File: ATC_CouplingEnergy.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (412 lines) | stat: -rw-r--r-- 16,878 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// ATC_Transfer headers
#include "ATC_CouplingEnergy.h"
#include "Thermostat.h"
#include "ATC_Error.h"
#include "PrescribedDataManager.h"
#include "FieldManager.h"

// Other Headers
#include <vector>
#include <set>
#include <utility>
#include <typeinfo>

using std::string;

namespace ATC {

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class ATC_CouplingEnergy
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  ATC_CouplingEnergy::ATC_CouplingEnergy(string groupName,
                                         double ** & perAtomArray,
                                         LAMMPS_NS::Fix * thisFix,
                                         string matParamFile,
                                         ExtrinsicModelType extrinsicModel)
    : ATC_Coupling(groupName,perAtomArray,thisFix),
      nodalAtomicKineticTemperature_(nullptr),
      nodalAtomicConfigurationalTemperature_(nullptr)
  {
    // Allocate PhysicsModel
    create_physics_model(THERMAL, matParamFile);

    // create extrinsic physics model
    if (extrinsicModel != NO_MODEL) {
      extrinsicModelManager_.create_model(extrinsicModel,matParamFile);
    }

    // Defaults
    set_time();
    bndyIntType_ = FE_INTERPOLATION;

    // set up field data based on physicsModel
    physicsModel_->num_fields(fieldSizes_,fieldMask_);

    // set up atomic regulator
    atomicRegulator_ = new Thermostat(this);

    // set up physics specific time integrator and thermostat
    timeIntegrators_[TEMPERATURE] = new ThermalTimeIntegrator(this,TimeIntegrator::GEAR);

    // default physics
    temperatureDef_ = KINETIC;

    // output variable vector info:
    // output[1] = total coarse scale thermal energy
    // output[2] = average temperature
    vectorFlag_ = 1;
    sizeVector_ = 2;
    scalarVectorFreq_ = 1;
    extVector_ = 1;
    if (extrinsicModel != NO_MODEL)
      sizeVector_ += extrinsicModelManager_.size_vector(sizeVector_);
  }

  //--------------------------------------------------------
  //  Destructor
  //--------------------------------------------------------
  ATC_CouplingEnergy::~ATC_CouplingEnergy()
  {
    // clear out all managed memory to avoid conflicts with dependencies on class member data
    interscaleManager_.clear();
  }

  //--------------------------------------------------------
  //  initialize
  //    sets up all the necessary data
  //--------------------------------------------------------
  void ATC_CouplingEnergy::initialize()
  {
    // Base class initalizations
    ATC_Coupling::initialize();

    // reset integration field mask
    intrinsicMask_.reset(NUM_FIELDS,NUM_FLUX);
    intrinsicMask_ = false;
    for (int i = 0; i < NUM_FLUX; i++)
      intrinsicMask_(TEMPERATURE,i) = fieldMask_(TEMPERATURE,i);
  }

  //--------------------------------------------------------
  //  construct_transfers
  //    constructs needed transfer operators
  //--------------------------------------------------------
  void ATC_CouplingEnergy::construct_transfers()
  {
    ATC_Coupling::construct_transfers();

    // always need kinetic energy
    AtomicEnergyForTemperature * atomicTwiceKineticEnergy = new TwiceKineticEnergy(this);
    AtomicEnergyForTemperature * atomEnergyForTemperature = nullptr;

    // Appropriate per-atom quantity based on desired temperature definition
    if (temperatureDef_==KINETIC) {
      atomEnergyForTemperature = atomicTwiceKineticEnergy;
    }
    else if (temperatureDef_==TOTAL) {
      if (timeIntegrators_[TEMPERATURE]->time_integration_type() != TimeIntegrator::FRACTIONAL_STEP)
        throw ATC_Error("ATC_CouplingEnergy:construct_transfers()  on the fractional step time integrator can be used with non-kinetic defitions of the temperature");

      // kinetic energy
      interscaleManager_.add_per_atom_quantity(atomicTwiceKineticEnergy,
                                               "AtomicTwiceKineticEnergy");

      // atomic potential energy
      ComputedAtomQuantity * atomicPotentialEnergy = new ComputedAtomQuantity(this,
                                                                              lammpsInterface_->compute_pe_name(),
                                                                              1./(lammpsInterface_->mvv2e()));
      interscaleManager_.add_per_atom_quantity(atomicPotentialEnergy,
                                               "AtomicPotentialEnergy");

      // reference potential energy
      AtcAtomQuantity<double> * atomicReferencePotential;
      if (!initialized_) {
        atomicReferencePotential = new AtcAtomQuantity<double>(this);
        interscaleManager_.add_per_atom_quantity(atomicReferencePotential,
                                                 "AtomicReferencePotential");
        atomicReferencePotential->set_memory_type(PERSISTENT);
      }
      else {
        atomicReferencePotential = static_cast<AtcAtomQuantity<double> * >(interscaleManager_.per_atom_quantity("AtomicReferencePotential"));
      }
      nodalRefPotentialEnergy_ = new AtfShapeFunctionRestriction(this,
                                                                 atomicReferencePotential,
                                                                 shpFcn_);
      interscaleManager_.add_dense_matrix(nodalRefPotentialEnergy_,
                                          "NodalAtomicReferencePotential");

      // fluctuating potential energy
      AtomicEnergyForTemperature * atomicFluctuatingPotentialEnergy =
        new FluctuatingPotentialEnergy(this,
                                       atomicPotentialEnergy,
                                       atomicReferencePotential);
      interscaleManager_.add_per_atom_quantity(atomicFluctuatingPotentialEnergy,
         "AtomicFluctuatingPotentialEnergy");

      // atomic total energy
      atomEnergyForTemperature = new MixedKePeEnergy(this,1,1);

      // kinetic temperature measure for post-processing
      // nodal restriction of the atomic energy quantity for the temperature definition
      AtfShapeFunctionRestriction * nodalAtomicTwiceKineticEnergy = new AtfShapeFunctionRestriction(this,
                                                                                                    atomicTwiceKineticEnergy,
                                                                                                    shpFcn_);
      interscaleManager_.add_dense_matrix(nodalAtomicTwiceKineticEnergy,
                                          "NodalAtomicTwiceKineticEnergy");
      nodalAtomicKineticTemperature_ = new AtfShapeFunctionMdProjection(this,
        nodalAtomicTwiceKineticEnergy,
        TEMPERATURE);
      interscaleManager_.add_dense_matrix(nodalAtomicKineticTemperature_,
        "NodalAtomicKineticTemperature");

      // potential temperature measure for post-processing (must multiply by 2 for configurational temperature
      // nodal restriction of the atomic energy quantity for the temperature definition
      AtfShapeFunctionRestriction * nodalAtomicFluctuatingPotentialEnergy = new AtfShapeFunctionRestriction(this,
        atomicFluctuatingPotentialEnergy,
        shpFcn_);
      interscaleManager_.add_dense_matrix(nodalAtomicFluctuatingPotentialEnergy,
                                          "NodalAtomicFluctuatingPotentialEnergy");
      nodalAtomicConfigurationalTemperature_ = new AtfShapeFunctionMdProjection(this,
        nodalAtomicFluctuatingPotentialEnergy,
        TEMPERATURE);
      interscaleManager_.add_dense_matrix(nodalAtomicConfigurationalTemperature_,
                                          "NodalAtomicConfigurationalTemperature");
    }

    // register the per-atom quantity for the temperature definition
    interscaleManager_.add_per_atom_quantity(atomEnergyForTemperature,
                                             "AtomicEnergyForTemperature");

    // nodal restriction of the atomic energy quantity for the temperature definition
    AtfShapeFunctionRestriction * nodalAtomicEnergy = new AtfShapeFunctionRestriction(this,
                                                                                      atomEnergyForTemperature,
                                                                                      shpFcn_);
    interscaleManager_.add_dense_matrix(nodalAtomicEnergy,
                                        "NodalAtomicEnergy");

    // nodal atomic temperature field

    AtfShapeFunctionMdProjection * nodalAtomicTemperature = new AtfShapeFunctionMdProjection(this,
                                                                                             nodalAtomicEnergy,
                                                                                             TEMPERATURE);
    interscaleManager_.add_dense_matrix(nodalAtomicTemperature,
                                        "NodalAtomicTemperature");

    for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
      (_tiIt_->second)->construct_transfers();
    }
    atomicRegulator_->construct_transfers();
  }

  //---------------------------------------------------------
  //  init_filter
  //    sets up the time filtering operations in all objects
  //---------------------------------------------------------
  void ATC_CouplingEnergy::init_filter()
  {

    TimeIntegrator::TimeIntegrationType timeIntegrationType = timeIntegrators_[TEMPERATURE]->time_integration_type();




    if (timeFilterManager_.end_equilibrate()) {
      if (timeIntegrationType==TimeIntegrator::GEAR) {
        if (equilibriumStart_) {



          if (atomicRegulator_->regulator_target()==AtomicRegulator::DYNAMICS) { // based on FE equation
            DENS_MAT vdotflamMat(-2.*(nodalAtomicFields_[TEMPERATURE].quantity())); // note 2 is for 1/2 vdotflam addition
            atomicRegulator_->reset_lambda_contribution(vdotflamMat);
          }
          else { // based on MD temperature equation
            DENS_MAT vdotflamMat(-1.*(nodalAtomicFields_[TEMPERATURE].quantity()));
            atomicRegulator_->reset_lambda_contribution(vdotflamMat);
          }
        }
      }
      else if (timeIntegrationType==TimeIntegrator::FRACTIONAL_STEP) {
        if (equilibriumStart_) {
          DENS_MAT powerMat(-1.*(nodalAtomicFields_[TEMPERATURE].quantity()));
          atomicRegulator_->reset_lambda_contribution(powerMat);
        }
      }
    }
  }

  //--------------------------------------------------------
  //  modify
  //    parses inputs and modifies state of the filter
  //--------------------------------------------------------
  bool ATC_CouplingEnergy::modify(int narg, char **arg)
  {
    bool foundMatch = false;
    int argIndx = 0;

    // check to see if input is a transfer class command
    // check derived class before base class

    // pass-through to thermostat
    if (strcmp(arg[argIndx],"control")==0) {
      argIndx++;
      foundMatch = atomicRegulator_->modify(narg-argIndx,&arg[argIndx]);
    }

    // pass-through to timeIntegrator class
    else if (strcmp(arg[argIndx],"time_integration")==0) {
      argIndx++;
      foundMatch = timeIntegrators_[TEMPERATURE]->modify(narg-argIndx,&arg[argIndx]);
    }

    // switch for the kind of temperature being used
    /*! \page man_temperature_definition fix_modify AtC temperature_definition
      \section syntax
      fix_modify AtC temperature_definition <kinetic|total>

      \section examples
      <TT> fix_modify atc temperature_definition kinetic </TT> \n

      \section description
      Change the definition for the atomic temperature used to create the finite element temperature.  The kinetic option is based only on the kinetic energy of the atoms while the total option uses the total energy (kinetic + potential) of an atom.

      \section restrictions
      This command is only valid when using thermal coupling.  Also, while not a formal restriction, the user should ensure that associating a potential energy with each atom makes physical sense for the total option to be meaningful.

        \section default
        kinetic
      */
    else if (strcmp(arg[argIndx],"temperature_definition")==0) {
      argIndx++;
      string_to_temperature_def(arg[argIndx],temperatureDef_);
      if (temperatureDef_ == TOTAL) {
        setRefPE_ = true;
      }
      foundMatch = true;
      needReset_ = true;
    }

    // no match, call base class parser
    if (!foundMatch) {
      foundMatch = ATC_Coupling::modify(narg, arg);
    }

    return foundMatch;

  }

  //--------------------------------------------------------------------
  //     compute_vector
  //--------------------------------------------------------------------
  // this is for direct output to lammps thermo
  double ATC_CouplingEnergy::compute_vector(int n)
  {
    // output[1] = total coarse scale thermal energy
    // output[2] = average temperature

    double mvv2e = lammpsInterface_->mvv2e(); // convert to lammps energy units

    if (n == 0) {
      Array<FieldName> mask(1);
      FIELD_MATS energy;
      mask(0) = TEMPERATURE;

      feEngine_->compute_energy(mask,
                                fields_,
                                physicsModel_,
                                elementToMaterialMap_,
                                energy,
                                &(elementMask_->quantity()));

      double phononEnergy = mvv2e * energy[TEMPERATURE].col_sum();
      return phononEnergy;
    }
    else if (n == 1) {
      double aveT = (fields_[TEMPERATURE].quantity()).col_sum()/nNodes_;
      return aveT;
    }
    else if (n > 1) {
      double extrinsicValue = extrinsicModelManager_.compute_vector(n);
      return extrinsicValue;
    }

    return 0.;

  }

  //--------------------------------------------------------------------
  //     output
  //--------------------------------------------------------------------
  void ATC_CouplingEnergy::output()
  {
    if (output_now()) {
      feEngine_->departition_mesh();

      // avoid possible mpi calls
      if (nodalAtomicKineticTemperature_)
        _keTemp_ = nodalAtomicKineticTemperature_->quantity();
      if (nodalAtomicConfigurationalTemperature_)
      _peTemp_ = nodalAtomicConfigurationalTemperature_->quantity();

      OUTPUT_LIST outputData;

      // base class output
      ATC_Method::output();

      // push atc fields time integrator modifies into output arrays
      for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
        (_tiIt_->second)->post_process();
      }

      // auxiliary data
      for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
        (_tiIt_->second)->output(outputData);
      }
      atomicRegulator_->output(outputData);
      extrinsicModelManager_.output(outputData);

      DENS_MAT & temperature(nodalAtomicFields_[TEMPERATURE].set_quantity());
      DENS_MAT & dotTemperature(dot_fields_[TEMPERATURE].set_quantity());
      DENS_MAT & ddotTemperature(ddot_fields_[TEMPERATURE].set_quantity());
      DENS_MAT & rocTemperature(nodalAtomicFieldsRoc_[TEMPERATURE].set_quantity());
      DENS_MAT & fePower(rhs_[TEMPERATURE].set_quantity());
      if (lammpsInterface_->rank_zero()) {
        // global data
        double T_mean   = (fields_[TEMPERATURE].quantity()).col_sum(0)/nNodes_;
        feEngine_->add_global("temperature_mean",  T_mean);
        double T_stddev   = (fields_[TEMPERATURE].quantity()).col_stdev(0);
        feEngine_->add_global("temperature_std_dev",  T_stddev);
        double Ta_mean =  (nodalAtomicFields_[TEMPERATURE].quantity()).col_sum(0)/nNodes_;
        feEngine_->add_global("atomic_temperature_mean",  Ta_mean);
        double Ta_stddev =  (nodalAtomicFields_[TEMPERATURE].quantity()).col_stdev(0);
        feEngine_->add_global("atomic_temperature_std_dev",  Ta_stddev);

        // different temperature measures, if appropriate
        if (nodalAtomicKineticTemperature_)
          outputData["kinetic_temperature"] = & _keTemp_;

        if (nodalAtomicConfigurationalTemperature_) {
          _peTemp_ *= 2; // account for full temperature
          outputData["configurational_temperature"] = & _peTemp_;
        }

        // mesh data
        outputData["NodalAtomicTemperature"] = &temperature;
        outputData["dot_temperature"] = &dotTemperature;
        outputData["ddot_temperature"] = &ddotTemperature;
        outputData["NodalAtomicPower"] = &rocTemperature;
        outputData["fePower"] = &fePower;

        // write data
        feEngine_->write_data(output_index(), fields_, & outputData);
      }
      feEngine_->partition_mesh();
    }
  }
};