File: meam_setup_done.F

package info (click to toggle)
lammps 0~20181211.gitad1b1897d%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 318,860 kB
  • sloc: cpp: 729,569; python: 40,508; xml: 14,919; fortran: 12,142; ansic: 7,454; sh: 5,565; perl: 4,105; f90: 2,700; makefile: 2,117; objc: 238; lisp: 163; tcl: 61; csh: 16; awk: 14
file content (1041 lines) | stat: -rw-r--r-- 31,382 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
c Declaration in pair_meam.h:
c
c void meam_setup_done(double *)
c
c Call from pair_meam.cpp:
c
c meam_setup_done(&cutmax)
c

      subroutine meam_setup_done(cutmax)
      use meam_data
      implicit none

      real*8 cutmax

      integer nv2, nv3, m, n, p

c     Force cutoff
      cutforce = rc_meam
      cutforcesq = cutforce*cutforce

c     Pass cutoff back to calling program
      cutmax = cutforce

c     Augment t1 term
      t1_meam(:) = t1_meam(:) + augt1 * 3.d0/5.d0 * t3_meam(:)

c     Compute off-diagonal alloy parameters
      call alloyparams

c indices and factors for Voight notation
      nv2 = 1
      nv3 = 1
      do m = 1,3
        do n = m,3
          vind2D(m,n) = nv2
          vind2D(n,m) = nv2
          nv2 = nv2+1
          do p = n,3
            vind3D(m,n,p) = nv3
            vind3D(m,p,n) = nv3
            vind3D(n,m,p) = nv3
            vind3D(n,p,m) = nv3
            vind3D(p,m,n) = nv3
            vind3D(p,n,m) = nv3
            nv3 = nv3+1
          enddo
        enddo
      enddo

      v2D(1) = 1
      v2D(2) = 2
      v2D(3) = 2
      v2D(4) = 1
      v2D(5) = 2
      v2D(6) = 1

      v3D(1) = 1
      v3D(2) = 3
      v3D(3) = 3
      v3D(4) = 3
      v3D(5) = 6
      v3D(6) = 3
      v3D(7) = 1
      v3D(8) = 3
      v3D(9) = 3
      v3D(10) = 1

      nv2 = 1
      do m = 1,neltypes
        do n = m,neltypes
          eltind(m,n) = nv2
          eltind(n,m) = nv2
          nv2 = nv2+1
        enddo
      enddo

c     Compute background densities for reference structure
      call compute_reference_density

c     Compute pair potentials and setup arrays for interpolation
      nr = 1000
      dr = 1.1*rc_meam/nr
      call compute_pair_meam

      return
      end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Fill off-diagonal alloy parameters
      subroutine alloyparams
      use meam_data
      implicit none
      integer i,j,k
      real*8 eb

c Loop over pairs
      do i = 1,neltypes
        do j = 1,neltypes
c Treat off-diagonal pairs
c If i>j, set all equal to i<j case (which has aready been set,
c here or in the input file)
          if (i.gt.j) then
            re_meam(i,j) = re_meam(j,i)
            Ec_meam(i,j) = Ec_meam(j,i)
            alpha_meam(i,j) = alpha_meam(j,i)
            lattce_meam(i,j) = lattce_meam(j,i)
            nn2_meam(i,j) = nn2_meam(j,i)
c If i<j and term is unset, use default values (e.g. mean of i-i and j-j)
          else if (j.gt.i) then
            if (Ec_meam(i,j).eq.0.d0) then
              if (lattce_meam(i,j).eq.'l12') then
                Ec_meam(i,j) = (3*Ec_meam(i,i)+Ec_meam(j,j))/4.d0
     $               - delta_meam(i,j)
              else if (lattce_meam(i,j).eq.'c11') then
                if (lattce_meam(i,i).eq.'dia') then
                  Ec_meam(i,j) = (2*Ec_meam(i,i)+Ec_meam(j,j))/3.d0
     $                 - delta_meam(i,j)
                else
                  Ec_meam(i,j) = (Ec_meam(i,i)+2*Ec_meam(j,j))/3.d0
     $                 - delta_meam(i,j)
                endif
              else
                Ec_meam(i,j) = (Ec_meam(i,i)+Ec_meam(j,j))/2.d0
     $               - delta_meam(i,j)
              endif
            endif
            if (alpha_meam(i,j).eq.0.d0) then
              alpha_meam(i,j) = (alpha_meam(i,i)+alpha_meam(j,j))/2.d0
            endif
            if (re_meam(i,j).eq.0.d0) then
              re_meam(i,j) = (re_meam(i,i)+re_meam(j,j))/2.d0
            endif
          endif
        enddo
      enddo

c Cmin(i,k,j) is symmetric in i-j, but not k.  For all triplets
c where i>j, set equal to the i<j element.  Likewise for Cmax.
        do i = 2,neltypes
          do j = 1,i-1
            do k = 1,neltypes
            Cmin_meam(i,j,k) = Cmin_meam(j,i,k)
            Cmax_meam(i,j,k) = Cmax_meam(j,i,k)
          enddo
        enddo
      enddo

c ebound gives the squared distance such that, for rik2 or rjk2>ebound,
c atom k definitely lies outside the screening function ellipse (so
c there is no need to calculate its effects).  Here, compute it for all
c triplets (i,j,k) so that ebound(i,j) is the maximized over k
      do i = 1,neltypes
        do j = 1,neltypes
          do k = 1,neltypes
            eb = (Cmax_meam(i,j,k)*Cmax_meam(i,j,k))
     $           /(4.d0*(Cmax_meam(i,j,k)-1.d0))
            ebound_meam(i,j) = max(ebound_meam(i,j),eb)
          enddo
        enddo
      enddo

      return
      end

c-----------------------------------------------------------------------
c compute MEAM pair potential for each pair of element types
c

      subroutine compute_pair_meam
      use meam_data
      implicit none

      real*8 r, temp
      integer j,a,b,nv2
      real*8 astar,frac,phizbl
      integer n,nmax,Z1,Z2
      real*8 arat,rarat,scrn,scrn2
      real*8 phiaa,phibb,phitmp
      real*8 C,s111,s112,s221,S11,S22

      real*8, external :: phi_meam
      real*8, external :: zbl
      real*8, external :: compute_phi

c check for previously allocated arrays and free them
      if(allocated(phir)) deallocate(phir)
      if(allocated(phirar)) deallocate(phirar)
      if(allocated(phirar1)) deallocate(phirar1)
      if(allocated(phirar2)) deallocate(phirar2)
      if(allocated(phirar3)) deallocate(phirar3)
      if(allocated(phirar4)) deallocate(phirar4)
      if(allocated(phirar5)) deallocate(phirar5)
      if(allocated(phirar6)) deallocate(phirar6)

c allocate memory for array that defines the potential
      allocate(phir(nr,(neltypes*(neltypes+1))/2))

c allocate coeff memory

      allocate(phirar(nr,(neltypes*(neltypes+1))/2))
      allocate(phirar1(nr,(neltypes*(neltypes+1))/2))
      allocate(phirar2(nr,(neltypes*(neltypes+1))/2))
      allocate(phirar3(nr,(neltypes*(neltypes+1))/2))
      allocate(phirar4(nr,(neltypes*(neltypes+1))/2))
      allocate(phirar5(nr,(neltypes*(neltypes+1))/2))
      allocate(phirar6(nr,(neltypes*(neltypes+1))/2))

c loop over pairs of element types
      nv2 = 0
      do a = 1,neltypes
        do b = a,neltypes
          nv2 = nv2 + 1

c loop over r values and compute
          do j = 1,nr

            r = (j-1)*dr

            phir(j,nv2) = phi_meam(r,a,b)

c if using second-nearest neighbor, solve recursive problem
c (see Lee and Baskes, PRB 62(13):8564 eqn.(21))
            if (nn2_meam(a,b).eq.1) then
              call get_Zij(Z1,lattce_meam(a,b))
              call get_Zij2(Z2,arat,scrn,lattce_meam(a,b),
     $             Cmin_meam(a,a,b),Cmax_meam(a,a,b))

c     The B1, B2,  and L12 cases with NN2 have a trick to them; we need to
c     compute the contributions from second nearest neighbors, like a-a
c     pairs, but need to include NN2 contributions to those pairs as
c     well.
              if (lattce_meam(a,b).eq.'b1'.or.
     $             lattce_meam(a,b).eq.'b2'.or.
     $             lattce_meam(a,b).eq.'l12'.or.
     $             lattce_meam(a,b).eq.'dia') then
                rarat = r*arat

c               phi_aa
                phiaa = phi_meam(rarat,a,a)
                call get_Zij(Z1,lattce_meam(a,a))
                call get_Zij2(Z2,arat,scrn,lattce_meam(a,a),
     $               Cmin_meam(a,a,a),Cmax_meam(a,a,a))
                nmax = 10
                if (scrn.gt.0.0) then
                  do n = 1,nmax
                    phiaa = phiaa +
     $                   (-Z2*scrn/Z1)**n * phi_meam(rarat*arat**n,a,a)
                  enddo
                endif

c               phi_bb
                phibb = phi_meam(rarat,b,b)
                call get_Zij(Z1,lattce_meam(b,b))
                call get_Zij2(Z2,arat,scrn,lattce_meam(b,b),
     $               Cmin_meam(b,b,b),Cmax_meam(b,b,b))
                nmax = 10
                if (scrn.gt.0.0) then
                  do n = 1,nmax
                    phibb = phibb +
     $                   (-Z2*scrn/Z1)**n * phi_meam(rarat*arat**n,b,b)
                  enddo
                endif

                if (lattce_meam(a,b).eq.'b1'.
     $               or.lattce_meam(a,b).eq.'b2'.
     $               or.lattce_meam(a,b).eq.'dia') then
c     Add contributions to the B1 or B2 potential
                  call get_Zij(Z1,lattce_meam(a,b))
                  call get_Zij2(Z2,arat,scrn,lattce_meam(a,b),
     $                 Cmin_meam(a,a,b),Cmax_meam(a,a,b))
                  phir(j,nv2) = phir(j,nv2) -
     $                 Z2*scrn/(2*Z1) * phiaa
                  call get_Zij2(Z2,arat,scrn2,lattce_meam(a,b),
     $                 Cmin_meam(b,b,a),Cmax_meam(b,b,a))
                  phir(j,nv2) = phir(j,nv2) -
     $                 Z2*scrn2/(2*Z1) * phibb

                else if (lattce_meam(a,b).eq.'l12') then
c     The L12 case has one last trick; we have to be careful to compute
c     the correct screening between 2nd-neighbor pairs.  1-1
c     second-neighbor pairs are screened by 2 type 1 atoms and two type
c     2 atoms.  2-2 second-neighbor pairs are screened by 4 type 1
c     atoms.
                  C = 1.d0
                  call get_sijk(C,a,a,a,s111)
                  call get_sijk(C,a,a,b,s112)
                  call get_sijk(C,b,b,a,s221)
                  S11 = s111 * s111 * s112 * s112
                  S22 = s221**4
                  phir(j,nv2) = phir(j,nv2) -
     $                 0.75*S11*phiaa - 0.25*S22*phibb

                endif

              else
                nmax = 10
                do n = 1,nmax
                  phir(j,nv2) = phir(j,nv2) +
     $                 (-Z2*scrn/Z1)**n * phi_meam(r*arat**n,a,b)
                enddo
              endif

            endif

c For Zbl potential:
c if astar <= -3
c   potential is zbl potential
c else if -3 < astar < -1
c   potential is linear combination with zbl potential
c endif
            if (zbl_meam(a,b).eq.1) then
              astar = alpha_meam(a,b) * (r/re_meam(a,b) - 1.d0)
              if (astar.le.-3.d0) then
                phir(j,nv2) = zbl(r,ielt_meam(a),ielt_meam(b))
              else if (astar.gt.-3.d0.and.astar.lt.-1.d0) then
                call fcut(1-(astar+1.d0)/(-3.d0+1.d0),frac)
                phizbl = zbl(r,ielt_meam(a),ielt_meam(b))
                phir(j,nv2) = frac*phir(j,nv2) + (1-frac)*phizbl
              endif
            endif

          enddo

c call interpolation
          call interpolate_meam(nv2)

        enddo
      enddo

      return
      end


c----------------------------------------------------------------------c
c Compute MEAM pair potential for distance r, element types a and b
c
      real*8 recursive function phi_meam(r,a,b)result(phi_m)
      use meam_data
      implicit none


      integer a,b
      real*8 r
      real*8 a1,a2,a12
      real*8 t11av,t21av,t31av,t12av,t22av,t32av
      real*8 G1,G2,s1(3),s2(3),s12(3),rho0_1,rho0_2
      real*8 Gam1,Gam2,Z1,Z2
      real*8 rhobar1,rhobar2,F1,F2
      real*8 rhoa01,rhoa11,rhoa21,rhoa31
      real*8 rhoa02,rhoa12,rhoa22,rhoa32
      real*8 rho01,rho11,rho21,rho31
      real*8 rho02,rho12,rho22,rho32
      real*8 scalfac,phiaa,phibb
      real*8 Eu
      real*8 arat,scrn,scrn2
      integer Z12, errorflag
      integer n,nmax,Z1nn,Z2nn
      character*3 latta,lattb
      real*8 rho_bkgd1, rho_bkgd2

      real*8, external :: erose

c Equation numbers below refer to:
c   I. Huang et.al., Modelling simul. Mater. Sci. Eng. 3:615

c get number of neighbors in the reference structure
c   Nref(i,j) = # of i's neighbors of type j
      call get_Zij(Z12,lattce_meam(a,b))

      call get_densref(r,a,b,rho01,rho11,rho21,rho31,
     $     rho02,rho12,rho22,rho32)

c if densities are too small, numerical problems may result; just return zero
      if (rho01.le.1e-14.and.rho02.le.1e-14) then
        phi_m = 0.0
        return
      endif

c calculate average weighting factors for the reference structure
      if (lattce_meam(a,b).eq.'c11') then
        if (ialloy.eq.2) then
          t11av = t1_meam(a)
          t12av = t1_meam(b)
          t21av = t2_meam(a)
          t22av = t2_meam(b)
          t31av = t3_meam(a)
          t32av = t3_meam(b)
        else
          scalfac = 1.0/(rho01+rho02)
          t11av = scalfac*(t1_meam(a)*rho01 + t1_meam(b)*rho02)
          t12av = t11av
          t21av = scalfac*(t2_meam(a)*rho01 + t2_meam(b)*rho02)
          t22av = t21av
          t31av = scalfac*(t3_meam(a)*rho01 + t3_meam(b)*rho02)
          t32av = t31av
        endif
      else
c average weighting factors for the reference structure, eqn. I.8
         call get_tavref(t11av,t21av,t31av,t12av,t22av,t32av,
     $       t1_meam(a),t2_meam(a),t3_meam(a),
     $       t1_meam(b),t2_meam(b),t3_meam(b),
     $       r,a,b,lattce_meam(a,b))
      endif

c for c11b structure, calculate background electron densities
      if (lattce_meam(a,b).eq.'c11') then
         latta = lattce_meam(a,a)
         if (latta.eq.'dia') then
            rhobar1 = ((Z12/2)*(rho02+rho01))**2 +
     $                t11av*(rho12-rho11)**2 +
     $                t21av/6.0*(rho22+rho21)**2 +
     $                121.0/40.*t31av*(rho32-rho31)**2
            rhobar1 = sqrt(rhobar1)
            rhobar2 = (Z12*rho01)**2 + 2.0/3.0*t21av*rho21**2
            rhobar2 = sqrt(rhobar2)
         else
            rhobar2 = ((Z12/2)*(rho01+rho02))**2 +
     $                t12av*(rho11-rho12)**2 +
     $                t22av/6.0*(rho21+rho22)**2 +
     $                121.0/40.*t32av*(rho31-rho32)**2
            rhobar2 = sqrt(rhobar2)
            rhobar1 = (Z12*rho02)**2 + 2.0/3.0*t22av*rho22**2
            rhobar1 = sqrt(rhobar1)
         endif
      else
c for other structures, use formalism developed in Huang's paper
c
c     composition-dependent scaling, equation I.7
c     If using mixing rule for t, apply to reference structure; else
c     use precomputed values
        if (mix_ref_t.eq.1) then
          Z1 = Z_meam(a)
          Z2 = Z_meam(b)
          if (ibar_meam(a).le.0) then
            G1 = 1.d0
          else
            call get_shpfcn(s1,lattce_meam(a,a))
            Gam1 = (s1(1)*t11av+s1(2)*t21av+s1(3)*t31av)/(Z1*Z1)
            call G_gam(Gam1,ibar_meam(a),gsmooth_factor,G1,errorflag)
          endif
          if (ibar_meam(b).le.0) then
            G2 = 1.d0
          else
            call get_shpfcn(s2,lattce_meam(b,b))
            Gam2 = (s2(1)*t12av+s2(2)*t22av+s2(3)*t32av)/(Z2*Z2)
            call G_gam(Gam2,ibar_meam(b),gsmooth_factor,G2,errorflag)
          endif
          rho0_1 = rho0_meam(a)*Z1*G1
          rho0_2 = rho0_meam(b)*Z2*G2
        endif
        Gam1 = (t11av*rho11+t21av*rho21+t31av*rho31)
        if (rho01 < 1.0d-14) then
          Gam1 = 0.0d0
        else
          Gam1 = Gam1/(rho01*rho01)
        endif
        Gam2 = (t12av*rho12+t22av*rho22+t32av*rho32)
        if (rho02 < 1.0d-14) then
          Gam2 = 0.0d0
        else
          Gam2 = Gam2/(rho02*rho02)
        endif
        call G_gam(Gam1,ibar_meam(a),gsmooth_factor,G1,errorflag)
        call G_gam(Gam2,ibar_meam(b),gsmooth_factor,G2,errorflag)
        if (mix_ref_t.eq.1) then
          rho_bkgd1 = rho0_1
          rho_bkgd2 = rho0_2
        else
          if (bkgd_dyn.eq.1) then
            rho_bkgd1 = rho0_meam(a)*Z_meam(a)
            rho_bkgd2 = rho0_meam(b)*Z_meam(b)
          else
            rho_bkgd1 = rho_ref_meam(a)
            rho_bkgd2 = rho_ref_meam(b)
          endif
        endif
        rhobar1 = rho01/rho_bkgd1*G1
        rhobar2 = rho02/rho_bkgd2*G2

      endif

c compute embedding functions, eqn I.5
      if (rhobar1.eq.0.d0) then
        F1 = 0.d0
      else
        if (emb_lin_neg.eq.1 .and. rhobar1.le.0) then
          F1 = -A_meam(a)*Ec_meam(a,a)*rhobar1
        else
          F1 = A_meam(a)*Ec_meam(a,a)*rhobar1*log(rhobar1)
        endif
      endif
      if (rhobar2.eq.0.d0) then
        F2 = 0.d0
      else
        if (emb_lin_neg.eq.1 .and. rhobar2.le.0) then
          F2 = -A_meam(b)*Ec_meam(b,b)*rhobar2
        else
          F2 = A_meam(b)*Ec_meam(b,b)*rhobar2*log(rhobar2)
       endif
      endif

c compute Rose function, I.16
      Eu = erose(r,re_meam(a,b),alpha_meam(a,b),
     $     Ec_meam(a,b),repuls_meam(a,b),attrac_meam(a,b),erose_form)

c calculate the pair energy
      if (lattce_meam(a,b).eq.'c11') then
        latta = lattce_meam(a,a)
        if (latta.eq.'dia') then
          phiaa = phi_meam(r,a,a)
          phi_m = (3*Eu - F2 - 2*F1 - 5*phiaa)/Z12
        else
          phibb = phi_meam(r,b,b)
          phi_m = (3*Eu - F1 - 2*F2 - 5*phibb)/Z12
        endif
      else if (lattce_meam(a,b).eq.'l12') then
        phiaa = phi_meam(r,a,a)
c       account for second neighbor a-a potential here...
        call get_Zij(Z1nn,lattce_meam(a,a))
        call get_Zij2(Z2nn,arat,scrn,lattce_meam(a,a),
     $       Cmin_meam(a,a,a),Cmax_meam(a,a,a))
        nmax = 10
        if (scrn.gt.0.0) then
          do n = 1,nmax
            phiaa = phiaa +
     $           (-Z2nn*scrn/Z1nn)**n * phi_meam(r*arat**n,a,a)
          enddo
        endif
        phi_m = Eu/3. - F1/4. - F2/12. - phiaa
      else
c
c potential is computed from Rose function and embedding energy
         phi_m = (2*Eu - F1 - F2)/Z12
c
      endif

c if r = 0, just return 0
      if (r.eq.0.d0) then
        phi_m = 0.d0
      endif

      return
      end

c----------------------------------------------------------------------c
c Compute background density for reference structure of each element
      subroutine compute_reference_density
      use meam_data
      implicit none

      integer a,Z,Z2,errorflag
      real*8  gam,Gbar,shp(3)
      real*8  rho0,rho0_2nn,arat,scrn

c loop over element types
      do a = 1,neltypes

        Z = Z_meam(a)
        if (ibar_meam(a).le.0) then
          Gbar = 1.d0
        else
          call get_shpfcn(shp,lattce_meam(a,a))
          gam = (t1_meam(a)*shp(1)+t2_meam(a)*shp(2)
     $         +t3_meam(a)*shp(3))/(Z*Z)
          call G_gam(gam,ibar_meam(a),gsmooth_factor,
     $         Gbar,errorflag)
        endif

c     The zeroth order density in the reference structure, with
c     equilibrium spacing, is just the number of first neighbors times
c     the rho0_meam coefficient...
        rho0 = rho0_meam(a)*Z

c     ...unless we have unscreened second neighbors, in which case we
c     add on the contribution from those (accounting for partial
c     screening)
        if (nn2_meam(a,a).eq.1) then
          call get_Zij2(Z2,arat,scrn,lattce_meam(a,a),
     $         Cmin_meam(a,a,a),Cmax_meam(a,a,a))
          rho0_2nn = rho0_meam(a)*fm_exp(-beta0_meam(a)*(arat-1))
          rho0 = rho0 + Z2*rho0_2nn*scrn
        endif

        rho_ref_meam(a) = rho0*Gbar

      enddo

      return
      end

c----------------------------------------------------------------------c
c Shape factors for various configurations
      subroutine get_shpfcn(s,latt)
      implicit none
      real*8 s(3)
      character*3 latt
      if (latt.eq.'fcc'.or.latt.eq.'bcc'.
     $     or.latt.eq.'b1'.or.latt.eq.'b2') then
        s(1) = 0.d0
        s(2) = 0.d0
        s(3) = 0.d0
      else if (latt.eq.'hcp') then
        s(1) = 0.d0
        s(2) = 0.d0
        s(3) = 1.d0/3.d0
      else if (latt.eq.'dia') then
        s(1) = 0.d0
        s(2) = 0.d0
        s(3) = 32.d0/9.d0
      else if (latt.eq.'dim') then
        s(1) = 1.d0
        s(2) = 2.d0/3.d0
c        s(3) = 1.d0
        s(3) = 0.4d0
      else
        s(1) = 0.0
c        call error('Lattice not defined in get_shpfcn.')
      endif
      return
      end
c------------------------------------------------------------------------------c
c Average weighting factors for the reference structure
      subroutine get_tavref(t11av,t21av,t31av,t12av,t22av,t32av,
     $     t11,t21,t31,t12,t22,t32,
     $     r,a,b,latt)
      use meam_data
      implicit none
      real*8 t11av,t21av,t31av,t12av,t22av,t32av
      real*8 t11,t21,t31,t12,t22,t32,r
      integer a,b
      character*3 latt
      real*8 rhoa01,rhoa02,a1,a2,rho01,rho02

c     For ialloy = 2, no averaging is done
      if (ialloy.eq.2) then
          t11av = t11
          t21av = t21
          t31av = t31
          t12av = t12
          t22av = t22
          t32av = t32
      else
        if (latt.eq.'fcc'.or.latt.eq.'bcc'.or.latt.eq.'dia'
     $       .or.latt.eq.'hcp'.or.latt.eq.'b1'
     $       .or.latt.eq.'dim'.or.latt.eq.'b2') then
c     all neighbors are of the opposite type
          t11av = t12
          t21av = t22
          t31av = t32
          t12av = t11
          t22av = t21
          t32av = t31
        else
          a1  = r/re_meam(a,a) - 1.d0
          a2  = r/re_meam(b,b) - 1.d0
          rhoa01 = rho0_meam(a)*fm_exp(-beta0_meam(a)*a1)
          rhoa02 = rho0_meam(b)*fm_exp(-beta0_meam(b)*a2)
          if (latt.eq.'l12') then
            rho01 = 8*rhoa01 + 4*rhoa02
            t11av = (8*t11*rhoa01 + 4*t12*rhoa02)/rho01
            t12av = t11
            t21av = (8*t21*rhoa01 + 4*t22*rhoa02)/rho01
            t22av = t21
            t31av = (8*t31*rhoa01 + 4*t32*rhoa02)/rho01
            t32av = t31
          else
c     call error('Lattice not defined in get_tavref.')
          endif
        endif
      endif
      return
      end
c------------------------------------------------------------------------------c
c Number of neighbors for the reference structure
      subroutine get_Zij(Zij,latt)
      implicit none
      integer Zij
      character*3 latt
      if (latt.eq.'fcc') then
        Zij = 12
      else if (latt.eq.'bcc') then
        Zij = 8
      else if (latt.eq.'hcp') then
        Zij = 12
      else if (latt.eq.'b1') then
        Zij = 6
      else if (latt.eq.'dia') then
        Zij = 4
      else if (latt.eq.'dim') then
        Zij = 1
      else if (latt.eq.'c11') then
        Zij = 10
      else if (latt.eq.'l12') then
        Zij = 12
      else if (latt.eq.'b2') then
        Zij = 8
      else
c        call error('Lattice not defined in get_Zij.')
      endif
      return
      end

c------------------------------------------------------------------------------c
c Zij2 = number of second neighbors, a = distance ratio R1/R2, and S = second
c neighbor screening function for lattice type "latt"

      subroutine get_Zij2(Zij2,a,S,latt,cmin,cmax)
      implicit none
      integer Zij2
      real*8 a,S,cmin,cmax
      character*3 latt
      real*8 rratio,C,x,sijk
      integer numscr

      if (latt.eq.'bcc') then
        Zij2 = 6
        a = 2.d0/sqrt(3.d0)
        numscr = 4
      else if (latt.eq.'fcc') then
        Zij2 = 6
        a = sqrt(2.d0)
        numscr = 4
      else if (latt.eq.'dia') then
        Zij2 = 12
        a = sqrt(8.d0/3.d0)
        numscr = 1
        if (cmin.lt.0.500001) then
c          call error('can not do 2NN MEAM for dia')
        endif
      else if (latt.eq.'hcp') then
        Zij2 = 6
        a = sqrt(2.d0)
        numscr = 4
      else if (latt.eq.'b1') then
        Zij2 = 12
        a = sqrt(2.d0)
        numscr = 2
      else if (latt.eq.'l12') then
        Zij2 = 6
        a = sqrt(2.d0)
        numscr = 4
      else if (latt.eq.'b2') then
        Zij2 = 6
        a = 2.d0/sqrt(3.d0)
        numscr = 4
      else if (latt.eq.'dim') then
c        this really shouldn't be allowed; make sure screening is zero
         Zij2 = 0
         a = 1
         S = 0
         return
      else
c        call error('Lattice not defined in get_Zij2.')
      endif

c Compute screening for each first neighbor
      C = 4.d0/(a*a) - 1.d0
      x = (C-cmin)/(cmax-cmin)
      call fcut(x,sijk)
c There are numscr first neighbors screening the second neighbors
      S = sijk**numscr

      return
      end


c------------------------------------------------------------------------------c
      subroutine get_sijk(C,i,j,k,sijk)
      use meam_data
      implicit none
      real*8 C,sijk
      integer i,j,k
      real*8 x
      x = (C-Cmin_meam(i,j,k))/(Cmax_meam(i,j,k)-Cmin_meam(i,j,k))
      call fcut(x,sijk)
      return
      end

c------------------------------------------------------------------------------c
c Calculate density functions, assuming reference configuration
      subroutine get_densref(r,a,b,rho01,rho11,rho21,rho31,
     $     rho02,rho12,rho22,rho32)
      use meam_data
      implicit none
      real*8 r,rho01,rho11,rho21,rho31,rho02,rho12,rho22,rho32
      real*8 a1,a2
      real*8 rhoa01,rhoa11,rhoa21,rhoa31,rhoa02,rhoa12,rhoa22,rhoa32
      real*8 s(3)
      character*3 lat
      integer a,b
      integer Zij1nn,Zij2nn
      real*8 rhoa01nn,rhoa02nn
      real*8 arat,scrn,denom
      real*8 C,s111,s112,s221,S11,S22

      a1  = r/re_meam(a,a) - 1.d0
      a2  = r/re_meam(b,b) - 1.d0

      rhoa01 = rho0_meam(a)*fm_exp(-beta0_meam(a)*a1)
      rhoa11 = rho0_meam(a)*fm_exp(-beta1_meam(a)*a1)
      rhoa21 = rho0_meam(a)*fm_exp(-beta2_meam(a)*a1)
      rhoa31 = rho0_meam(a)*fm_exp(-beta3_meam(a)*a1)
      rhoa02 = rho0_meam(b)*fm_exp(-beta0_meam(b)*a2)
      rhoa12 = rho0_meam(b)*fm_exp(-beta1_meam(b)*a2)
      rhoa22 = rho0_meam(b)*fm_exp(-beta2_meam(b)*a2)
      rhoa32 = rho0_meam(b)*fm_exp(-beta3_meam(b)*a2)

      lat = lattce_meam(a,b)

      rho11 = 0.d0
      rho21 = 0.d0
      rho31 = 0.d0
      rho12 = 0.d0
      rho22 = 0.d0
      rho32 = 0.d0

      call get_Zij(Zij1nn,lat)

      if (lat.eq.'fcc') then
        rho01 = 12.d0*rhoa02
        rho02 = 12.d0*rhoa01
      else if (lat.eq.'bcc') then
        rho01 = 8.d0*rhoa02
        rho02 = 8.d0*rhoa01
      else if (lat.eq.'b1') then
        rho01 = 6*rhoa02
        rho02 = 6*rhoa01
      else if (lat.eq.'dia') then
        rho01 = 4*rhoa02
        rho02 = 4*rhoa01
        rho31 = 32.d0/9.d0*rhoa32*rhoa32
        rho32 = 32.d0/9.d0*rhoa31*rhoa31
      else if (lat.eq.'hcp') then
        rho01 = 12*rhoa02
        rho02 = 12*rhoa01
        rho31 = 1.d0/3.d0*rhoa32*rhoa32
        rho32 = 1.d0/3.d0*rhoa31*rhoa31
      else if (lat.eq.'dim') then
        call get_shpfcn(s,'dim')
        rho01 = rhoa02
        rho02 = rhoa01
        rho11 = s(1)*rhoa12*rhoa12
        rho12 = s(1)*rhoa11*rhoa11
        rho21 = s(2)*rhoa22*rhoa22
        rho22 = s(2)*rhoa21*rhoa21
        rho31 = s(3)*rhoa32*rhoa32
        rho32 = s(3)*rhoa31*rhoa31
      else if (lat.eq.'c11') then
        rho01 = rhoa01
        rho02 = rhoa02
        rho11 = rhoa11
        rho12 = rhoa12
        rho21 = rhoa21
        rho22 = rhoa22
        rho31 = rhoa31
        rho32 = rhoa32
      else if (lat.eq.'l12') then
        rho01 = 8*rhoa01 + 4*rhoa02
        rho02 = 12*rhoa01
        if (ialloy.eq.1) then
          rho21 = 8./3.*(rhoa21*t2_meam(a)-rhoa22*t2_meam(b))**2
          denom = 8*rhoa01*t2_meam(a)**2 + 4*rhoa02*t2_meam(b)**2
          if (denom.gt.0.) then
            rho21 = rho21/denom * rho01
          endif
        else
          rho21 = 8./3.*(rhoa21-rhoa22)*(rhoa21-rhoa22)
        endif
      else if (lat.eq.'b2') then
        rho01 = 8.d0*rhoa02
        rho02 = 8.d0*rhoa01
      else
c        call error('Lattice not defined in get_densref.')
      endif

      if (nn2_meam(a,b).eq.1) then

        call get_Zij2(Zij2nn,arat,scrn,lat,
     $       Cmin_meam(a,a,b),Cmax_meam(a,a,b))

        a1 = arat*r/re_meam(a,a) - 1.d0
        a2 = arat*r/re_meam(b,b) - 1.d0

        rhoa01nn = rho0_meam(a)*fm_exp(-beta0_meam(a)*a1)
        rhoa02nn = rho0_meam(b)*fm_exp(-beta0_meam(b)*a2)

        if (lat.eq.'l12') then
c     As usual, L12 thinks it's special; we need to be careful computing
c     the screening functions
          C = 1.d0
          call get_sijk(C,a,a,a,s111)
          call get_sijk(C,a,a,b,s112)
          call get_sijk(C,b,b,a,s221)
          S11 = s111 * s111 * s112 * s112
          S22 = s221**4
          rho01 = rho01 + 6*S11*rhoa01nn
          rho02 = rho02 + 6*S22*rhoa02nn

        else
c     For other cases, assume that second neighbor is of same type,
c     first neighbor may be of different type

          rho01 = rho01 + Zij2nn*scrn*rhoa01nn

c     Assume Zij2nn and arat don't depend on order, but scrn might
          call get_Zij2(Zij2nn,arat,scrn,lat,
     $         Cmin_meam(b,b,a),Cmax_meam(b,b,a))
          rho02 = rho02 + Zij2nn*scrn*rhoa02nn

        endif

      endif

      return
      end

c---------------------------------------------------------------------
c Compute ZBL potential
c
      real*8 function zbl(r,z1,z2)
      use meam_data , only : fm_exp
      implicit none
      integer i,z1,z2
      real*8 r,c,d,a,azero,cc,x
      dimension c(4),d(4)
      data c /0.028171,0.28022,0.50986,0.18175/
      data d /0.20162,0.40290,0.94229,3.1998/
      data azero /0.4685/
      data cc /14.3997/
c azero = (9pi^2/128)^1/3 (0.529) Angstroms
      a = azero/(z1**0.23+z2**0.23)
      zbl = 0.0
      x = r/a
      do i=1,4
        zbl = zbl + c(i)*fm_exp(-d(i)*x)
      enddo
      if (r.gt.0.d0) zbl = zbl*z1*z2/r*cc
      return
      end

c---------------------------------------------------------------------
c Compute Rose energy function, I.16
c
      real*8 function erose(r,re,alpha,Ec,repuls,attrac,form)
      use meam_data , only : fm_exp
      implicit none
      real*8 r,re,alpha,Ec,repuls,attrac,astar,a3
      integer form

      erose = 0.d0

      if (r.gt.0.d0) then
        astar = alpha * (r/re - 1.d0)
        a3 = 0.d0
        if (astar.ge.0) then
          a3 = attrac
        else if (astar.lt.0) then
          a3 = repuls
        endif
        if (form.eq.1) then
          erose = -Ec*(1+astar+(-attrac+repuls/r)*
     $         (astar**3))*fm_exp(-astar)
        else if (form.eq.2) then
          erose = -Ec * (1 +astar + a3*(astar**3))*fm_exp(-astar)
        else
          erose = -Ec * (1+ astar + a3*(astar**3)/(r/re))*fm_exp(-astar)
        endif
      endif

      return
      end

c -----------------------------------------------------------------------

      subroutine interpolate_meam(ind)
      use meam_data
      implicit none

      integer j,ind
      real*8 drar

c map to coefficient space

      nrar = nr
      drar = dr
      rdrar = 1.0D0/drar

c phir interp
      do j = 1,nrar
        phirar(j,ind) = phir(j,ind)
      enddo

      phirar1(1,ind) = phirar(2,ind)-phirar(1,ind)
      phirar1(2,ind) = 0.5D0*(phirar(3,ind)-phirar(1,ind))
      phirar1(nrar-1,ind) = 0.5D0*(phirar(nrar,ind)
     $     -phirar(nrar-2,ind))
      phirar1(nrar,ind) = 0.0D0
      do j = 3,nrar-2
        phirar1(j,ind) = ((phirar(j-2,ind)-phirar(j+2,ind)) +
     $       8.0D0*(phirar(j+1,ind)-phirar(j-1,ind)))/12.
      enddo

      do j = 1,nrar-1
        phirar2(j,ind) = 3.0D0*(phirar(j+1,ind)-phirar(j,ind)) -
     $       2.0D0*phirar1(j,ind) - phirar1(j+1,ind)
        phirar3(j,ind) = phirar1(j,ind) + phirar1(j+1,ind) -
     $       2.0D0*(phirar(j+1,ind)-phirar(j,ind))
      enddo
      phirar2(nrar,ind) = 0.0D0
      phirar3(nrar,ind) = 0.0D0

      do j = 1,nrar
        phirar4(j,ind) = phirar1(j,ind)/drar
        phirar5(j,ind) = 2.0D0*phirar2(j,ind)/drar
        phirar6(j,ind) = 3.0D0*phirar3(j,ind)/drar
      enddo

      end

c---------------------------------------------------------------------
c Compute Rose energy function, I.16
c
      real*8 function compute_phi(rij, elti, eltj)
      use meam_data
      implicit none

      real*8  rij, pp
      integer elti, eltj, ind, kk

      ind = eltind(elti, eltj)
      pp = rij*rdrar + 1.0D0
      kk = pp
      kk = min(kk,nrar-1)
      pp = pp - kk
      pp = min(pp,1.0D0)
      compute_phi = ((phirar3(kk,ind)*pp + phirar2(kk,ind))*pp
     $     + phirar1(kk,ind))*pp + phirar(kk,ind)

      return
      end