1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
|
c Declaration in pair_meam.h:
c
c void meam_setup_done(double *)
c
c Call from pair_meam.cpp:
c
c meam_setup_done(&cutmax)
c
subroutine meam_setup_done(cutmax)
use meam_data
implicit none
real*8 cutmax
integer nv2, nv3, m, n, p
c Force cutoff
cutforce = rc_meam
cutforcesq = cutforce*cutforce
c Pass cutoff back to calling program
cutmax = cutforce
c Augment t1 term
t1_meam(:) = t1_meam(:) + augt1 * 3.d0/5.d0 * t3_meam(:)
c Compute off-diagonal alloy parameters
call alloyparams
c indices and factors for Voight notation
nv2 = 1
nv3 = 1
do m = 1,3
do n = m,3
vind2D(m,n) = nv2
vind2D(n,m) = nv2
nv2 = nv2+1
do p = n,3
vind3D(m,n,p) = nv3
vind3D(m,p,n) = nv3
vind3D(n,m,p) = nv3
vind3D(n,p,m) = nv3
vind3D(p,m,n) = nv3
vind3D(p,n,m) = nv3
nv3 = nv3+1
enddo
enddo
enddo
v2D(1) = 1
v2D(2) = 2
v2D(3) = 2
v2D(4) = 1
v2D(5) = 2
v2D(6) = 1
v3D(1) = 1
v3D(2) = 3
v3D(3) = 3
v3D(4) = 3
v3D(5) = 6
v3D(6) = 3
v3D(7) = 1
v3D(8) = 3
v3D(9) = 3
v3D(10) = 1
nv2 = 1
do m = 1,neltypes
do n = m,neltypes
eltind(m,n) = nv2
eltind(n,m) = nv2
nv2 = nv2+1
enddo
enddo
c Compute background densities for reference structure
call compute_reference_density
c Compute pair potentials and setup arrays for interpolation
nr = 1000
dr = 1.1*rc_meam/nr
call compute_pair_meam
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Fill off-diagonal alloy parameters
subroutine alloyparams
use meam_data
implicit none
integer i,j,k
real*8 eb
c Loop over pairs
do i = 1,neltypes
do j = 1,neltypes
c Treat off-diagonal pairs
c If i>j, set all equal to i<j case (which has aready been set,
c here or in the input file)
if (i.gt.j) then
re_meam(i,j) = re_meam(j,i)
Ec_meam(i,j) = Ec_meam(j,i)
alpha_meam(i,j) = alpha_meam(j,i)
lattce_meam(i,j) = lattce_meam(j,i)
nn2_meam(i,j) = nn2_meam(j,i)
c If i<j and term is unset, use default values (e.g. mean of i-i and j-j)
else if (j.gt.i) then
if (Ec_meam(i,j).eq.0.d0) then
if (lattce_meam(i,j).eq.'l12') then
Ec_meam(i,j) = (3*Ec_meam(i,i)+Ec_meam(j,j))/4.d0
$ - delta_meam(i,j)
else if (lattce_meam(i,j).eq.'c11') then
if (lattce_meam(i,i).eq.'dia') then
Ec_meam(i,j) = (2*Ec_meam(i,i)+Ec_meam(j,j))/3.d0
$ - delta_meam(i,j)
else
Ec_meam(i,j) = (Ec_meam(i,i)+2*Ec_meam(j,j))/3.d0
$ - delta_meam(i,j)
endif
else
Ec_meam(i,j) = (Ec_meam(i,i)+Ec_meam(j,j))/2.d0
$ - delta_meam(i,j)
endif
endif
if (alpha_meam(i,j).eq.0.d0) then
alpha_meam(i,j) = (alpha_meam(i,i)+alpha_meam(j,j))/2.d0
endif
if (re_meam(i,j).eq.0.d0) then
re_meam(i,j) = (re_meam(i,i)+re_meam(j,j))/2.d0
endif
endif
enddo
enddo
c Cmin(i,k,j) is symmetric in i-j, but not k. For all triplets
c where i>j, set equal to the i<j element. Likewise for Cmax.
do i = 2,neltypes
do j = 1,i-1
do k = 1,neltypes
Cmin_meam(i,j,k) = Cmin_meam(j,i,k)
Cmax_meam(i,j,k) = Cmax_meam(j,i,k)
enddo
enddo
enddo
c ebound gives the squared distance such that, for rik2 or rjk2>ebound,
c atom k definitely lies outside the screening function ellipse (so
c there is no need to calculate its effects). Here, compute it for all
c triplets (i,j,k) so that ebound(i,j) is the maximized over k
do i = 1,neltypes
do j = 1,neltypes
do k = 1,neltypes
eb = (Cmax_meam(i,j,k)*Cmax_meam(i,j,k))
$ /(4.d0*(Cmax_meam(i,j,k)-1.d0))
ebound_meam(i,j) = max(ebound_meam(i,j),eb)
enddo
enddo
enddo
return
end
c-----------------------------------------------------------------------
c compute MEAM pair potential for each pair of element types
c
subroutine compute_pair_meam
use meam_data
implicit none
real*8 r, temp
integer j,a,b,nv2
real*8 astar,frac,phizbl
integer n,nmax,Z1,Z2
real*8 arat,rarat,scrn,scrn2
real*8 phiaa,phibb,phitmp
real*8 C,s111,s112,s221,S11,S22
real*8, external :: phi_meam
real*8, external :: zbl
real*8, external :: compute_phi
c check for previously allocated arrays and free them
if(allocated(phir)) deallocate(phir)
if(allocated(phirar)) deallocate(phirar)
if(allocated(phirar1)) deallocate(phirar1)
if(allocated(phirar2)) deallocate(phirar2)
if(allocated(phirar3)) deallocate(phirar3)
if(allocated(phirar4)) deallocate(phirar4)
if(allocated(phirar5)) deallocate(phirar5)
if(allocated(phirar6)) deallocate(phirar6)
c allocate memory for array that defines the potential
allocate(phir(nr,(neltypes*(neltypes+1))/2))
c allocate coeff memory
allocate(phirar(nr,(neltypes*(neltypes+1))/2))
allocate(phirar1(nr,(neltypes*(neltypes+1))/2))
allocate(phirar2(nr,(neltypes*(neltypes+1))/2))
allocate(phirar3(nr,(neltypes*(neltypes+1))/2))
allocate(phirar4(nr,(neltypes*(neltypes+1))/2))
allocate(phirar5(nr,(neltypes*(neltypes+1))/2))
allocate(phirar6(nr,(neltypes*(neltypes+1))/2))
c loop over pairs of element types
nv2 = 0
do a = 1,neltypes
do b = a,neltypes
nv2 = nv2 + 1
c loop over r values and compute
do j = 1,nr
r = (j-1)*dr
phir(j,nv2) = phi_meam(r,a,b)
c if using second-nearest neighbor, solve recursive problem
c (see Lee and Baskes, PRB 62(13):8564 eqn.(21))
if (nn2_meam(a,b).eq.1) then
call get_Zij(Z1,lattce_meam(a,b))
call get_Zij2(Z2,arat,scrn,lattce_meam(a,b),
$ Cmin_meam(a,a,b),Cmax_meam(a,a,b))
c The B1, B2, and L12 cases with NN2 have a trick to them; we need to
c compute the contributions from second nearest neighbors, like a-a
c pairs, but need to include NN2 contributions to those pairs as
c well.
if (lattce_meam(a,b).eq.'b1'.or.
$ lattce_meam(a,b).eq.'b2'.or.
$ lattce_meam(a,b).eq.'l12'.or.
$ lattce_meam(a,b).eq.'dia') then
rarat = r*arat
c phi_aa
phiaa = phi_meam(rarat,a,a)
call get_Zij(Z1,lattce_meam(a,a))
call get_Zij2(Z2,arat,scrn,lattce_meam(a,a),
$ Cmin_meam(a,a,a),Cmax_meam(a,a,a))
nmax = 10
if (scrn.gt.0.0) then
do n = 1,nmax
phiaa = phiaa +
$ (-Z2*scrn/Z1)**n * phi_meam(rarat*arat**n,a,a)
enddo
endif
c phi_bb
phibb = phi_meam(rarat,b,b)
call get_Zij(Z1,lattce_meam(b,b))
call get_Zij2(Z2,arat,scrn,lattce_meam(b,b),
$ Cmin_meam(b,b,b),Cmax_meam(b,b,b))
nmax = 10
if (scrn.gt.0.0) then
do n = 1,nmax
phibb = phibb +
$ (-Z2*scrn/Z1)**n * phi_meam(rarat*arat**n,b,b)
enddo
endif
if (lattce_meam(a,b).eq.'b1'.
$ or.lattce_meam(a,b).eq.'b2'.
$ or.lattce_meam(a,b).eq.'dia') then
c Add contributions to the B1 or B2 potential
call get_Zij(Z1,lattce_meam(a,b))
call get_Zij2(Z2,arat,scrn,lattce_meam(a,b),
$ Cmin_meam(a,a,b),Cmax_meam(a,a,b))
phir(j,nv2) = phir(j,nv2) -
$ Z2*scrn/(2*Z1) * phiaa
call get_Zij2(Z2,arat,scrn2,lattce_meam(a,b),
$ Cmin_meam(b,b,a),Cmax_meam(b,b,a))
phir(j,nv2) = phir(j,nv2) -
$ Z2*scrn2/(2*Z1) * phibb
else if (lattce_meam(a,b).eq.'l12') then
c The L12 case has one last trick; we have to be careful to compute
c the correct screening between 2nd-neighbor pairs. 1-1
c second-neighbor pairs are screened by 2 type 1 atoms and two type
c 2 atoms. 2-2 second-neighbor pairs are screened by 4 type 1
c atoms.
C = 1.d0
call get_sijk(C,a,a,a,s111)
call get_sijk(C,a,a,b,s112)
call get_sijk(C,b,b,a,s221)
S11 = s111 * s111 * s112 * s112
S22 = s221**4
phir(j,nv2) = phir(j,nv2) -
$ 0.75*S11*phiaa - 0.25*S22*phibb
endif
else
nmax = 10
do n = 1,nmax
phir(j,nv2) = phir(j,nv2) +
$ (-Z2*scrn/Z1)**n * phi_meam(r*arat**n,a,b)
enddo
endif
endif
c For Zbl potential:
c if astar <= -3
c potential is zbl potential
c else if -3 < astar < -1
c potential is linear combination with zbl potential
c endif
if (zbl_meam(a,b).eq.1) then
astar = alpha_meam(a,b) * (r/re_meam(a,b) - 1.d0)
if (astar.le.-3.d0) then
phir(j,nv2) = zbl(r,ielt_meam(a),ielt_meam(b))
else if (astar.gt.-3.d0.and.astar.lt.-1.d0) then
call fcut(1-(astar+1.d0)/(-3.d0+1.d0),frac)
phizbl = zbl(r,ielt_meam(a),ielt_meam(b))
phir(j,nv2) = frac*phir(j,nv2) + (1-frac)*phizbl
endif
endif
enddo
c call interpolation
call interpolate_meam(nv2)
enddo
enddo
return
end
c----------------------------------------------------------------------c
c Compute MEAM pair potential for distance r, element types a and b
c
real*8 recursive function phi_meam(r,a,b)result(phi_m)
use meam_data
implicit none
integer a,b
real*8 r
real*8 a1,a2,a12
real*8 t11av,t21av,t31av,t12av,t22av,t32av
real*8 G1,G2,s1(3),s2(3),s12(3),rho0_1,rho0_2
real*8 Gam1,Gam2,Z1,Z2
real*8 rhobar1,rhobar2,F1,F2
real*8 rhoa01,rhoa11,rhoa21,rhoa31
real*8 rhoa02,rhoa12,rhoa22,rhoa32
real*8 rho01,rho11,rho21,rho31
real*8 rho02,rho12,rho22,rho32
real*8 scalfac,phiaa,phibb
real*8 Eu
real*8 arat,scrn,scrn2
integer Z12, errorflag
integer n,nmax,Z1nn,Z2nn
character*3 latta,lattb
real*8 rho_bkgd1, rho_bkgd2
real*8, external :: erose
c Equation numbers below refer to:
c I. Huang et.al., Modelling simul. Mater. Sci. Eng. 3:615
c get number of neighbors in the reference structure
c Nref(i,j) = # of i's neighbors of type j
call get_Zij(Z12,lattce_meam(a,b))
call get_densref(r,a,b,rho01,rho11,rho21,rho31,
$ rho02,rho12,rho22,rho32)
c if densities are too small, numerical problems may result; just return zero
if (rho01.le.1e-14.and.rho02.le.1e-14) then
phi_m = 0.0
return
endif
c calculate average weighting factors for the reference structure
if (lattce_meam(a,b).eq.'c11') then
if (ialloy.eq.2) then
t11av = t1_meam(a)
t12av = t1_meam(b)
t21av = t2_meam(a)
t22av = t2_meam(b)
t31av = t3_meam(a)
t32av = t3_meam(b)
else
scalfac = 1.0/(rho01+rho02)
t11av = scalfac*(t1_meam(a)*rho01 + t1_meam(b)*rho02)
t12av = t11av
t21av = scalfac*(t2_meam(a)*rho01 + t2_meam(b)*rho02)
t22av = t21av
t31av = scalfac*(t3_meam(a)*rho01 + t3_meam(b)*rho02)
t32av = t31av
endif
else
c average weighting factors for the reference structure, eqn. I.8
call get_tavref(t11av,t21av,t31av,t12av,t22av,t32av,
$ t1_meam(a),t2_meam(a),t3_meam(a),
$ t1_meam(b),t2_meam(b),t3_meam(b),
$ r,a,b,lattce_meam(a,b))
endif
c for c11b structure, calculate background electron densities
if (lattce_meam(a,b).eq.'c11') then
latta = lattce_meam(a,a)
if (latta.eq.'dia') then
rhobar1 = ((Z12/2)*(rho02+rho01))**2 +
$ t11av*(rho12-rho11)**2 +
$ t21av/6.0*(rho22+rho21)**2 +
$ 121.0/40.*t31av*(rho32-rho31)**2
rhobar1 = sqrt(rhobar1)
rhobar2 = (Z12*rho01)**2 + 2.0/3.0*t21av*rho21**2
rhobar2 = sqrt(rhobar2)
else
rhobar2 = ((Z12/2)*(rho01+rho02))**2 +
$ t12av*(rho11-rho12)**2 +
$ t22av/6.0*(rho21+rho22)**2 +
$ 121.0/40.*t32av*(rho31-rho32)**2
rhobar2 = sqrt(rhobar2)
rhobar1 = (Z12*rho02)**2 + 2.0/3.0*t22av*rho22**2
rhobar1 = sqrt(rhobar1)
endif
else
c for other structures, use formalism developed in Huang's paper
c
c composition-dependent scaling, equation I.7
c If using mixing rule for t, apply to reference structure; else
c use precomputed values
if (mix_ref_t.eq.1) then
Z1 = Z_meam(a)
Z2 = Z_meam(b)
if (ibar_meam(a).le.0) then
G1 = 1.d0
else
call get_shpfcn(s1,lattce_meam(a,a))
Gam1 = (s1(1)*t11av+s1(2)*t21av+s1(3)*t31av)/(Z1*Z1)
call G_gam(Gam1,ibar_meam(a),gsmooth_factor,G1,errorflag)
endif
if (ibar_meam(b).le.0) then
G2 = 1.d0
else
call get_shpfcn(s2,lattce_meam(b,b))
Gam2 = (s2(1)*t12av+s2(2)*t22av+s2(3)*t32av)/(Z2*Z2)
call G_gam(Gam2,ibar_meam(b),gsmooth_factor,G2,errorflag)
endif
rho0_1 = rho0_meam(a)*Z1*G1
rho0_2 = rho0_meam(b)*Z2*G2
endif
Gam1 = (t11av*rho11+t21av*rho21+t31av*rho31)
if (rho01 < 1.0d-14) then
Gam1 = 0.0d0
else
Gam1 = Gam1/(rho01*rho01)
endif
Gam2 = (t12av*rho12+t22av*rho22+t32av*rho32)
if (rho02 < 1.0d-14) then
Gam2 = 0.0d0
else
Gam2 = Gam2/(rho02*rho02)
endif
call G_gam(Gam1,ibar_meam(a),gsmooth_factor,G1,errorflag)
call G_gam(Gam2,ibar_meam(b),gsmooth_factor,G2,errorflag)
if (mix_ref_t.eq.1) then
rho_bkgd1 = rho0_1
rho_bkgd2 = rho0_2
else
if (bkgd_dyn.eq.1) then
rho_bkgd1 = rho0_meam(a)*Z_meam(a)
rho_bkgd2 = rho0_meam(b)*Z_meam(b)
else
rho_bkgd1 = rho_ref_meam(a)
rho_bkgd2 = rho_ref_meam(b)
endif
endif
rhobar1 = rho01/rho_bkgd1*G1
rhobar2 = rho02/rho_bkgd2*G2
endif
c compute embedding functions, eqn I.5
if (rhobar1.eq.0.d0) then
F1 = 0.d0
else
if (emb_lin_neg.eq.1 .and. rhobar1.le.0) then
F1 = -A_meam(a)*Ec_meam(a,a)*rhobar1
else
F1 = A_meam(a)*Ec_meam(a,a)*rhobar1*log(rhobar1)
endif
endif
if (rhobar2.eq.0.d0) then
F2 = 0.d0
else
if (emb_lin_neg.eq.1 .and. rhobar2.le.0) then
F2 = -A_meam(b)*Ec_meam(b,b)*rhobar2
else
F2 = A_meam(b)*Ec_meam(b,b)*rhobar2*log(rhobar2)
endif
endif
c compute Rose function, I.16
Eu = erose(r,re_meam(a,b),alpha_meam(a,b),
$ Ec_meam(a,b),repuls_meam(a,b),attrac_meam(a,b),erose_form)
c calculate the pair energy
if (lattce_meam(a,b).eq.'c11') then
latta = lattce_meam(a,a)
if (latta.eq.'dia') then
phiaa = phi_meam(r,a,a)
phi_m = (3*Eu - F2 - 2*F1 - 5*phiaa)/Z12
else
phibb = phi_meam(r,b,b)
phi_m = (3*Eu - F1 - 2*F2 - 5*phibb)/Z12
endif
else if (lattce_meam(a,b).eq.'l12') then
phiaa = phi_meam(r,a,a)
c account for second neighbor a-a potential here...
call get_Zij(Z1nn,lattce_meam(a,a))
call get_Zij2(Z2nn,arat,scrn,lattce_meam(a,a),
$ Cmin_meam(a,a,a),Cmax_meam(a,a,a))
nmax = 10
if (scrn.gt.0.0) then
do n = 1,nmax
phiaa = phiaa +
$ (-Z2nn*scrn/Z1nn)**n * phi_meam(r*arat**n,a,a)
enddo
endif
phi_m = Eu/3. - F1/4. - F2/12. - phiaa
else
c
c potential is computed from Rose function and embedding energy
phi_m = (2*Eu - F1 - F2)/Z12
c
endif
c if r = 0, just return 0
if (r.eq.0.d0) then
phi_m = 0.d0
endif
return
end
c----------------------------------------------------------------------c
c Compute background density for reference structure of each element
subroutine compute_reference_density
use meam_data
implicit none
integer a,Z,Z2,errorflag
real*8 gam,Gbar,shp(3)
real*8 rho0,rho0_2nn,arat,scrn
c loop over element types
do a = 1,neltypes
Z = Z_meam(a)
if (ibar_meam(a).le.0) then
Gbar = 1.d0
else
call get_shpfcn(shp,lattce_meam(a,a))
gam = (t1_meam(a)*shp(1)+t2_meam(a)*shp(2)
$ +t3_meam(a)*shp(3))/(Z*Z)
call G_gam(gam,ibar_meam(a),gsmooth_factor,
$ Gbar,errorflag)
endif
c The zeroth order density in the reference structure, with
c equilibrium spacing, is just the number of first neighbors times
c the rho0_meam coefficient...
rho0 = rho0_meam(a)*Z
c ...unless we have unscreened second neighbors, in which case we
c add on the contribution from those (accounting for partial
c screening)
if (nn2_meam(a,a).eq.1) then
call get_Zij2(Z2,arat,scrn,lattce_meam(a,a),
$ Cmin_meam(a,a,a),Cmax_meam(a,a,a))
rho0_2nn = rho0_meam(a)*fm_exp(-beta0_meam(a)*(arat-1))
rho0 = rho0 + Z2*rho0_2nn*scrn
endif
rho_ref_meam(a) = rho0*Gbar
enddo
return
end
c----------------------------------------------------------------------c
c Shape factors for various configurations
subroutine get_shpfcn(s,latt)
implicit none
real*8 s(3)
character*3 latt
if (latt.eq.'fcc'.or.latt.eq.'bcc'.
$ or.latt.eq.'b1'.or.latt.eq.'b2') then
s(1) = 0.d0
s(2) = 0.d0
s(3) = 0.d0
else if (latt.eq.'hcp') then
s(1) = 0.d0
s(2) = 0.d0
s(3) = 1.d0/3.d0
else if (latt.eq.'dia') then
s(1) = 0.d0
s(2) = 0.d0
s(3) = 32.d0/9.d0
else if (latt.eq.'dim') then
s(1) = 1.d0
s(2) = 2.d0/3.d0
c s(3) = 1.d0
s(3) = 0.4d0
else
s(1) = 0.0
c call error('Lattice not defined in get_shpfcn.')
endif
return
end
c------------------------------------------------------------------------------c
c Average weighting factors for the reference structure
subroutine get_tavref(t11av,t21av,t31av,t12av,t22av,t32av,
$ t11,t21,t31,t12,t22,t32,
$ r,a,b,latt)
use meam_data
implicit none
real*8 t11av,t21av,t31av,t12av,t22av,t32av
real*8 t11,t21,t31,t12,t22,t32,r
integer a,b
character*3 latt
real*8 rhoa01,rhoa02,a1,a2,rho01,rho02
c For ialloy = 2, no averaging is done
if (ialloy.eq.2) then
t11av = t11
t21av = t21
t31av = t31
t12av = t12
t22av = t22
t32av = t32
else
if (latt.eq.'fcc'.or.latt.eq.'bcc'.or.latt.eq.'dia'
$ .or.latt.eq.'hcp'.or.latt.eq.'b1'
$ .or.latt.eq.'dim'.or.latt.eq.'b2') then
c all neighbors are of the opposite type
t11av = t12
t21av = t22
t31av = t32
t12av = t11
t22av = t21
t32av = t31
else
a1 = r/re_meam(a,a) - 1.d0
a2 = r/re_meam(b,b) - 1.d0
rhoa01 = rho0_meam(a)*fm_exp(-beta0_meam(a)*a1)
rhoa02 = rho0_meam(b)*fm_exp(-beta0_meam(b)*a2)
if (latt.eq.'l12') then
rho01 = 8*rhoa01 + 4*rhoa02
t11av = (8*t11*rhoa01 + 4*t12*rhoa02)/rho01
t12av = t11
t21av = (8*t21*rhoa01 + 4*t22*rhoa02)/rho01
t22av = t21
t31av = (8*t31*rhoa01 + 4*t32*rhoa02)/rho01
t32av = t31
else
c call error('Lattice not defined in get_tavref.')
endif
endif
endif
return
end
c------------------------------------------------------------------------------c
c Number of neighbors for the reference structure
subroutine get_Zij(Zij,latt)
implicit none
integer Zij
character*3 latt
if (latt.eq.'fcc') then
Zij = 12
else if (latt.eq.'bcc') then
Zij = 8
else if (latt.eq.'hcp') then
Zij = 12
else if (latt.eq.'b1') then
Zij = 6
else if (latt.eq.'dia') then
Zij = 4
else if (latt.eq.'dim') then
Zij = 1
else if (latt.eq.'c11') then
Zij = 10
else if (latt.eq.'l12') then
Zij = 12
else if (latt.eq.'b2') then
Zij = 8
else
c call error('Lattice not defined in get_Zij.')
endif
return
end
c------------------------------------------------------------------------------c
c Zij2 = number of second neighbors, a = distance ratio R1/R2, and S = second
c neighbor screening function for lattice type "latt"
subroutine get_Zij2(Zij2,a,S,latt,cmin,cmax)
implicit none
integer Zij2
real*8 a,S,cmin,cmax
character*3 latt
real*8 rratio,C,x,sijk
integer numscr
if (latt.eq.'bcc') then
Zij2 = 6
a = 2.d0/sqrt(3.d0)
numscr = 4
else if (latt.eq.'fcc') then
Zij2 = 6
a = sqrt(2.d0)
numscr = 4
else if (latt.eq.'dia') then
Zij2 = 12
a = sqrt(8.d0/3.d0)
numscr = 1
if (cmin.lt.0.500001) then
c call error('can not do 2NN MEAM for dia')
endif
else if (latt.eq.'hcp') then
Zij2 = 6
a = sqrt(2.d0)
numscr = 4
else if (latt.eq.'b1') then
Zij2 = 12
a = sqrt(2.d0)
numscr = 2
else if (latt.eq.'l12') then
Zij2 = 6
a = sqrt(2.d0)
numscr = 4
else if (latt.eq.'b2') then
Zij2 = 6
a = 2.d0/sqrt(3.d0)
numscr = 4
else if (latt.eq.'dim') then
c this really shouldn't be allowed; make sure screening is zero
Zij2 = 0
a = 1
S = 0
return
else
c call error('Lattice not defined in get_Zij2.')
endif
c Compute screening for each first neighbor
C = 4.d0/(a*a) - 1.d0
x = (C-cmin)/(cmax-cmin)
call fcut(x,sijk)
c There are numscr first neighbors screening the second neighbors
S = sijk**numscr
return
end
c------------------------------------------------------------------------------c
subroutine get_sijk(C,i,j,k,sijk)
use meam_data
implicit none
real*8 C,sijk
integer i,j,k
real*8 x
x = (C-Cmin_meam(i,j,k))/(Cmax_meam(i,j,k)-Cmin_meam(i,j,k))
call fcut(x,sijk)
return
end
c------------------------------------------------------------------------------c
c Calculate density functions, assuming reference configuration
subroutine get_densref(r,a,b,rho01,rho11,rho21,rho31,
$ rho02,rho12,rho22,rho32)
use meam_data
implicit none
real*8 r,rho01,rho11,rho21,rho31,rho02,rho12,rho22,rho32
real*8 a1,a2
real*8 rhoa01,rhoa11,rhoa21,rhoa31,rhoa02,rhoa12,rhoa22,rhoa32
real*8 s(3)
character*3 lat
integer a,b
integer Zij1nn,Zij2nn
real*8 rhoa01nn,rhoa02nn
real*8 arat,scrn,denom
real*8 C,s111,s112,s221,S11,S22
a1 = r/re_meam(a,a) - 1.d0
a2 = r/re_meam(b,b) - 1.d0
rhoa01 = rho0_meam(a)*fm_exp(-beta0_meam(a)*a1)
rhoa11 = rho0_meam(a)*fm_exp(-beta1_meam(a)*a1)
rhoa21 = rho0_meam(a)*fm_exp(-beta2_meam(a)*a1)
rhoa31 = rho0_meam(a)*fm_exp(-beta3_meam(a)*a1)
rhoa02 = rho0_meam(b)*fm_exp(-beta0_meam(b)*a2)
rhoa12 = rho0_meam(b)*fm_exp(-beta1_meam(b)*a2)
rhoa22 = rho0_meam(b)*fm_exp(-beta2_meam(b)*a2)
rhoa32 = rho0_meam(b)*fm_exp(-beta3_meam(b)*a2)
lat = lattce_meam(a,b)
rho11 = 0.d0
rho21 = 0.d0
rho31 = 0.d0
rho12 = 0.d0
rho22 = 0.d0
rho32 = 0.d0
call get_Zij(Zij1nn,lat)
if (lat.eq.'fcc') then
rho01 = 12.d0*rhoa02
rho02 = 12.d0*rhoa01
else if (lat.eq.'bcc') then
rho01 = 8.d0*rhoa02
rho02 = 8.d0*rhoa01
else if (lat.eq.'b1') then
rho01 = 6*rhoa02
rho02 = 6*rhoa01
else if (lat.eq.'dia') then
rho01 = 4*rhoa02
rho02 = 4*rhoa01
rho31 = 32.d0/9.d0*rhoa32*rhoa32
rho32 = 32.d0/9.d0*rhoa31*rhoa31
else if (lat.eq.'hcp') then
rho01 = 12*rhoa02
rho02 = 12*rhoa01
rho31 = 1.d0/3.d0*rhoa32*rhoa32
rho32 = 1.d0/3.d0*rhoa31*rhoa31
else if (lat.eq.'dim') then
call get_shpfcn(s,'dim')
rho01 = rhoa02
rho02 = rhoa01
rho11 = s(1)*rhoa12*rhoa12
rho12 = s(1)*rhoa11*rhoa11
rho21 = s(2)*rhoa22*rhoa22
rho22 = s(2)*rhoa21*rhoa21
rho31 = s(3)*rhoa32*rhoa32
rho32 = s(3)*rhoa31*rhoa31
else if (lat.eq.'c11') then
rho01 = rhoa01
rho02 = rhoa02
rho11 = rhoa11
rho12 = rhoa12
rho21 = rhoa21
rho22 = rhoa22
rho31 = rhoa31
rho32 = rhoa32
else if (lat.eq.'l12') then
rho01 = 8*rhoa01 + 4*rhoa02
rho02 = 12*rhoa01
if (ialloy.eq.1) then
rho21 = 8./3.*(rhoa21*t2_meam(a)-rhoa22*t2_meam(b))**2
denom = 8*rhoa01*t2_meam(a)**2 + 4*rhoa02*t2_meam(b)**2
if (denom.gt.0.) then
rho21 = rho21/denom * rho01
endif
else
rho21 = 8./3.*(rhoa21-rhoa22)*(rhoa21-rhoa22)
endif
else if (lat.eq.'b2') then
rho01 = 8.d0*rhoa02
rho02 = 8.d0*rhoa01
else
c call error('Lattice not defined in get_densref.')
endif
if (nn2_meam(a,b).eq.1) then
call get_Zij2(Zij2nn,arat,scrn,lat,
$ Cmin_meam(a,a,b),Cmax_meam(a,a,b))
a1 = arat*r/re_meam(a,a) - 1.d0
a2 = arat*r/re_meam(b,b) - 1.d0
rhoa01nn = rho0_meam(a)*fm_exp(-beta0_meam(a)*a1)
rhoa02nn = rho0_meam(b)*fm_exp(-beta0_meam(b)*a2)
if (lat.eq.'l12') then
c As usual, L12 thinks it's special; we need to be careful computing
c the screening functions
C = 1.d0
call get_sijk(C,a,a,a,s111)
call get_sijk(C,a,a,b,s112)
call get_sijk(C,b,b,a,s221)
S11 = s111 * s111 * s112 * s112
S22 = s221**4
rho01 = rho01 + 6*S11*rhoa01nn
rho02 = rho02 + 6*S22*rhoa02nn
else
c For other cases, assume that second neighbor is of same type,
c first neighbor may be of different type
rho01 = rho01 + Zij2nn*scrn*rhoa01nn
c Assume Zij2nn and arat don't depend on order, but scrn might
call get_Zij2(Zij2nn,arat,scrn,lat,
$ Cmin_meam(b,b,a),Cmax_meam(b,b,a))
rho02 = rho02 + Zij2nn*scrn*rhoa02nn
endif
endif
return
end
c---------------------------------------------------------------------
c Compute ZBL potential
c
real*8 function zbl(r,z1,z2)
use meam_data , only : fm_exp
implicit none
integer i,z1,z2
real*8 r,c,d,a,azero,cc,x
dimension c(4),d(4)
data c /0.028171,0.28022,0.50986,0.18175/
data d /0.20162,0.40290,0.94229,3.1998/
data azero /0.4685/
data cc /14.3997/
c azero = (9pi^2/128)^1/3 (0.529) Angstroms
a = azero/(z1**0.23+z2**0.23)
zbl = 0.0
x = r/a
do i=1,4
zbl = zbl + c(i)*fm_exp(-d(i)*x)
enddo
if (r.gt.0.d0) zbl = zbl*z1*z2/r*cc
return
end
c---------------------------------------------------------------------
c Compute Rose energy function, I.16
c
real*8 function erose(r,re,alpha,Ec,repuls,attrac,form)
use meam_data , only : fm_exp
implicit none
real*8 r,re,alpha,Ec,repuls,attrac,astar,a3
integer form
erose = 0.d0
if (r.gt.0.d0) then
astar = alpha * (r/re - 1.d0)
a3 = 0.d0
if (astar.ge.0) then
a3 = attrac
else if (astar.lt.0) then
a3 = repuls
endif
if (form.eq.1) then
erose = -Ec*(1+astar+(-attrac+repuls/r)*
$ (astar**3))*fm_exp(-astar)
else if (form.eq.2) then
erose = -Ec * (1 +astar + a3*(astar**3))*fm_exp(-astar)
else
erose = -Ec * (1+ astar + a3*(astar**3)/(r/re))*fm_exp(-astar)
endif
endif
return
end
c -----------------------------------------------------------------------
subroutine interpolate_meam(ind)
use meam_data
implicit none
integer j,ind
real*8 drar
c map to coefficient space
nrar = nr
drar = dr
rdrar = 1.0D0/drar
c phir interp
do j = 1,nrar
phirar(j,ind) = phir(j,ind)
enddo
phirar1(1,ind) = phirar(2,ind)-phirar(1,ind)
phirar1(2,ind) = 0.5D0*(phirar(3,ind)-phirar(1,ind))
phirar1(nrar-1,ind) = 0.5D0*(phirar(nrar,ind)
$ -phirar(nrar-2,ind))
phirar1(nrar,ind) = 0.0D0
do j = 3,nrar-2
phirar1(j,ind) = ((phirar(j-2,ind)-phirar(j+2,ind)) +
$ 8.0D0*(phirar(j+1,ind)-phirar(j-1,ind)))/12.
enddo
do j = 1,nrar-1
phirar2(j,ind) = 3.0D0*(phirar(j+1,ind)-phirar(j,ind)) -
$ 2.0D0*phirar1(j,ind) - phirar1(j+1,ind)
phirar3(j,ind) = phirar1(j,ind) + phirar1(j+1,ind) -
$ 2.0D0*(phirar(j+1,ind)-phirar(j,ind))
enddo
phirar2(nrar,ind) = 0.0D0
phirar3(nrar,ind) = 0.0D0
do j = 1,nrar
phirar4(j,ind) = phirar1(j,ind)/drar
phirar5(j,ind) = 2.0D0*phirar2(j,ind)/drar
phirar6(j,ind) = 3.0D0*phirar3(j,ind)/drar
enddo
end
c---------------------------------------------------------------------
c Compute Rose energy function, I.16
c
real*8 function compute_phi(rij, elti, eltj)
use meam_data
implicit none
real*8 rij, pp
integer elti, eltj, ind, kk
ind = eltind(elti, eltj)
pp = rij*rdrar + 1.0D0
kk = pp
kk = min(kk,nrar-1)
pp = pp - kk
pp = min(pp,1.0D0)
compute_phi = ((phirar3(kk,ind)*pp + phirar2(kk,ind))*pp
$ + phirar1(kk,ind))*pp + phirar(kk,ind)
return
end
|