File: ATC_CouplingMass.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (285 lines) | stat: -rw-r--r-- 10,074 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// ATC_Transfer headers
#include "ATC_CouplingMass.h"
#include "ATC_Error.h"
#include "FE_Engine.h"
#include "SpeciesTimeIntegrator.h"
#include "PrescribedDataManager.h"
#include "ExtrinsicModelElectrostatic.h"
#include "PoissonSolver.h"
#include "ChargeRegulator.h"
#include "ConcentrationRegulator.h"
#include "PerAtomQuantityLibrary.h"
#include "TransferOperator.h"
#include "AtomToMoleculeTransfer.h"
#include "MoleculeSet.h"
#include "FieldManager.h"

// Other Headers
#include <vector>
#include <set>
#include <utility>

using ATC_Utility::to_string;
using std::map;
using std::string;
using std::pair;

namespace ATC {

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class ATC_CouplingMass
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  ATC_CouplingMass::ATC_CouplingMass(string groupName,
                                     double **& perAtomArray,
                                     LAMMPS_NS::Fix * thisFix,
                                     string matParamFile,
                                     ExtrinsicModelType extrinsicModel)
    : ATC_Coupling(groupName,perAtomArray,thisFix),
      resetNlocal_(false)
  {
    // Allocate PhysicsModel
    create_physics_model(SPECIES, matParamFile);

    // create extrinsic physics model
    if (extrinsicModel != NO_MODEL) {
      extrinsicModelManager_.create_model(extrinsicModel,matParamFile);
    }

    // Defaults
    set_time();
    bndyIntType_ = NO_QUADRATURE;


    // set up field data based on physicsModel
    physicsModel_->num_fields(fieldSizes_,fieldMask_);

    // regulator
    atomicRegulator_ = new ConcentrationRegulator(this);

    // set up physics specific time integrator
    //WIP_JAT should be species concentration
    timeIntegrators_[MASS_DENSITY] = new SpeciesTimeIntegrator(this,TimeIntegrator::FRACTIONAL_STEP);

    // output variable vector info:
    // output[1] = system mass density
    vectorFlag_ = 1;
    sizeVector_ = 0;
    scalarVectorFreq_ = 1;
    extVector_ = 1;
    if (extrinsicModel != NO_MODEL)
      sizeVector_ += extrinsicModelManager_.size_vector(sizeVector_);
    sizeVector_ += atomicRegulator_->size_vector(sizeVector_);
  }

  //--------------------------------------------------------
  //  Destructor
  //--------------------------------------------------------
  ATC_CouplingMass::~ATC_CouplingMass()
  {
    interscaleManager_.clear();
  }

  //--------------------------------------------------------
  //  modify
  //    parses inputs and modifies state
  //--------------------------------------------------------
  bool ATC_CouplingMass::modify(int narg, char **arg)
  {
    bool match = false;
    // check to see if it is a transfer class command

    // check derived class before base class
    int argIndex = 0;
    // pass-through to concentration regulator
    if (strcmp(arg[argIndex],"control")==0) {
      argIndex++;
      if (strcmp(arg[argIndex],"concentration")==0) {
        argIndex++;
        match = atomicRegulator_->modify(narg-argIndex,&arg[argIndex]);
      }
    }
    // no match, call base class parser
    if (!match) {
      match = ATC_Coupling::modify(narg, arg);
    }
    return match;
  }

  //--------------------------------------------------------
  //  initialize
  //    sets up all the necessary data
  //--------------------------------------------------------
  void ATC_CouplingMass::initialize()
  {

    fieldSizes_[SPECIES_CONCENTRATION] = ntracked();

    // Base class initalizations
    ATC_Coupling::initialize();

    // reset integration field mask
    intrinsicMask_.reset(NUM_FIELDS,NUM_FLUX);
    intrinsicMask_ = false;

  }

  void ATC_CouplingMass::construct_transfers()
  {
    ATC_Coupling::construct_transfers();
    FieldManager fmgr(this);
    atomicFields_[MASS_DENSITY]  = fmgr.nodal_atomic_field(MASS_DENSITY, field_to_intrinsic_name(MASS_DENSITY));

    if (has_tracked_species()) {
      atomicFields_[SPECIES_CONCENTRATION]  = fmgr.nodal_atomic_field(SPECIES_CONCENTRATION, field_to_intrinsic_name(SPECIES_CONCENTRATION));

      //if (atomicRegulator_->needs_temperature()) {

        atomicFields_[TEMPERATURE]  = fmgr.nodal_atomic_field(KINETIC_TEMPERATURE, field_to_intrinsic_name(TEMPERATURE));
        //atomicFields_[TEMPERATURE]  = fmgr.nodal_atomic_field(TEMPERATURE, field_to_intrinsic_name(TEMPERATURE));
        field(TEMPERATURE) = atomicFields_[TEMPERATURE]->quantity();
        //}
    }
    else {

      throw ATC_Error("ATC_CouplingMass: no tracked species");
    }

    //==========================================================================
    // add molecule mass density transfer operators
    //==========================================================================
    map<string,pair<MolSize,int> >::const_iterator molecule;
    FundamentalAtomQuantity * mass = interscaleManager_.fundamental_atom_quantity(LammpsInterface::ATOM_MASS,
                                                                                  PROC_GHOST);

    for (molecule = moleculeIds_.begin(); molecule != moleculeIds_.end(); molecule++) {
      const string moleculeName = molecule->first;
      SmallMoleculeSet * smallMoleculeSet = interscaleManager_.small_molecule_set(moleculeName);
      SPAR_MAN * shpFcnMol = interscaleManager_.sparse_matrix("ShapeFunction"+moleculeName);
      AtomToSmallMoleculeTransfer<double> * moleculeMass =
        new AtomToSmallMoleculeTransfer<double>(this,mass,smallMoleculeSet);
      interscaleManager_.add_dense_matrix(moleculeMass,"MoleculeMass"+moleculeName);
      MotfShapeFunctionRestriction * nodalAtomicMoleculeMass =
        new MotfShapeFunctionRestriction(moleculeMass,shpFcnMol);
      interscaleManager_.add_dense_matrix(nodalAtomicMoleculeMass,"NodalMoleculeMass"+moleculeName);


      AtfShapeFunctionMdProjection * nodalAtomicMoleculeMassDensity =
        new AtfShapeFunctionMdProjection(this,nodalAtomicMoleculeMass,MASS_DENSITY);
      interscaleManager_.add_dense_matrix(nodalAtomicMoleculeMassDensity,"NodalMoleculeMassDensity"+moleculeName);
    }
    for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
      (_tiIt_->second)->construct_transfers();
    }
  }

  void ATC_CouplingMass::init_filter()
  {

    ATC_Coupling::init_filter();
  }

  //WIP_JAT consolidate to coupling when we handle the temperature correctly
  //--------------------------------------------------------
  //  pre_exchange
  //    prior to exchange of atoms
  //--------------------------------------------------------
  void ATC_CouplingMass::pre_exchange()
  {
    ATC_Coupling::pre_exchange();

    //if (atomicRegulator_->needs_temperature()) {
      field(TEMPERATURE) = atomicFields_[TEMPERATURE]->quantity();
///}
    atomicRegulator_->pre_exchange();
    if (resetNlocal_) {
      this->reset_nlocal();
      resetNlocal_ = false;
    }
  }

  //--------------------------------------------------------
  //  output
  //    does post-processing steps and outputs data
  //--------------------------------------------------------
  void ATC_CouplingMass::output()
  {
    if (output_now()) {
      feEngine_->departition_mesh();
      OUTPUT_LIST outputData;

      // base class output
      ATC_Coupling::output();

      // push atc fields time integrator modifies into output arrays
      for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
        (_tiIt_->second)->post_process();
      }

      // auxiliary data
      for (_tiIt_ = timeIntegrators_.begin(); _tiIt_ != timeIntegrators_.end(); ++_tiIt_) {
        (_tiIt_->second)->output(outputData);
      }
      extrinsicModelManager_.output(outputData);
      atomicRegulator_->output(outputData);

      FIELD_POINTERS::iterator itr;
      for (itr=atomicFields_.begin(); itr!=atomicFields_.end();itr++) {
        FieldName name = itr->first;
        const DENS_MAT & data = (itr->second)->quantity();
        outputData[field_to_intrinsic_name(name)] = & data;
      }
      // compute partial forces
      int * type =lammpsInterface_->atom_type();
      double ** f =lammpsInterface_->fatom();
      for (unsigned int j = 0; j < typeList_.size(); j++) {
        string speciesName = typeNames_[j];
        int sType = typeList_[j];
        double localF[3] = {0,0,0}, F[3] = {0,0,0};
        for (int i = 0; i < nLocal_; i++) {
          int a = internalToAtom_(i);
          if (sType == type[a]) {
            double * fa = f[a];
            localF[0] += fa[0];
            localF[1] += fa[1];
            localF[2] += fa[2];
          }
         }
         lammpsInterface_->allsum(localF,F,3);
         if (lammpsInterface_->rank_zero()) {
           for (int i = 0; i < 3; ++i)  {
            feEngine_->add_global(speciesName+"_F"+to_string(i+1), F[i]);
           }
         }
      }
      if (lammpsInterface_->rank_zero()) {
        // tagged data --only for molecule
        map<string,DENS_MAN>::iterator densMan;
        for (densMan = taggedDensMan_.begin(); densMan != taggedDensMan_.end(); densMan++) {
          outputData[densMan->first] = & (densMan->second).set_quantity();
        }

        feEngine_->write_data(output_index(), fields_, & outputData);
      }
      // force reset of tagged data to keep in sync
      map<string,DENS_MAN>::iterator densMan;
      for (densMan = taggedDensMan_.begin(); densMan != taggedDensMan_.end(); densMan++)
        (densMan->second).force_reset();
      feEngine_->partition_mesh();
    }
  }

  //--------------------------------------------------------------------
  //     compute_vector
  //--------------------------------------------------------------------
  // this is for direct output to lammps thermo
  double ATC_CouplingMass::compute_vector(int n)
  {
    return atomicRegulator_->compute_vector(n);
  }
};