1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "fix_rigid_small_omp.h"
#include "atom.h"
#include "atom_vec_ellipsoid.h"
#include "atom_vec_line.h"
#include "atom_vec_tri.h"
#include "comm.h"
#include "domain.h"
#include <cstring>
#if defined(_OPENMP)
#include <omp.h>
#endif
#include "math_extra.h"
#include "math_const.h"
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathConst;
#define EINERTIA 0.2 // moment of inertia prefactor for ellipsoid
enum{FULL_BODY,INITIAL,FINAL,FORCE_TORQUE,VCM_ANGMOM,XCM_MASS,ITENSOR,DOF};
typedef struct { double x,y,z; } dbl3_t;
/* ---------------------------------------------------------------------- */
void FixRigidSmallOMP::initial_integrate(int vflag)
{
int ibody;
#if defined(_OPENMP)
#pragma omp parallel for default(none) private(ibody) schedule(static)
#endif
for (ibody = 0; ibody < nlocal_body; ibody++) {
Body &b = body[ibody];
// update vcm by 1/2 step
const double dtfm = dtf / b.mass;
b.vcm[0] += dtfm * b.fcm[0];
b.vcm[1] += dtfm * b.fcm[1];
b.vcm[2] += dtfm * b.fcm[2];
// update xcm by full step
b.xcm[0] += dtv * b.vcm[0];
b.xcm[1] += dtv * b.vcm[1];
b.xcm[2] += dtv * b.vcm[2];
// update angular momentum by 1/2 step
b.angmom[0] += dtf * b.torque[0];
b.angmom[1] += dtf * b.torque[1];
b.angmom[2] += dtf * b.torque[2];
// compute omega at 1/2 step from angmom at 1/2 step and current q
// update quaternion a full step via Richardson iteration
// returns new normalized quaternion, also updated omega at 1/2 step
// update ex,ey,ez to reflect new quaternion
MathExtra::angmom_to_omega(b.angmom,b.ex_space,b.ey_space,
b.ez_space,b.inertia,b.omega);
MathExtra::richardson(b.quat,b.angmom,b.omega,b.inertia,dtq);
MathExtra::q_to_exyz(b.quat,b.ex_space,b.ey_space,b.ez_space);
} // end of omp parallel for
// virial setup before call to set_xv
if (vflag) v_setup(vflag);
else evflag = 0;
// forward communicate updated info of all bodies
commflag = INITIAL;
comm->forward_comm_fix(this,26);
// set coords/orient and velocity/rotation of atoms in rigid bodies
if (triclinic)
if (evflag)
set_xv_thr<1,1>();
else
set_xv_thr<1,0>();
else
if (evflag)
set_xv_thr<0,1>();
else
set_xv_thr<0,0>();
}
/* ---------------------------------------------------------------------- */
void FixRigidSmallOMP::compute_forces_and_torques()
{
double * const * _noalias const x = atom->x;
const dbl3_t * _noalias const f = (dbl3_t *) atom->f[0];
const double * const * const torque_one = atom->torque;
const int nlocal = atom->nlocal;
const int nthreads=comm->nthreads;
int i, ibody;
#if defined(_OPENMP)
#pragma omp parallel for default(none) private(ibody) schedule(static)
#endif
for (ibody = 0; ibody < nlocal_body+nghost_body; ibody++) {
double * _noalias const fcm = body[ibody].fcm;
fcm[0] = fcm[1] = fcm[2] = 0.0;
double * _noalias const tcm = body[ibody].torque;
tcm[0] = tcm[1] = tcm[2] = 0.0;
}
// sum over atoms to get force and torque on rigid body
// we likely have a large number of rigid objects with only a
// a few atoms each. so we loop over all atoms for all threads
// and then each thread only processes some bodies.
#if defined(_OPENMP)
#pragma omp parallel default(none) private(i,ibody)
#endif
{
#if defined(_OPENMP)
const int tid = omp_get_thread_num();
#else
const int tid = 0;
#endif
for (i = 0; i < nlocal; i++) {
ibody = atom2body[i];
if ((ibody < 0) || (ibody % nthreads != tid)) continue;
Body &b = body[ibody];
double unwrap[3];
domain->unmap(x[i],xcmimage[i],unwrap);
double * _noalias const fcm = b.fcm;
double * _noalias const xcm = b.xcm;
double * _noalias const tcm = b.torque;
const double dx = unwrap[0] - xcm[0];
const double dy = unwrap[1] - xcm[1];
const double dz = unwrap[2] - xcm[2];
fcm[0] += f[i].x;
fcm[1] += f[i].y;
fcm[2] += f[i].z;
tcm[0] += dy*f[i].z - dz*f[i].y;
tcm[1] += dz*f[i].x - dx*f[i].z;
tcm[2] += dx*f[i].y - dy*f[i].x;
if (extended && (eflags[i] & TORQUE)) {
tcm[0] += torque_one[i][0];
tcm[1] += torque_one[i][1];
tcm[2] += torque_one[i][2];
}
}
} // end of omp parallel region
// reverse communicate fcm, torque of all bodies
commflag = FORCE_TORQUE;
comm->reverse_comm_fix(this,6);
// include Langevin thermostat forces and torques
if (langflag) {
#if defined(_OPENMP)
#pragma omp parallel for default(none) private(ibody) schedule(static)
#endif
for (ibody = 0; ibody < nlocal_body; ibody++) {
double * _noalias const fcm = body[ibody].fcm;
fcm[0] += langextra[ibody][0];
fcm[1] += langextra[ibody][1];
fcm[2] += langextra[ibody][2];
double * _noalias const tcm = body[ibody].torque;
tcm[0] += langextra[ibody][3];
tcm[1] += langextra[ibody][4];
tcm[2] += langextra[ibody][5];
}
}
}
/* ---------------------------------------------------------------------- */
void FixRigidSmallOMP::final_integrate()
{
int ibody;
if (!earlyflag) compute_forces_and_torques();
// update vcm and angmom, recompute omega
#if defined(_OPENMP)
#pragma omp parallel for default(none) private(ibody) schedule(static)
#endif
for (ibody = 0; ibody < nlocal_body; ibody++) {
Body &b = body[ibody];
// update vcm by 1/2 step
const double dtfm = dtf / b.mass;
b.vcm[0] += dtfm * b.fcm[0];
b.vcm[1] += dtfm * b.fcm[1];
b.vcm[2] += dtfm * b.fcm[2];
// update angular momentum by 1/2 step
b.angmom[0] += dtf * b.torque[0];
b.angmom[1] += dtf * b.torque[1];
b.angmom[2] += dtf * b.torque[2];
MathExtra::angmom_to_omega(b.angmom,b.ex_space,b.ey_space,
b.ez_space,b.inertia,b.omega);
}
// forward communicate updated info of all bodies
commflag = FINAL;
comm->forward_comm_fix(this,10);
// set velocity/rotation of atoms in rigid bodies
// virial is already setup from initial_integrate
// triclinic only matters for virial calculation.
if (evflag)
if (triclinic)
set_v_thr<1,1>();
else
set_v_thr<0,1>();
else
set_v_thr<0,0>();
}
/* ----------------------------------------------------------------------
set space-frame coords and velocity of each atom in each rigid body
set orientation and rotation of extended particles
x = Q displace + Xcm, mapped back to periodic box
v = Vcm + (W cross (x - Xcm))
------------------------------------------------------------------------- */
template <int TRICLINIC, int EVFLAG>
void FixRigidSmallOMP::set_xv_thr()
{
dbl3_t * _noalias const x = (dbl3_t *) atom->x[0];
dbl3_t * _noalias const v = (dbl3_t *) atom->v[0];
const dbl3_t * _noalias const f = (dbl3_t *) atom->f[0];
const double * _noalias const rmass = atom->rmass;
const double * _noalias const mass = atom->mass;
const int * _noalias const type = atom->type;
double v0=0.0,v1=0.0,v2=0.0,v3=0.0,v4=0.0,v5=0.0;
const double xprd = domain->xprd;
const double yprd = domain->yprd;
const double zprd = domain->zprd;
const double xy = domain->xy;
const double xz = domain->xz;
const double yz = domain->yz;
// set x and v of each atom
const int nlocal = atom->nlocal;
int i;
#if defined(_OPENMP)
#pragma omp parallel for default(none) private(i) reduction(+:v0,v1,v2,v3,v4,v5)
#endif
for (i = 0; i < nlocal; i++) {
const int ibody = atom2body[i];
if (ibody < 0) continue;
Body &b = body[ibody];
const int xbox = (xcmimage[i] & IMGMASK) - IMGMAX;
const int ybox = (xcmimage[i] >> IMGBITS & IMGMASK) - IMGMAX;
const int zbox = (xcmimage[i] >> IMG2BITS) - IMGMAX;
const double deltax = xbox*xprd + (TRICLINIC ? ybox*xy + zbox*xz : 0.0);
const double deltay = ybox*yprd + (TRICLINIC ? zbox*yz : 0.0);
const double deltaz = zbox*zprd;
// save old positions and velocities for virial
double x0,x1,x2,vx,vy,vz;
if (EVFLAG) {
x0 = x[i].x + deltax;
x1 = x[i].y + deltay;
x2 = x[i].z + deltaz;
vx = v[i].x;
vy = v[i].y;
vz = v[i].z;
}
// x = displacement from center-of-mass, based on body orientation
// v = vcm + omega around center-of-mass
MathExtra::matvec(b.ex_space,b.ey_space,b.ez_space,displace[i],&x[i].x);
v[i].x = b.omega[1]*x[i].z - b.omega[2]*x[i].y + b.vcm[0];
v[i].y = b.omega[2]*x[i].x - b.omega[0]*x[i].z + b.vcm[1];
v[i].z = b.omega[0]*x[i].y - b.omega[1]*x[i].x + b.vcm[2];
// add center of mass to displacement
// map back into periodic box via xbox,ybox,zbox
// for triclinic, add in box tilt factors as well
x[i].x += b.xcm[0] - deltax;
x[i].y += b.xcm[1] - deltay;
x[i].z += b.xcm[2] - deltaz;
// virial = unwrapped coords dotted into body constraint force
// body constraint force = implied force due to v change minus f external
// assume f does not include forces internal to body
// 1/2 factor b/c final_integrate contributes other half
// assume per-atom contribution is due to constraint force on that atom
if (EVFLAG) {
double massone,vr[6];
if (rmass) massone = rmass[i];
else massone = mass[type[i]];
const double fc0 = 0.5*(massone*(v[i].x - vx)/dtf - f[i].x);
const double fc1 = 0.5*(massone*(v[i].y - vy)/dtf - f[i].y);
const double fc2 = 0.5*(massone*(v[i].z - vz)/dtf - f[i].z);
vr[0] = x0*fc0; vr[1] = x1*fc1; vr[2] = x2*fc2;
vr[3] = x0*fc1; vr[4] = x0*fc2; vr[5] = x1*fc2;
// Fix::v_tally() is not thread safe, so we do this manually here
// accumulate global virial into thread-local variables for reduction
if (vflag_global) {
v0 += vr[0];
v1 += vr[1];
v2 += vr[2];
v3 += vr[3];
v4 += vr[4];
v5 += vr[5];
}
// accumulate per atom virial directly since we parallelize over atoms.
if (vflag_atom) {
vatom[i][0] += vr[0];
vatom[i][1] += vr[1];
vatom[i][2] += vr[2];
vatom[i][3] += vr[3];
vatom[i][4] += vr[4];
vatom[i][5] += vr[5];
}
}
}
// second part of thread safe virial accumulation
// add global virial component after it was reduced across all threads
if (EVFLAG) {
if (vflag_global) {
virial[0] += v0;
virial[1] += v1;
virial[2] += v2;
virial[3] += v3;
virial[4] += v4;
virial[5] += v5;
}
}
// set orientation, omega, angmom of each extended particle
// XXX: extended particle info not yet multi-threaded
if (extended) {
double ione[3],exone[3],eyone[3],ezone[3],p[3][3];
double theta_body,theta;
double *shape,*quatatom,*inertiaatom;
AtomVecEllipsoid::Bonus *ebonus;
if (avec_ellipsoid) ebonus = avec_ellipsoid->bonus;
AtomVecLine::Bonus *lbonus;
if (avec_line) lbonus = avec_line->bonus;
AtomVecTri::Bonus *tbonus;
if (avec_tri) tbonus = avec_tri->bonus;
double **omega = atom->omega;
double **angmom = atom->angmom;
double **mu = atom->mu;
int *ellipsoid = atom->ellipsoid;
int *line = atom->line;
int *tri = atom->tri;
for (int i = 0; i < nlocal; i++) {
if (atom2body[i] < 0) continue;
Body &b = body[atom2body[i]];
if (eflags[i] & SPHERE) {
omega[i][0] = b.omega[0];
omega[i][1] = b.omega[1];
omega[i][2] = b.omega[2];
} else if (eflags[i] & ELLIPSOID) {
shape = ebonus[ellipsoid[i]].shape;
quatatom = ebonus[ellipsoid[i]].quat;
MathExtra::quatquat(b.quat,orient[i],quatatom);
MathExtra::qnormalize(quatatom);
ione[0] = EINERTIA*rmass[i] * (shape[1]*shape[1] + shape[2]*shape[2]);
ione[1] = EINERTIA*rmass[i] * (shape[0]*shape[0] + shape[2]*shape[2]);
ione[2] = EINERTIA*rmass[i] * (shape[0]*shape[0] + shape[1]*shape[1]);
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
MathExtra::omega_to_angmom(b.omega,exone,eyone,ezone,ione,angmom[i]);
} else if (eflags[i] & LINE) {
if (b.quat[3] >= 0.0) theta_body = 2.0*acos(b.quat[0]);
else theta_body = -2.0*acos(b.quat[0]);
theta = orient[i][0] + theta_body;
while (theta <= MINUSPI) theta += TWOPI;
while (theta > MY_PI) theta -= TWOPI;
lbonus[line[i]].theta = theta;
omega[i][0] = b.omega[0];
omega[i][1] = b.omega[1];
omega[i][2] = b.omega[2];
} else if (eflags[i] & TRIANGLE) {
inertiaatom = tbonus[tri[i]].inertia;
quatatom = tbonus[tri[i]].quat;
MathExtra::quatquat(b.quat,orient[i],quatatom);
MathExtra::qnormalize(quatatom);
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
MathExtra::omega_to_angmom(b.omega,exone,eyone,ezone,
inertiaatom,angmom[i]);
}
if (eflags[i] & DIPOLE) {
MathExtra::quat_to_mat(b.quat,p);
MathExtra::matvec(p,dorient[i],mu[i]);
MathExtra::snormalize3(mu[i][3],mu[i],mu[i]);
}
}
}
}
/* ----------------------------------------------------------------------
set space-frame velocity of each atom in a rigid body
set omega and angmom of extended particles
v = Vcm + (W cross (x - Xcm))
------------------------------------------------------------------------- */
template <int TRICLINIC, int EVFLAG>
void FixRigidSmallOMP::set_v_thr()
{
dbl3_t * _noalias const x = (dbl3_t *) atom->x[0];
dbl3_t * _noalias const v = (dbl3_t *) atom->v[0];
const dbl3_t * _noalias const f = (dbl3_t *) atom->f[0];
const double * _noalias const rmass = atom->rmass;
const double * _noalias const mass = atom->mass;
const int * _noalias const type = atom->type;
const double xprd = domain->xprd;
const double yprd = domain->yprd;
const double zprd = domain->zprd;
const double xy = domain->xy;
const double xz = domain->xz;
const double yz = domain->yz;
double v0=0.0,v1=0.0,v2=0.0,v3=0.0,v4=0.0,v5=0.0;
// set v of each atom
const int nlocal = atom->nlocal;
int i;
#if defined(_OPENMP)
#pragma omp parallel for default(none) private(i) reduction(+:v0,v1,v2,v3,v4,v5)
#endif
for (i = 0; i < nlocal; i++) {
const int ibody = atom2body[i];
if (ibody < 0) continue;
Body &b = body[atom2body[i]];
double delta[3],vx,vy,vz;
MathExtra::matvec(b.ex_space,b.ey_space,b.ez_space,displace[i],delta);
// save old velocities for virial
if (EVFLAG) {
vx = v[i].x;
vy = v[i].y;
vz = v[i].z;
}
v[i].x = b.omega[1]*delta[2] - b.omega[2]*delta[1] + b.vcm[0];
v[i].y = b.omega[2]*delta[0] - b.omega[0]*delta[2] + b.vcm[1];
v[i].z = b.omega[0]*delta[1] - b.omega[1]*delta[0] + b.vcm[2];
// virial = unwrapped coords dotted into body constraint force
// body constraint force = implied force due to v change minus f external
// assume f does not include forces internal to body
// 1/2 factor b/c initial_integrate contributes other half
// assume per-atom contribution is due to constraint force on that atom
if (EVFLAG) {
double massone, vr[6];
if (rmass) massone = rmass[i];
else massone = mass[type[i]];
const int xbox = (xcmimage[i] & IMGMASK) - IMGMAX;
const int ybox = (xcmimage[i] >> IMGBITS & IMGMASK) - IMGMAX;
const int zbox = (xcmimage[i] >> IMG2BITS) - IMGMAX;
const double deltax = xbox*xprd + (TRICLINIC ? ybox*xy + zbox*xz : 0.0);
const double deltay = ybox*yprd + (TRICLINIC ? zbox*yz : 0.0);
const double deltaz = zbox*zprd;
const double fc0 = 0.5*(massone*(v[i].x - vx)/dtf - f[i].x);
const double fc1 = 0.5*(massone*(v[i].y - vy)/dtf - f[i].y);
const double fc2 = 0.5*(massone*(v[i].z - vz)/dtf - f[i].z);
const double x0 = x[i].x + deltax;
const double x1 = x[i].y + deltay;
const double x2 = x[i].z + deltaz;
vr[0] = x0*fc0; vr[1] = x1*fc1; vr[2] = x2*fc2;
vr[3] = x0*fc1; vr[4] = x0*fc2; vr[5] = x1*fc2;
// Fix::v_tally() is not thread safe, so we do this manually here
// accumulate global virial into thread-local variables and reduce them later
if (vflag_global) {
v0 += vr[0];
v1 += vr[1];
v2 += vr[2];
v3 += vr[3];
v4 += vr[4];
v5 += vr[5];
}
// accumulate per atom virial directly since we parallelize over atoms.
if (vflag_atom) {
vatom[i][0] += vr[0];
vatom[i][1] += vr[1];
vatom[i][2] += vr[2];
vatom[i][3] += vr[3];
vatom[i][4] += vr[4];
vatom[i][5] += vr[5];
}
}
} // end of parallel for
// second part of thread safe virial accumulation
// add global virial component after it was reduced across all threads
if (EVFLAG) {
if (vflag_global) {
virial[0] += v0;
virial[1] += v1;
virial[2] += v2;
virial[3] += v3;
virial[4] += v4;
virial[5] += v5;
}
}
// set omega, angmom of each extended particle
// XXX: extended particle info not yet multi-threaded
if (extended) {
double ione[3],exone[3],eyone[3],ezone[3];
double *shape,*quatatom,*inertiaatom;
AtomVecEllipsoid::Bonus *ebonus;
if (avec_ellipsoid) ebonus = avec_ellipsoid->bonus;
AtomVecTri::Bonus *tbonus;
if (avec_tri) tbonus = avec_tri->bonus;
double **omega = atom->omega;
double **angmom = atom->angmom;
int *ellipsoid = atom->ellipsoid;
int *tri = atom->tri;
for (int i = 0; i < nlocal; i++) {
if (atom2body[i] < 0) continue;
Body &b = body[atom2body[i]];
if (eflags[i] & SPHERE) {
omega[i][0] = b.omega[0];
omega[i][1] = b.omega[1];
omega[i][2] = b.omega[2];
} else if (eflags[i] & ELLIPSOID) {
shape = ebonus[ellipsoid[i]].shape;
quatatom = ebonus[ellipsoid[i]].quat;
ione[0] = EINERTIA*rmass[i] * (shape[1]*shape[1] + shape[2]*shape[2]);
ione[1] = EINERTIA*rmass[i] * (shape[0]*shape[0] + shape[2]*shape[2]);
ione[2] = EINERTIA*rmass[i] * (shape[0]*shape[0] + shape[1]*shape[1]);
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
MathExtra::omega_to_angmom(b.omega,exone,eyone,ezone,ione,
angmom[i]);
} else if (eflags[i] & LINE) {
omega[i][0] = b.omega[0];
omega[i][1] = b.omega[1];
omega[i][2] = b.omega[2];
} else if (eflags[i] & TRIANGLE) {
inertiaatom = tbonus[tri[i]].inertia;
quatatom = tbonus[tri[i]].quat;
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
MathExtra::omega_to_angmom(b.omega,exone,eyone,ezone,
inertiaatom,angmom[i]);
}
}
}
}
|