File: meam_force.F

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (608 lines) | stat: -rw-r--r-- 23,393 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
c     Extern "C" declaration has the form:
c
c  void meam_force_(int *, int *, int *, double *, int *, int *, int *, double *,
c		 int *, int *, int *, int *, double *, double *,
c		 double *, double *, double *, double *, double *, double *,
c		 double *, double *, double *, double *, double *, double *,
c		 double *, double *, double *, double *, double *, double *, int *);
c
c     Call from pair_meam.cpp has the form:
c
c    meam_force_(&i,&nmax,&eflag_either,&eflag_global,&eflag_atom,&vflag_atom,
c              &eng_vdwl,eatom,&ntype,type,fmap,&x[0][0],
c	       &numneigh[i],firstneigh[i],&numneigh_full[i],firstneigh_full[i],
c	       &scrfcn[offset],&dscrfcn[offset],&fcpair[offset],
c	       dgamma1,dgamma2,dgamma3,rho0,rho1,rho2,rho3,frhop,
c	       &arho1[0][0],&arho2[0][0],arho2b,&arho3[0][0],&arho3b[0][0],
c	       &t_ave[0][0],&tsq_ave[0][0],&f[0][0],&vatom[0][0],&errorflag);
c

      subroutine meam_force(i, nmax,
     $     eflag_either, eflag_global, eflag_atom, vflag_atom,
     $     eng_vdwl, eatom, ntype, type, fmap, x,
     $     numneigh, firstneigh, numneigh_full, firstneigh_full,
     $     scrfcn, dscrfcn, fcpair,
     $     dGamma1, dGamma2, dGamma3, rho0, rho1, rho2, rho3, fp,
     $     Arho1, Arho2, Arho2b, Arho3, Arho3b, t_ave, tsq_ave, f,
     $     vatom, errorflag)

      use meam_data
      implicit none

      integer eflag_either, eflag_global, eflag_atom, vflag_atom
      integer nmax, ntype, type, fmap
      real*8  eng_vdwl, eatom, x
      integer numneigh, firstneigh, numneigh_full, firstneigh_full
      real*8  scrfcn, dscrfcn, fcpair
      real*8  dGamma1, dGamma2, dGamma3
      real*8  rho0, rho1, rho2, rho3, fp
      real*8  Arho1, Arho2, Arho2b
      real*8  Arho3, Arho3b
      real*8  t_ave, tsq_ave, f, vatom
      integer errorflag

      dimension eatom(nmax)
      dimension type(nmax), fmap(ntype)
      dimension x(3,nmax)
      dimension firstneigh(numneigh), firstneigh_full(numneigh_full)
      dimension scrfcn(numneigh), dscrfcn(numneigh), fcpair(numneigh)
      dimension dGamma1(nmax), dGamma2(nmax), dGamma3(nmax)
      dimension rho0(nmax), rho1(nmax), rho2(nmax), rho3(nmax), fp(nmax)
      dimension Arho1(3,nmax), Arho2(6,nmax), Arho2b(nmax)
      dimension Arho3(10,nmax), Arho3b(3,nmax)
      dimension t_ave(3,nmax), tsq_ave(3,nmax), f(3,nmax), vatom(6,nmax)

      integer i,j,jn,k,kn,kk,m,n,p,q
      integer nv2,nv3,elti,eltj,eltk,ind
      real*8 xitmp,yitmp,zitmp,delij(3),delref(3),rij2,rij,rij3
      real*8 delik(3),deljk(3),v(6),fi(3),fj(3)
      real*8 Eu,astar,astarp,third,sixth
      real*8 pp,phiforce,dUdrij,dUdsij,dUdrijm(3),force,forcem
      real*8 B,r,recip,phi,phip,rhop,a
      real*8 sij,fcij,dfcij,ds(3)
      real*8 a0,a1,a1i,a1j,a2,a2i,a2j
      real*8 a3i,a3j,a3i1,a3i2,a3j1,a3j2
      real*8 G,dG,Gbar,dGbar,gam,shpi(3),shpj(3),Z,denom
      real*8 ai,aj,ro0i,ro0j,invrei,invrej
      real*8 b0,rhoa0j,drhoa0j,rhoa0i,drhoa0i
      real*8 b1,rhoa1j,drhoa1j,rhoa1i,drhoa1i
      real*8 b2,rhoa2j,drhoa2j,rhoa2i,drhoa2i
      real*8 a3,a3a,b3,rhoa3j,drhoa3j,rhoa3i,drhoa3i
      real*8 drho0dr1,drho0dr2,drho0ds1,drho0ds2
      real*8 drho1dr1,drho1dr2,drho1ds1,drho1ds2
      real*8 drho1drm1(3),drho1drm2(3)
      real*8 drho2dr1,drho2dr2,drho2ds1,drho2ds2
      real*8 drho2drm1(3),drho2drm2(3)
      real*8 drho3dr1,drho3dr2,drho3ds1,drho3ds2
      real*8 drho3drm1(3),drho3drm2(3)
      real*8 dt1dr1,dt1dr2,dt1ds1,dt1ds2
      real*8 dt2dr1,dt2dr2,dt2ds1,dt2ds2
      real*8 dt3dr1,dt3dr2,dt3ds1,dt3ds2
      real*8 drhodr1,drhodr2,drhods1,drhods2,drhodrm1(3),drhodrm2(3)
      real*8 arg,arg1,arg2
      real*8 arg1i1,arg1j1,arg1i2,arg1j2,arg2i2,arg2j2
      real*8 arg1i3,arg1j3,arg2i3,arg2j3,arg3i3,arg3j3
      real*8 dsij1,dsij2,force1,force2
      real*8 t1i,t2i,t3i,t1j,t2j,t3j

      errorflag = 0
      third = 1.0/3.0
      sixth = 1.0/6.0

c     Compute forces atom i

      elti = fmap(type(i))

      if (elti.gt.0) then
        xitmp = x(1,i)
        yitmp = x(2,i)
        zitmp = x(3,i)

c     Treat each pair
        do jn = 1,numneigh

          j = firstneigh(jn)
          eltj = fmap(type(j))

          if (scrfcn(jn).ne.0.d0.and.eltj.gt.0) then

            sij = scrfcn(jn)*fcpair(jn)
            delij(1) = x(1,j) - xitmp
            delij(2) = x(2,j) - yitmp
            delij(3) = x(3,j) - zitmp
            rij2 = delij(1)*delij(1) + delij(2)*delij(2)
     $           + delij(3)*delij(3)
            if (rij2.lt.cutforcesq) then
              rij = sqrt(rij2)
              r = rij

c     Compute phi and phip
              ind = eltind(elti,eltj)
              pp = rij*rdrar + 1.0D0
              kk = pp
              kk = min(kk,nrar-1)
              pp = pp - kk
              pp = min(pp,1.0D0)
              phi = ((phirar3(kk,ind)*pp + phirar2(kk,ind))*pp
     $             + phirar1(kk,ind))*pp + phirar(kk,ind)
              phip = (phirar6(kk,ind)*pp + phirar5(kk,ind))*pp
     $             + phirar4(kk,ind)
              recip = 1.0d0/r

              if (eflag_either.ne.0) then
                if (eflag_global.ne.0) eng_vdwl = eng_vdwl + phi*sij
                if (eflag_atom.ne.0) then
                  eatom(i) = eatom(i) + 0.5*phi*sij
                  eatom(j) = eatom(j) + 0.5*phi*sij
                endif
              endif

c     write(1,*) "force_meamf: phi: ",phi
c     write(1,*) "force_meamf: phip: ",phip

c     Compute pair densities and derivatives
              invrei = 1.d0/re_meam(elti,elti)
              ai = rij*invrei - 1.d0
              ro0i = rho0_meam(elti)
              rhoa0i = ro0i*fm_exp(-beta0_meam(elti)*ai)
              drhoa0i = -beta0_meam(elti)*invrei*rhoa0i
              rhoa1i = ro0i*fm_exp(-beta1_meam(elti)*ai)
              drhoa1i = -beta1_meam(elti)*invrei*rhoa1i
              rhoa2i = ro0i*fm_exp(-beta2_meam(elti)*ai)
              drhoa2i = -beta2_meam(elti)*invrei*rhoa2i
              rhoa3i = ro0i*fm_exp(-beta3_meam(elti)*ai)
              drhoa3i = -beta3_meam(elti)*invrei*rhoa3i

              if (elti.ne.eltj) then
                invrej = 1.d0/re_meam(eltj,eltj)
                aj = rij*invrej - 1.d0
                ro0j = rho0_meam(eltj)
                rhoa0j = ro0j*fm_exp(-beta0_meam(eltj)*aj)
                drhoa0j = -beta0_meam(eltj)*invrej*rhoa0j
                rhoa1j = ro0j*fm_exp(-beta1_meam(eltj)*aj)
                drhoa1j = -beta1_meam(eltj)*invrej*rhoa1j
                rhoa2j = ro0j*fm_exp(-beta2_meam(eltj)*aj)
                drhoa2j = -beta2_meam(eltj)*invrej*rhoa2j
                rhoa3j = ro0j*fm_exp(-beta3_meam(eltj)*aj)
                drhoa3j = -beta3_meam(eltj)*invrej*rhoa3j
              else
                rhoa0j = rhoa0i
                drhoa0j = drhoa0i
                rhoa1j = rhoa1i
                drhoa1j = drhoa1i
                rhoa2j = rhoa2i
                drhoa2j = drhoa2i
                rhoa3j = rhoa3i
                drhoa3j = drhoa3i
              endif

              if (ialloy.eq.1) then
                rhoa1j = rhoa1j * t1_meam(eltj)
                rhoa2j = rhoa2j * t2_meam(eltj)
                rhoa3j = rhoa3j * t3_meam(eltj)
                rhoa1i = rhoa1i * t1_meam(elti)
                rhoa2i = rhoa2i * t2_meam(elti)
                rhoa3i = rhoa3i * t3_meam(elti)
                drhoa1j = drhoa1j * t1_meam(eltj)
                drhoa2j = drhoa2j * t2_meam(eltj)
                drhoa3j = drhoa3j * t3_meam(eltj)
                drhoa1i = drhoa1i * t1_meam(elti)
                drhoa2i = drhoa2i * t2_meam(elti)
                drhoa3i = drhoa3i * t3_meam(elti)
              endif

              nv2 = 1
              nv3 = 1
              arg1i1 = 0.d0
              arg1j1 = 0.d0
              arg1i2 = 0.d0
              arg1j2 = 0.d0
              arg1i3 = 0.d0
              arg1j3 = 0.d0
              arg3i3 = 0.d0
              arg3j3 = 0.d0
              do n = 1,3
                do p = n,3
                  do q = p,3
                    arg = delij(n)*delij(p)*delij(q)*v3D(nv3)
                    arg1i3 = arg1i3 + Arho3(nv3,i)*arg
                    arg1j3 = arg1j3 - Arho3(nv3,j)*arg
                    nv3 = nv3+1
                  enddo
                  arg = delij(n)*delij(p)*v2D(nv2)
                  arg1i2 = arg1i2 + Arho2(nv2,i)*arg
                  arg1j2 = arg1j2 + Arho2(nv2,j)*arg
                  nv2 = nv2+1
                enddo
                arg1i1 = arg1i1 + Arho1(n,i)*delij(n)
                arg1j1 = arg1j1 - Arho1(n,j)*delij(n)
                arg3i3 = arg3i3 + Arho3b(n,i)*delij(n)
                arg3j3 = arg3j3 - Arho3b(n,j)*delij(n)
              enddo

c     rho0 terms
              drho0dr1 = drhoa0j * sij
              drho0dr2 = drhoa0i * sij

c     rho1 terms
              a1 = 2*sij/rij
              drho1dr1 = a1*(drhoa1j-rhoa1j/rij)*arg1i1
              drho1dr2 = a1*(drhoa1i-rhoa1i/rij)*arg1j1
              a1 = 2.d0*sij/rij
              do m = 1,3
                drho1drm1(m) = a1*rhoa1j*Arho1(m,i)
                drho1drm2(m) = -a1*rhoa1i*Arho1(m,j)
              enddo

c     rho2 terms
              a2 = 2*sij/rij2
              drho2dr1 = a2*(drhoa2j - 2*rhoa2j/rij)*arg1i2
     $             - 2.d0/3.d0*Arho2b(i)*drhoa2j*sij
              drho2dr2 = a2*(drhoa2i - 2*rhoa2i/rij)*arg1j2
     $             - 2.d0/3.d0*Arho2b(j)*drhoa2i*sij
              a2 = 4*sij/rij2
              do m = 1,3
                drho2drm1(m) = 0.d0
                drho2drm2(m) = 0.d0
                do n = 1,3
                  drho2drm1(m) = drho2drm1(m)
     $                 + Arho2(vind2D(m,n),i)*delij(n)
                  drho2drm2(m) = drho2drm2(m)
     $                 - Arho2(vind2D(m,n),j)*delij(n)
                enddo
                drho2drm1(m) = a2*rhoa2j*drho2drm1(m)
                drho2drm2(m) = -a2*rhoa2i*drho2drm2(m)
              enddo

c     rho3 terms
              rij3 = rij*rij2
              a3 = 2*sij/rij3
              a3a = 6.d0/5.d0*sij/rij
              drho3dr1 = a3*(drhoa3j - 3*rhoa3j/rij)*arg1i3
     $             - a3a*(drhoa3j - rhoa3j/rij)*arg3i3
              drho3dr2 = a3*(drhoa3i - 3*rhoa3i/rij)*arg1j3
     $             - a3a*(drhoa3i - rhoa3i/rij)*arg3j3
              a3 = 6*sij/rij3
              a3a = 6*sij/(5*rij)
              do m = 1,3
                drho3drm1(m) = 0.d0
                drho3drm2(m) = 0.d0
                nv2 = 1
                do n = 1,3
                  do p = n,3
                    arg = delij(n)*delij(p)*v2D(nv2)
                    drho3drm1(m) = drho3drm1(m)
     $                   + Arho3(vind3D(m,n,p),i)*arg
                    drho3drm2(m) = drho3drm2(m)
     $                   + Arho3(vind3D(m,n,p),j)*arg
                    nv2 = nv2 + 1
                  enddo
                enddo
                drho3drm1(m) = (a3*drho3drm1(m) - a3a*Arho3b(m,i))
     $               *rhoa3j
                drho3drm2(m) = (-a3*drho3drm2(m) + a3a*Arho3b(m,j))
     $               *rhoa3i
              enddo

c     Compute derivatives of weighting functions t wrt rij
              t1i = t_ave(1,i)
              t2i = t_ave(2,i)
              t3i = t_ave(3,i)
              t1j = t_ave(1,j)
              t2j = t_ave(2,j)
              t3j = t_ave(3,j)

              if (ialloy.eq.1) then

                a1i = 0.d0
                a1j = 0.d0
                a2i = 0.d0
                a2j = 0.d0
                a3i = 0.d0
                a3j = 0.d0
                if ( tsq_ave(1,i) .ne. 0.d0 ) then
                  a1i = drhoa0j*sij/tsq_ave(1,i)
                endif
                if ( tsq_ave(1,j) .ne. 0.d0 ) then
                  a1j = drhoa0i*sij/tsq_ave(1,j)
                endif
                if ( tsq_ave(2,i) .ne. 0.d0 ) then
                  a2i = drhoa0j*sij/tsq_ave(2,i)
                endif
                if ( tsq_ave(2,j) .ne. 0.d0 ) then
                  a2j = drhoa0i*sij/tsq_ave(2,j)
                endif
                if ( tsq_ave(3,i) .ne. 0.d0 ) then
                  a3i = drhoa0j*sij/tsq_ave(3,i)
                endif
                if ( tsq_ave(3,j) .ne. 0.d0 ) then
                  a3j = drhoa0i*sij/tsq_ave(3,j)
                endif

                dt1dr1 = a1i*(t1_meam(eltj)-t1i*t1_meam(eltj)**2)
                dt1dr2 = a1j*(t1_meam(elti)-t1j*t1_meam(elti)**2)
                dt2dr1 = a2i*(t2_meam(eltj)-t2i*t2_meam(eltj)**2)
                dt2dr2 = a2j*(t2_meam(elti)-t2j*t2_meam(elti)**2)
                dt3dr1 = a3i*(t3_meam(eltj)-t3i*t3_meam(eltj)**2)
                dt3dr2 = a3j*(t3_meam(elti)-t3j*t3_meam(elti)**2)

              else if (ialloy.eq.2) then

                dt1dr1 = 0.d0
                dt1dr2 = 0.d0
                dt2dr1 = 0.d0
                dt2dr2 = 0.d0
                dt3dr1 = 0.d0
                dt3dr2 = 0.d0

              else

                ai = 0.d0
                if( rho0(i) .ne. 0.d0 ) then
                  ai = drhoa0j*sij/rho0(i)
                end if
                aj = 0.d0
                if( rho0(j) .ne. 0.d0 ) then
                  aj = drhoa0i*sij/rho0(j)
                end if

                dt1dr1 = ai*(t1_meam(eltj)-t1i)
                dt1dr2 = aj*(t1_meam(elti)-t1j)
                dt2dr1 = ai*(t2_meam(eltj)-t2i)
                dt2dr2 = aj*(t2_meam(elti)-t2j)
                dt3dr1 = ai*(t3_meam(eltj)-t3i)
                dt3dr2 = aj*(t3_meam(elti)-t3j)

              endif

c     Compute derivatives of total density wrt rij, sij and rij(3)
              call get_shpfcn(shpi,lattce_meam(elti,elti))
              call get_shpfcn(shpj,lattce_meam(eltj,eltj))
              drhodr1 = dGamma1(i)*drho0dr1
     $             + dGamma2(i)*
     $             (dt1dr1*rho1(i)+t1i*drho1dr1
     $             + dt2dr1*rho2(i)+t2i*drho2dr1
     $             + dt3dr1*rho3(i)+t3i*drho3dr1)
     $             - dGamma3(i)*
     $             (shpi(1)*dt1dr1+shpi(2)*dt2dr1+shpi(3)*dt3dr1)
              drhodr2 = dGamma1(j)*drho0dr2
     $             + dGamma2(j)*
     $             (dt1dr2*rho1(j)+t1j*drho1dr2
     $             + dt2dr2*rho2(j)+t2j*drho2dr2
     $             + dt3dr2*rho3(j)+t3j*drho3dr2)
     $             - dGamma3(j)*
     $             (shpj(1)*dt1dr2+shpj(2)*dt2dr2+shpj(3)*dt3dr2)
              do m = 1,3
                drhodrm1(m) = 0.d0
                drhodrm2(m) = 0.d0
                drhodrm1(m) = dGamma2(i)*
     $               (t1i*drho1drm1(m)
     $               + t2i*drho2drm1(m)
     $               + t3i*drho3drm1(m))
                drhodrm2(m) = dGamma2(j)*
     $               (t1j*drho1drm2(m)
     $               + t2j*drho2drm2(m)
     $               + t3j*drho3drm2(m))
              enddo

c     Compute derivatives wrt sij, but only if necessary
              if (dscrfcn(jn).ne.0.d0) then
                drho0ds1 = rhoa0j
                drho0ds2 = rhoa0i
                a1 = 2.d0/rij
                drho1ds1 = a1*rhoa1j*arg1i1
                drho1ds2 = a1*rhoa1i*arg1j1
                a2 = 2.d0/rij2
                drho2ds1 = a2*rhoa2j*arg1i2
     $               - 2.d0/3.d0*Arho2b(i)*rhoa2j
                drho2ds2 = a2*rhoa2i*arg1j2
     $               - 2.d0/3.d0*Arho2b(j)*rhoa2i
                a3 = 2.d0/rij3
                a3a = 6.d0/(5.d0*rij)
                drho3ds1 = a3*rhoa3j*arg1i3 - a3a*rhoa3j*arg3i3
                drho3ds2 = a3*rhoa3i*arg1j3 - a3a*rhoa3i*arg3j3

                if (ialloy.eq.1) then

                  a1i = 0.d0
                  a1j = 0.d0
                  a2i = 0.d0
                  a2j = 0.d0
                  a3i = 0.d0
                  a3j = 0.d0
                  if ( tsq_ave(1,i) .ne. 0.d0 ) then
                    a1i = rhoa0j/tsq_ave(1,i)
                  endif
                  if ( tsq_ave(1,j) .ne. 0.d0 ) then
                    a1j = rhoa0i/tsq_ave(1,j)
                  endif
                  if ( tsq_ave(2,i) .ne. 0.d0 ) then
                    a2i = rhoa0j/tsq_ave(2,i)
                  endif
                  if ( tsq_ave(2,j) .ne. 0.d0 ) then
                    a2j = rhoa0i/tsq_ave(2,j)
                  endif
                  if ( tsq_ave(3,i) .ne. 0.d0 ) then
                    a3i = rhoa0j/tsq_ave(3,i)
                  endif
                  if ( tsq_ave(3,j) .ne. 0.d0 ) then
                    a3j = rhoa0i/tsq_ave(3,j)
                  endif

                  dt1ds1 = a1i*(t1_meam(eltj)-t1i*t1_meam(eltj)**2)
                  dt1ds2 = a1j*(t1_meam(elti)-t1j*t1_meam(elti)**2)
                  dt2ds1 = a2i*(t2_meam(eltj)-t2i*t2_meam(eltj)**2)
                  dt2ds2 = a2j*(t2_meam(elti)-t2j*t2_meam(elti)**2)
                  dt3ds1 = a3i*(t3_meam(eltj)-t3i*t3_meam(eltj)**2)
                  dt3ds2 = a3j*(t3_meam(elti)-t3j*t3_meam(elti)**2)

                else if (ialloy.eq.2) then

                  dt1ds1 = 0.d0
                  dt1ds2 = 0.d0
                  dt2ds1 = 0.d0
                  dt2ds2 = 0.d0
                  dt3ds1 = 0.d0
                  dt3ds2 = 0.d0

                else

                  ai = 0.d0
                  if( rho0(i) .ne. 0.d0 ) then
                    ai = rhoa0j/rho0(i)
                  end if
                  aj = 0.d0
                  if( rho0(j) .ne. 0.d0 ) then
                    aj = rhoa0i/rho0(j)
                  end if

                  dt1ds1 = ai*(t1_meam(eltj)-t1i)
                  dt1ds2 = aj*(t1_meam(elti)-t1j)
                  dt2ds1 = ai*(t2_meam(eltj)-t2i)
                  dt2ds2 = aj*(t2_meam(elti)-t2j)
                  dt3ds1 = ai*(t3_meam(eltj)-t3i)
                  dt3ds2 = aj*(t3_meam(elti)-t3j)

                endif

                drhods1 = dGamma1(i)*drho0ds1
     $               + dGamma2(i)*
     $               (dt1ds1*rho1(i)+t1i*drho1ds1
     $               + dt2ds1*rho2(i)+t2i*drho2ds1
     $               + dt3ds1*rho3(i)+t3i*drho3ds1)
     $               - dGamma3(i)*
     $               (shpi(1)*dt1ds1+shpi(2)*dt2ds1+shpi(3)*dt3ds1)
                drhods2 = dGamma1(j)*drho0ds2
     $               + dGamma2(j)*
     $               (dt1ds2*rho1(j)+t1j*drho1ds2
     $               + dt2ds2*rho2(j)+t2j*drho2ds2
     $               + dt3ds2*rho3(j)+t3j*drho3ds2)
     $               - dGamma3(j)*
     $               (shpj(1)*dt1ds2+shpj(2)*dt2ds2+shpj(3)*dt3ds2)
              endif

c     Compute derivatives of energy wrt rij, sij and rij(3)
              dUdrij = phip*sij
     $             + fp(i)*drhodr1 + fp(j)*drhodr2
              dUdsij = 0.d0
              if (dscrfcn(jn).ne.0.d0) then
                dUdsij = phi
     $               + fp(i)*drhods1 + fp(j)*drhods2
              endif
              do m = 1,3
                dUdrijm(m) = fp(i)*drhodrm1(m) + fp(j)*drhodrm2(m)
              enddo

c     Add the part of the force due to dUdrij and dUdsij

              force = dUdrij*recip + dUdsij*dscrfcn(jn)
              do m = 1,3
                forcem = delij(m)*force + dUdrijm(m)
                f(m,i) = f(m,i) + forcem
                f(m,j) = f(m,j) - forcem
              enddo

c     Tabulate per-atom virial as symmetrized stress tensor

              if (vflag_atom.ne.0) then
                fi(1) = delij(1)*force + dUdrijm(1)
                fi(2) = delij(2)*force + dUdrijm(2)
                fi(3) = delij(3)*force + dUdrijm(3)
                v(1) = -0.5 * (delij(1) * fi(1))
                v(2) = -0.5 * (delij(2) * fi(2))
                v(3) = -0.5 * (delij(3) * fi(3))
                v(4) = -0.25 * (delij(1)*fi(2) + delij(2)*fi(1))
                v(5) = -0.25 * (delij(1)*fi(3) + delij(3)*fi(1))
                v(6) = -0.25 * (delij(2)*fi(3) + delij(3)*fi(2))

                vatom(1,i) = vatom(1,i) + v(1)
                vatom(2,i) = vatom(2,i) + v(2)
                vatom(3,i) = vatom(3,i) + v(3)
                vatom(4,i) = vatom(4,i) + v(4)
                vatom(5,i) = vatom(5,i) + v(5)
                vatom(6,i) = vatom(6,i) + v(6)
                vatom(1,j) = vatom(1,j) + v(1)
                vatom(2,j) = vatom(2,j) + v(2)
                vatom(3,j) = vatom(3,j) + v(3)
                vatom(4,j) = vatom(4,j) + v(4)
                vatom(5,j) = vatom(5,j) + v(5)
                vatom(6,j) = vatom(6,j) + v(6)
              endif

c     Now compute forces on other atoms k due to change in sij

              if (sij.eq.0.d0.or.sij.eq.1.d0) goto 100
              do kn = 1,numneigh_full
                k = firstneigh_full(kn)
                eltk = fmap(type(k))
                if (k.ne.j.and.eltk.gt.0) then
                  call dsij(i,j,k,jn,nmax,numneigh,rij2,dsij1,dsij2,
     $                 ntype,type,fmap,x,scrfcn,fcpair)
                  if (dsij1.ne.0.d0.or.dsij2.ne.0.d0) then
                    force1 = dUdsij*dsij1
                    force2 = dUdsij*dsij2
                    do m = 1,3
                      delik(m) = x(m,k) - x(m,i)
                      deljk(m) = x(m,k) - x(m,j)
                    enddo
                    do m = 1,3
                      f(m,i) = f(m,i) + force1*delik(m)
                      f(m,j) = f(m,j) + force2*deljk(m)
                      f(m,k) = f(m,k) - force1*delik(m)
     $                     - force2*deljk(m)
                    enddo

c     Tabulate per-atom virial as symmetrized stress tensor

                    if (vflag_atom.ne.0) then
                      fi(1) = force1*delik(1)
                      fi(2) = force1*delik(2)
                      fi(3) = force1*delik(3)
                      fj(1) = force2*deljk(1)
                      fj(2) = force2*deljk(2)
                      fj(3) = force2*deljk(3)
                      v(1) = -third * (delik(1)*fi(1) + deljk(1)*fj(1))
                      v(2) = -third * (delik(2)*fi(2) + deljk(2)*fj(2))
                      v(3) = -third * (delik(3)*fi(3) + deljk(3)*fj(3))
                      v(4) = -sixth * (delik(1)*fi(2) + deljk(1)*fj(2) +
     $                     delik(2)*fi(1) + deljk(2)*fj(1))
                      v(5) = -sixth * (delik(1)*fi(3) + deljk(1)*fj(3) +
     $                     delik(3)*fi(1) + deljk(3)*fj(1))
                      v(6) = -sixth * (delik(2)*fi(3) + deljk(2)*fj(3) +
     $                      delik(3)*fi(2) + deljk(3)*fj(2))

                      vatom(1,i) = vatom(1,i) + v(1)
                      vatom(2,i) = vatom(2,i) + v(2)
                      vatom(3,i) = vatom(3,i) + v(3)
                      vatom(4,i) = vatom(4,i) + v(4)
                      vatom(5,i) = vatom(5,i) + v(5)
                      vatom(6,i) = vatom(6,i) + v(6)
                      vatom(1,j) = vatom(1,j) + v(1)
                      vatom(2,j) = vatom(2,j) + v(2)
                      vatom(3,j) = vatom(3,j) + v(3)
                      vatom(4,j) = vatom(4,j) + v(4)
                      vatom(5,j) = vatom(5,j) + v(5)
                      vatom(6,j) = vatom(6,j) + v(6)
                      vatom(1,k) = vatom(1,k) + v(1)
                      vatom(2,k) = vatom(2,k) + v(2)
                      vatom(3,k) = vatom(3,k) + v(3)
                      vatom(4,k) = vatom(4,k) + v(4)
                      vatom(5,k) = vatom(5,k) + v(5)
                      vatom(6,k) = vatom(6,k) + v(6)
                    endif

                  endif
                endif
c     end of k loop
              enddo
            endif
 100        continue
          endif
c     end of j loop
        enddo

c     else if elti=0, this is not a meam atom
      endif

      return
      end