File: plot.py

package info (click to toggle)
lammps 20210122~gita77bb%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 331,996 kB
  • sloc: cpp: 802,213; python: 24,256; xml: 14,949; f90: 10,448; ansic: 8,476; perl: 4,161; sh: 3,466; fortran: 2,805; makefile: 1,250; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (76 lines) | stat: -rwxr-xr-x 1,908 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python -i
# preceding line should have path for Python on your machine

# plot.py
# Purpose: plot Temp of running LAMMPS simulation via GnuPlot in Pizza.py
# Syntax:  plot.py in.lammps Nfreq Nsteps compute-ID
#          in.lammps = LAMMPS input script
#          Nfreq = plot data point every this many steps
#          Nsteps = run for this many steps
#          compute-ID = ID of compute that calculates temperature
#                       (or any other scalar quantity)

from __future__ import print_function
import sys
sys.path.append("./pizza")
from gnu import gnu

# parse command line

argv = sys.argv
if len(argv) != 5:
  print("Syntax: plot.py in.lammps Nfreq Nsteps compute-ID")
  sys.exit()

infile = sys.argv[1]
nfreq = int(sys.argv[2])
nsteps = int(sys.argv[3])
compute = sys.argv[4]

me = 0
# uncomment if running in parallel via Pypar
#import pypar
#me = pypar.rank()
#nprocs = pypar.size()

from lammps import lammps
lmp = lammps()

# run infile all at once
# assumed to have no run command in it

lmp.file(infile)
lmp.command("thermo %d" % nfreq)

# initial 0-step run to generate initial 1-point plot

lmp.command("run 0 pre yes post no")
value = lmp.extract_compute(compute,0,0)
ntimestep = 0
xaxis = [ntimestep]
yaxis = [value]

# wrapper on GnuPlot via Pizza.py gnu tool
# just proc 0 handles plotting

if me == 0:
  gn = gnu()
  gn.plot(xaxis,yaxis)
  gn.xrange(0,nsteps)
  gn.title(compute,"Timestep","Temperature")

# run nfreq steps at a time w/out pre/post, query compute, refresh plot

while ntimestep < nsteps:
  lmp.command("run %d pre no post no" % nfreq)
  ntimestep += nfreq
  value = lmp.extract_compute(compute,0,0)
  xaxis.append(ntimestep)
  yaxis.append(value)
  if me == 0: gn.plot(xaxis,yaxis)

lmp.command("run 0 pre no post yes")

# uncomment if running in parallel via Pypar
#print("Proc %d out of %d procs has" % (me,nprocs), lmp)
#pypar.finalize()