data
implicit none
integer i,j,nmax,k,nk,m
real*8 x,rijsq,sij
integer numneigh_full, firstneigh_full
integer ntype, type, fmap
dimension x(3,nmax), firstneigh_full(numneigh_full)
dimension type(nmax), fmap(ntype)
integer elti,eltj,eltk
real*8 delxik,delyik,delzik
real*8 delxjk,delyjk,delzjk
real*8 riksq,rjksq,xik,xjk,cikj,a,delc,sikj,fcij,rij
real*8 Cmax,Cmin,rbound
sij = 1.d0
elti = fmap(type(i))
eltj = fmap(type(j))
c if rjksq > ebound*rijsq, atom k is definitely outside the ellipse
rbound = ebound_meam(elti,eltj)*rijsq
do nk = 1,numneigh_full
k = firstneigh_full(nk)
eltk = fmap(type(k))
if (k.eq.j) goto 10
delxjk = x(1,k) - x(1,j)
delyjk = x(2,k) - x(2,j)
delzjk = x(3,k) - x(3,j)
rjksq = delxjk*delxjk + delyjk*delyjk + delzjk*delzjk
if (rjksq.gt.rbound) goto 10
delxik = x(1,k) - x(1,i)
delyik = x(2,k) - x(2,i)
delzik = x(3,k) - x(3,i)
riksq = delxik*delxik + delyik*delyik + delzik*delzik
if (riksq.gt.rbound) goto 10
xik = riksq/rijsq
xjk = rjksq/rijsq
a = 1 - (xik-xjk)*(xik-xjk)
c if a < 0, then ellipse equation doesn't describe this case and
c atom k can't possibly screen i-j
if (a.le.0.d0) goto 10
cikj = (2.d0*(xik+xjk) + a - 2.d0)/a
Cmax = Cmax_meam(elti,eltj,eltk)
Cmin = Cmin_meam(elti,eltj,eltk)
if (cikj.ge.Cmax) then
goto 10
c note that cikj may be slightly negative (within numerical
c tolerance) if atoms are colinear, so don't reject that case here
c (other negative cikj cases were handled by the test on "a" above)
else if (cikj.le.Cmin) then
sij = 0.d0
goto 20
else
delc = Cmax - Cmin
cikj = (cikj-Cmin)/delc
call fcut(cikj,sikj)
endif
sij = sij * sikj
10 continue
enddo
20 continue
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine dsij(i,j,k,jn,nmax,numneigh,rij2,dsij1,dsij2,
$ ntype,type,fmap,x,scrfcn,fcpair)
c Inputs: i,j,k = id's of 3 atom triplet
c jn = id of i-j pair
c rij2 = squared distance between i and j
c Outputs: dsij1 = deriv. of sij w.r.t. rik
c dsij2 = deriv. of sij w.r.t. rjk
use meam_data
implicit none
integer i,j,k,jn,nmax,numneigh
integer elti,eltj,eltk
real*8 rij2,rik2,rjk2,dsij1,dsij2
integer ntype, type, fmap
real*8 x, scrfcn, fcpair
dimension type(nmax), fmap(ntype)
dimension x(3,nmax), scrfcn(numneigh), fcpair(numneigh)
real*8 dxik,dyik,dzik
real*8 dxjk,dyjk,dzjk
real*8 rbound,delc,sij,xik,xjk,cikj,sikj,dfc,a
real*8 Cmax,Cmin,dCikj1,dCikj2
sij = scrfcn(jn)*fcpair(jn)
elti = fmap(type(i))
eltj = fmap(type(j))
eltk = fmap(type(k))
Cmax = Cmax_meam(elti,eltj,eltk)
Cmin = Cmin_meam(elti,eltj,eltk)
dsij1 = 0.d0
dsij2 = 0.d0
if ((sij.ne.0.d0).and.(sij.ne.1.d0)) then
rbound = rij2*ebound_meam(elti,eltj)
delc = Cmax-Cmin
dxjk = x(1,k) - x(1,j)
dyjk = x(2,k) - x(2,j)
dzjk = x(3,k) - x(3,j)
rjk2 = dxjk*dxjk + dyjk*dyjk + dzjk*dzjk
if (rjk2.le.rbound) then
dxik = x(1,k) - x(1,i)
dyik = x(2,k) - x(2,i)
dzik = x(3,k) - x(3,i)
rik2 = dxik*dxik + dyik*dyik + dzik*dzik
if (rik2.le.rbound) then
xik = rik2/rij2
xjk = rjk2/rij2
a = 1 - (xik-xjk)*(xik-xjk)
if (a.ne.0.d0) then
cikj = (2.d0*(xik+xjk) + a - 2.d0)/a
if (cikj.ge.Cmin.and.cikj.le.Cmax) then
cikj = (cikj-Cmin)/delc
call dfcut(cikj,sikj,dfc)
call dCfunc2(rij2,rik2,rjk2,dCikj1,dCikj2)
a = sij/delc*dfc/sikj
dsij1 = a*dCikj1
dsij2 = a*dCikj2
endif
endif
endif
endif
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine fcut(xi,fc)
c cutoff function
implicit none
real*8 xi,fc
real*8 a
if (xi.ge.1.d0) then
fc = 1.d0
else if (xi.le.0.d0) then
fc = 0.d0
else
a = 1.d0-xi
a = a*a
a = a*a
a = 1.d0-a
fc = a*a
c fc = xi
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine dfcut(xi,fc,dfc)
c cutoff function and its derivative
implicit none
real*8 xi,fc,dfc,a,a3,a4
if (xi.ge.1.d0) then
fc = 1.d0
dfc = 0.d0
else if (xi.le.0.d0) then
fc = 0.d0
dfc = 0.d0
else
a = 1.d0-xi
a3 = a*a*a
a4 = a*a3
fc = (1.d0-a4)**2
dfc = 8*(1.d0-a4)*a3
c fc = xi
c dfc = 1.d0
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine dCfunc(rij2,rik2,rjk2,dCikj)
c Inputs: rij,rij2,rik2,rjk2
c Outputs: dCikj = derivative of Cikj w.r.t. rij
implicit none
real*8 rij2,rik2,rjk2,dCikj
real*8 rij4,a,b,denom
rij4 = rij2*rij2
a = rik2-rjk2
b = rik2+rjk2
denom = rij4 - a*a
denom = denom*denom
dCikj = -4*(-2*rij2*a*a + rij4*b + a*a*b)/denom
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine dCfunc2(rij2,rik2,rjk2,dCikj1,dCikj2)
c Inputs: rij,rij2,rik2,rjk2
c Outputs: dCikj1 = derivative of Cikj w.r.t. rik
c dCikj2 = derivative of Cikj w.r.t. rjk
implicit none
real*8 rij2,rik2,rjk2,dCikj1,dCikj2
real*8 rij4,rik4,rjk4,a,b,denom
rij4 = rij2*rij2
rik4 = rik2*rik2
rjk4 = rjk2*rjk2
a = rik2-rjk2
b = rik2+rjk2
denom = rij4 - a*a
denom = denom*denom
dCikj1 = 4*rij2*(rij4 + rik4 + 2*rik2*rjk2 - 3*rjk4 - 2*rij2*a)/
$ denom
dCikj2 = 4*rij2*(rij4 - 3*rik4 + 2*rik2*rjk2 + rjk4 + 2*rij2*a)/
$ denom
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|