1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
// ATC_Transfer headers
#include "ATC_CouplingEnergy.h"
#include "Thermostat.h"
#include "ATC_Error.h"
#include "PrescribedDataManager.h"
#include "FieldManager.h"
// Other Headers
#include <vector>
#include <set>
#include <utility>
#include <typeinfo>
using std::string;
namespace ATC {
//--------------------------------------------------------
//--------------------------------------------------------
// Class ATC_CouplingEnergy
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ATC_CouplingEnergy::ATC_CouplingEnergy(string groupName,
double ** & perAtomArray,
LAMMPS_NS::Fix * thisFix,
string matParamFile,
ExtrinsicModelType extrinsicModel)
: ATC_Coupling(groupName,perAtomArray,thisFix),
nodalAtomicKineticTemperature_(nullptr),
nodalAtomicConfigurationalTemperature_(nullptr)
{
// Allocate PhysicsModel
create_physics_model(THERMAL, matParamFile);
// create extrinsic physics model
if (extrinsicModel != NO_MODEL) {
extrinsicModelManager_.create_model(extrinsicModel,matParamFile);
}
// Defaults
set_time();
bndyIntType_ = FE_INTERPOLATION;
// set up field data based on physicsModel
physicsModel_->num_fields(fieldSizes_,fieldMask_);
// set up atomic regulator
atomicRegulator_ = new Thermostat(this);
// set up physics specific time integrator and thermostat
timeIntegrators_[TEMPERATURE] = new ThermalTimeIntegrator(this,TimeIntegrator::GEAR);
// default physics
temperatureDef_ = KINETIC;
// output variable vector info:
// output[1] = total coarse scale thermal energy
// output[2] = average temperature
vectorFlag_ = 1;
sizeVector_ = 2;
scalarVectorFreq_ = 1;
extVector_ = 1;
if (extrinsicModel != NO_MODEL)
sizeVector_ += extrinsicModelManager_.size_vector(sizeVector_);
}
//--------------------------------------------------------
// Destructor
//--------------------------------------------------------
ATC_CouplingEnergy::~ATC_CouplingEnergy()
{
// clear out all managed memory to avoid conflicts with dependencies on class member data
interscaleManager_.clear();
}
//--------------------------------------------------------
// initialize
// sets up all the necessary data
//--------------------------------------------------------
void ATC_CouplingEnergy::initialize()
{
// Base class initalizations
ATC_Coupling::initialize();
// reset integration field mask
intrinsicMask_.reset(NUM_FIELDS,NUM_FLUX);
intrinsicMask_ = false;
for (int i = 0; i < NUM_FLUX; i++)
intrinsicMask_(TEMPERATURE,i) = fieldMask_(TEMPERATURE,i);
}
//--------------------------------------------------------
// construct_transfers
// constructs needed transfer operators
//--------------------------------------------------------
void ATC_CouplingEnergy::construct_transfers()
{
ATC_Coupling::construct_transfers();
// always need kinetic energy
AtomicEnergyForTemperature * atomicTwiceKineticEnergy = new TwiceKineticEnergy(this);
AtomicEnergyForTemperature * atomEnergyForTemperature = nullptr;
// Appropriate per-atom quantity based on desired temperature definition
if (temperatureDef_==KINETIC) {
atomEnergyForTemperature = atomicTwiceKineticEnergy;
}
else if (temperatureDef_==TOTAL) {
if (timeIntegrators_[TEMPERATURE]->time_integration_type() != TimeIntegrator::FRACTIONAL_STEP)
throw ATC_Error("ATC_CouplingEnergy:construct_transfers() on the fractional step time integrator can be used with non-kinetic defitions of the temperature");
// kinetic energy
interscaleManager_.add_per_atom_quantity(atomicTwiceKineticEnergy,
"AtomicTwiceKineticEnergy");
// atomic potential energy
ComputedAtomQuantity * atomicPotentialEnergy = new ComputedAtomQuantity(this,
lammpsInterface_->compute_pe_name(),
1./(lammpsInterface_->mvv2e()));
interscaleManager_.add_per_atom_quantity(atomicPotentialEnergy,
"AtomicPotentialEnergy");
// reference potential energy
AtcAtomQuantity<double> * atomicReferencePotential;
if (!initialized_) {
atomicReferencePotential = new AtcAtomQuantity<double>(this);
interscaleManager_.add_per_atom_quantity(atomicReferencePotential,
"AtomicReferencePotential");
atomicReferencePotential->set_memory_type(PERSISTENT);
}
else {
atomicReferencePotential = static_cast<AtcAtomQuantity<double> * >(interscaleManager_.per_atom_quantity("AtomicReferencePotential"));
}
nodalRefPotentialEnergy_ = new AtfShapeFunctionRestriction(this,
atomicReferencePotential,
shpFcn_);
interscaleManager_.add_dense_matrix(nodalRefPotentialEnergy_,
"NodalAtomicReferencePotential");
// fluctuating potential energy
AtomicEnergyForTemperature * atomicFluctuatingPotentialEnergy =
new FluctuatingPotentialEnergy(this,
atomicPotentialEnergy,
atomicReferencePotential);
interscaleManager_.add_per_atom_quantity(atomicFluctuatingPotentialEnergy,
"AtomicFluctuatingPotentialEnergy");
// atomic total energy
atomEnergyForTemperature = new MixedKePeEnergy(this,1,1);
// kinetic temperature measure for post-processing
// nodal restriction of the atomic energy quantity for the temperature definition
AtfShapeFunctionRestriction * nodalAtomicTwiceKineticEnergy = new AtfShapeFunctionRestriction(this,
atomicTwiceKineticEnergy,
shpFcn_);
interscaleManager_.add_dense_matrix(nodalAtomicTwiceKineticEnergy,
"NodalAtomicTwiceKineticEnergy");
nodalAtomicKineticTemperature_ = new AtfShapeFunctionMdProjection(this,
nodalAtomicTwiceKineticEnergy,
TEMPERATURE);
interscaleManager_.add_dense_matrix(nodalAtomicKineticTemperature_,
"NodalAtomicKineticTemperature");
// potential temperature measure for post-processing (must multiply by 2 for configurational temperature
// nodal restriction of the atomic energy quantity for the temperature definition
AtfShapeFunctionRestriction * nodalAtomicFluctuatingPotentialEnergy = new AtfShapeFunctionRestriction(this,
atomicFluctuatingPotentialEnergy,
shpFcn_);
interscaleManager_.add_dense_matrix(nodalAtomicFluctuatingPotentialEnergy,
"NodalAtomicFluctuatingPotentialEnergy");
nodalAtomicConfigurationalTemperature_ = new AtfShapeFunctionMdProjection(this,
nodalAtomicFluctuatingPotentialEnergy,
TEMPERATURE);
interscaleManager_.add_dense_matrix(nodalAtomicConfigurationalTemperature_,
"NodalAtomicConfigurationalTemperature");
}
// register the per-atom quantity for the temperature definition
interscaleManager_.add_per_atom_quantity(atomEnergyForTemperature,
"AtomicEnergyForTemperature");
// nodal restriction of the atomic energy quantity for the temperature definition
AtfShapeFunctionRestriction * nodalAtomicEnergy = new AtfShapeFunctionRestriction(this,
atomEnergyForTemperature,
shpFcn_);
interscaleManager_.add_dense_matrix(nodalAtomicEnergy,
"NodalAtomicEnergy");
// nodal atomic temperature field
AtfShapeFunctionMdProjection * nodalAtomicTemperature = new AtfShapeFunctionMdProjection(this,
nodalAtomicEnergy,
TEMPERATURE);
interscaleManager_.add_dense_matrix(nodalAtomicTemperature,
"NodalAtomicTemperature");
for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
(_tiIt_->second)->construct_transfers();
}
atomicRegulator_->construct_transfers();
}
//---------------------------------------------------------
// init_filter
// sets up the time filtering operations in all objects
//---------------------------------------------------------
void ATC_CouplingEnergy::init_filter()
{
TimeIntegrator::TimeIntegrationType timeIntegrationType = timeIntegrators_[TEMPERATURE]->time_integration_type();
if (timeFilterManager_.end_equilibrate()) {
if (timeIntegrationType==TimeIntegrator::GEAR) {
if (equilibriumStart_) {
if (atomicRegulator_->regulator_target()==AtomicRegulator::DYNAMICS) { // based on FE equation
DENS_MAT vdotflamMat(-2.*(nodalAtomicFields_[TEMPERATURE].quantity())); // note 2 is for 1/2 vdotflam addition
atomicRegulator_->reset_lambda_contribution(vdotflamMat);
}
else { // based on MD temperature equation
DENS_MAT vdotflamMat(-1.*(nodalAtomicFields_[TEMPERATURE].quantity()));
atomicRegulator_->reset_lambda_contribution(vdotflamMat);
}
}
}
else if (timeIntegrationType==TimeIntegrator::FRACTIONAL_STEP) {
if (equilibriumStart_) {
DENS_MAT powerMat(-1.*(nodalAtomicFields_[TEMPERATURE].quantity()));
atomicRegulator_->reset_lambda_contribution(powerMat);
}
}
}
}
//--------------------------------------------------------
// modify
// parses inputs and modifies state of the filter
//--------------------------------------------------------
bool ATC_CouplingEnergy::modify(int narg, char **arg)
{
bool foundMatch = false;
int argIndx = 0;
// check to see if input is a transfer class command
// check derived class before base class
// pass-through to thermostat
if (strcmp(arg[argIndx],"control")==0) {
argIndx++;
foundMatch = atomicRegulator_->modify(narg-argIndx,&arg[argIndx]);
}
// pass-through to timeIntegrator class
else if (strcmp(arg[argIndx],"time_integration")==0) {
argIndx++;
foundMatch = timeIntegrators_[TEMPERATURE]->modify(narg-argIndx,&arg[argIndx]);
}
// switch for the kind of temperature being used
/*! \page man_temperature_definition fix_modify AtC temperature_definition
\section syntax
fix_modify AtC temperature_definition <kinetic|total>
\section examples
<TT> fix_modify atc temperature_definition kinetic </TT> \n
\section description
Change the definition for the atomic temperature used to create the finite element temperature. The kinetic option is based only on the kinetic energy of the atoms while the total option uses the total energy (kinetic + potential) of an atom.
\section restrictions
This command is only valid when using thermal coupling. Also, while not a formal restriction, the user should ensure that associating a potential energy with each atom makes physical sense for the total option to be meaningful.
\section default
kinetic
*/
else if (strcmp(arg[argIndx],"temperature_definition")==0) {
argIndx++;
string_to_temperature_def(arg[argIndx],temperatureDef_);
if (temperatureDef_ == TOTAL) {
setRefPE_ = true;
}
foundMatch = true;
needReset_ = true;
}
// no match, call base class parser
if (!foundMatch) {
foundMatch = ATC_Coupling::modify(narg, arg);
}
return foundMatch;
}
//--------------------------------------------------------------------
// compute_vector
//--------------------------------------------------------------------
// this is for direct output to lammps thermo
double ATC_CouplingEnergy::compute_vector(int n)
{
// output[1] = total coarse scale thermal energy
// output[2] = average temperature
double mvv2e = lammpsInterface_->mvv2e(); // convert to lammps energy units
if (n == 0) {
Array<FieldName> mask(1);
FIELD_MATS energy;
mask(0) = TEMPERATURE;
feEngine_->compute_energy(mask,
fields_,
physicsModel_,
elementToMaterialMap_,
energy,
&(elementMask_->quantity()));
double phononEnergy = mvv2e * energy[TEMPERATURE].col_sum();
return phononEnergy;
}
else if (n == 1) {
double aveT = (fields_[TEMPERATURE].quantity()).col_sum()/nNodes_;
return aveT;
}
else if (n > 1) {
double extrinsicValue = extrinsicModelManager_.compute_vector(n);
return extrinsicValue;
}
return 0.;
}
//--------------------------------------------------------------------
// output
//--------------------------------------------------------------------
void ATC_CouplingEnergy::output()
{
if (output_now()) {
feEngine_->departition_mesh();
// avoid possible mpi calls
if (nodalAtomicKineticTemperature_)
_keTemp_ = nodalAtomicKineticTemperature_->quantity();
if (nodalAtomicConfigurationalTemperature_)
_peTemp_ = nodalAtomicConfigurationalTemperature_->quantity();
OUTPUT_LIST outputData;
// base class output
ATC_Method::output();
// push atc fields time integrator modifies into output arrays
for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
(_tiIt_->second)->post_process();
}
// auxiliary data
for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
(_tiIt_->second)->output(outputData);
}
atomicRegulator_->output(outputData);
extrinsicModelManager_.output(outputData);
DENS_MAT & temperature(nodalAtomicFields_[TEMPERATURE].set_quantity());
DENS_MAT & dotTemperature(dot_fields_[TEMPERATURE].set_quantity());
DENS_MAT & ddotTemperature(ddot_fields_[TEMPERATURE].set_quantity());
DENS_MAT & rocTemperature(nodalAtomicFieldsRoc_[TEMPERATURE].set_quantity());
DENS_MAT & fePower(rhs_[TEMPERATURE].set_quantity());
if (lammpsInterface_->rank_zero()) {
// global data
double T_mean = (fields_[TEMPERATURE].quantity()).col_sum(0)/nNodes_;
feEngine_->add_global("temperature_mean", T_mean);
double T_stddev = (fields_[TEMPERATURE].quantity()).col_stdev(0);
feEngine_->add_global("temperature_std_dev", T_stddev);
double Ta_mean = (nodalAtomicFields_[TEMPERATURE].quantity()).col_sum(0)/nNodes_;
feEngine_->add_global("atomic_temperature_mean", Ta_mean);
double Ta_stddev = (nodalAtomicFields_[TEMPERATURE].quantity()).col_stdev(0);
feEngine_->add_global("atomic_temperature_std_dev", Ta_stddev);
// different temperature measures, if appropriate
if (nodalAtomicKineticTemperature_)
outputData["kinetic_temperature"] = & _keTemp_;
if (nodalAtomicConfigurationalTemperature_) {
_peTemp_ *= 2; // account for full temperature
outputData["configurational_temperature"] = & _peTemp_;
}
// mesh data
outputData["NodalAtomicTemperature"] = &temperature;
outputData["dot_temperature"] = &dotTemperature;
outputData["ddot_temperature"] = &ddotTemperature;
outputData["NodalAtomicPower"] = &rocTemperature;
outputData["fePower"] = &fePower;
// write data
feEngine_->write_data(output_index(), fields_, & outputData);
}
feEngine_->partition_mesh();
}
}
};
|