File: ATC_Method.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (2431 lines) | stat: -rw-r--r-- 87,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
// ATC headers
#include "ATC_Method.h"
#include "LammpsInterface.h"
#include "FE_Engine.h"
#include "Array.h"
#include "Array2D.h"
#include "ATC_Error.h"
#include "Function.h"
#include "PrescribedDataManager.h"
#include "TimeIntegrator.h"
#include "PhysicsModel.h"
#include "PerAtomQuantityLibrary.h"
#include "TransferLibrary.h"
#include "KernelFunction.h"
#include "Utility.h"
#include "FieldManager.h"

#include <fstream>
#include <sstream>
#include <iostream>

using ATC_Utility::sgn;
using ATC_Utility::to_string;
using ATC_Utility::is_dbl;

using std::stringstream;
using std::ifstream;
using std::ofstream;
using std::string;
using std::map;
using std::set;
using std::vector;
using std::pair;

namespace ATC {

  ATC_Method::ATC_Method(string groupName, double ** & perAtomArray, LAMMPS_NS::Fix * thisFix) :
    nodalAtomicVolume_(nullptr),
    needReset_(true),
    lammpsInterface_(LammpsInterface::instance()),
    interscaleManager_(this),
    timeFilterManager_(this),
    integrateInternalAtoms_(false),
    atomTimeIntegrator_(nullptr),
    ghostManager_(this),
    feEngine_(nullptr),
    initialized_(false),
    meshDataInitialized_(false),
    localStep_(0),
    sizeComm_(8), // 3 positions + 1 material id * 2 for output
    atomCoarseGrainingPositions_(nullptr),
    atomGhostCoarseGrainingPositions_(nullptr),
    atomProcGhostCoarseGrainingPositions_(nullptr),
    atomReferencePositions_(nullptr),
    nNodes_(0),
    nsd_(lammpsInterface_->dimension()),
    xref_(nullptr),
    readXref_(false),
    needXrefProcessorGhosts_(false),
    trackDisplacement_(false),
    needsAtomToElementMap_(true),
    atomElement_(nullptr),
    atomGhostElement_(nullptr),
    internalElementSet_(""),
    atomMasses_(nullptr),
    atomPositions_(nullptr),
    atomVelocities_(nullptr),
    atomForces_(nullptr),
    parallelConsistency_(true),
    outputNow_(false),
    outputTime_(true),
    outputFrequency_(0),
    sampleFrequency_(0),
    sampleCounter_(0),
    peScale_(1./(lammpsInterface_->mvv2e())),
    keScale_(1.),
    scalarFlag_(0),
    vectorFlag_(0),
    sizeVector_(0),
    scalarVectorFreq_(0),
    sizePerAtomCols_(4),
    perAtomOutput_(nullptr),
    perAtomArray_(perAtomArray),
    extScalar_(0),
    extVector_(0),
    extList_(nullptr),
    thermoEnergyFlag_(0),
    atomVolume_(nullptr),
    atomicWeightsWriteFlag_(false),
    atomicWeightsWriteFrequency_(0),
    atomWeightType_(LATTICE),
    domainDecomposition_(REPLICATED_MEMORY),
    groupbit_(0),
    groupbitGhost_(0),
    needProcGhost_(false),
    groupTag_(groupName),
    nLocal_(0),
    nLocalTotal_(0),
    nLocalGhost_(0),
    atomToElementMapType_(LAGRANGIAN),
    atomToElementMapFrequency_(0),
    regionID_(-1),
    mdMassNormalization_(false),
    kernelBased_(false),
    kernelOnTheFly_(false),
    kernelFunction_(nullptr),
    bondOnTheFly_(false),
    accumulant_(nullptr),
    accumulantMol_(nullptr),
    accumulantMolGrad_(nullptr),
    accumulantWeights_(nullptr),
    accumulantInverseVolumes_(&invNodeVolumes_),
    accumulantBandwidth_(0),
    useRestart_(false),
    hasRefPE_(false),
    setRefPE_(false),
    setRefPEvalue_(false),
    refPEvalue_(0.),
    readRefPE_(false),
    nodalRefPotentialEnergy_(nullptr),
    simTime_(0.0),
    stepCounter_(0)
  {
    lammpsInterface_->print_msg_once("version "+version());
    lammpsInterface_->set_fix_pointer(thisFix);
    interscaleManager_.set_lammps_data_prefix();
    grow_arrays(lammpsInterface_->nmax());
    feEngine_ = new FE_Engine(lammpsInterface_->world());


    lammpsInterface_->create_compute_pe_peratom();
  }

  ATC_Method::~ATC_Method()
  {
    lammpsInterface_->destroy_2d_double_array(xref_);
    lammpsInterface_->destroy_2d_double_array(perAtomOutput_);
    if (atomTimeIntegrator_) delete atomTimeIntegrator_;
    if (feEngine_) delete feEngine_;
  }

  //--------------------------------------------------
  // pack_fields
  //   bundle all allocated field matrices into a list
  //   for output needs
  //--------------------------------------------------
  void ATC_Method::pack_fields(RESTART_LIST & data)
  {
    map<FieldName,int>::const_iterator field;
    for (field = fieldSizes_.begin(); field!=fieldSizes_.end(); field++) {
      FieldName thisField = field->first;
      string fieldName = field_to_string(thisField);
      string matrixName;
      // copy all fields from ATC_Method.h
      matrixName = "fields_" + fieldName;
      data[matrixName] = & fields_[thisField].set_quantity();
      matrixName = "dot_fields_" + fieldName;
      data[matrixName] = & dot_fields_[thisField].set_quantity();
      matrixName = "ddot_fields_" + fieldName;
      data[matrixName] = & ddot_fields_[thisField].set_quantity();
      matrixName = "dddot_fields_" + fieldName;
      data[matrixName] = & dddot_fields_[thisField].set_quantity();
      matrixName = "NodalAtomicFieldsRoc_" + fieldName;
      data[matrixName] = & nodalAtomicFieldsRoc_[thisField].set_quantity();
    }
  }

  //--------------------------------------------------
  // write_restart_file
  //   bundle matrices that need to be saved and call
  //   fe_engine to write the file
  //--------------------------------------------------
  void ATC_Method::write_restart_data(string fileName, RESTART_LIST & data)
  {
    pack_fields(data);
    feEngine_->write_restart_file(fileName,&data);
  }

  //--------------------------------------------------
  // read_restart_file
  //   bundle matrices that need to be saved and call
  //   fe_engine to write the file
  //--------------------------------------------------
  void ATC_Method::read_restart_data(string fileName, RESTART_LIST & data)
  {
    pack_fields(data);
    feEngine_->read_restart_file(fileName,&data);
  }

  //--------------------------------------------------
  // Interactions with LAMMPS fix commands
  // parse input command and pass on to finite element engine
  //   or physics specific transfers if necessary
  //   revert to physics-specific transfer if no command matches input
  // first keyword is unique to particular class
  // base class keyword matching must apply to ALL physics
  // order:  derived, base, owned objects
  //--------------------------------------------------
  bool ATC_Method::modify(int narg, char **arg)
  {
    int argIdx=0;
    bool match = false;

    // gateways to other modules e.g. extrinsic, control, mesh
    // pass off to fe engine
    if (strcmp(arg[argIdx],"mesh")==0) {
      match = feEngine_->modify(narg, arg);
      if (feEngine_->has_mesh()  && !meshDataInitialized_)
        this->initialize_mesh_data();
    }
    // pass off to time filter
    else if (strcmp(arg[argIdx],"filter")==0) {
      argIdx++;
      match = timeFilterManager_.modify(narg-argIdx,&arg[argIdx]);

        // consistentInitialization_ = false;
    }
    // pass off to kernel function manager
    else if (strcmp(arg[argIdx],"kernel")==0) {
      argIdx++;

      if (kernelFunction_) {
        //delete kernelFunction_;
        //resetKernelFunction_ = true;
      }
      kernelFunction_ = KernelFunctionMgr::instance()->function(&arg[argIdx],narg-argIdx);
      if (kernelFunction_) match = true;
      else ATC_Error("no matching kernel found");
      feEngine_->set_kernel(kernelFunction_);

      accumulantMol_=&kernelAccumulantMol_; // KKM add
      accumulantMolGrad_=&kernelAccumulantMolGrad_; // KKM add
    }
    // pass off to ghost manager
    else if (strcmp(arg[argIdx],"boundary_dynamics")==0) {
      argIdx++;
      match = ghostManager_.modify(narg-argIdx,&arg[argIdx]);
    }

    // parsing handled here
    else {
      if (strcmp(arg[argIdx],"parallel_consistency")==0) {
        argIdx++;
        //if (!kernelFunction_)          { throw ATC_Error("on_the_fly requires a kernel function"); }
        if (strcmp(arg[argIdx],"off")==0) parallelConsistency_ = false;
        else                              parallelConsistency_ = true;
        match = true;
      }
     /*! \page man_hardy_on_the_fly fix_modify AtC on_the_fly
        \section syntax
        fix_modify AtC on_the_fly <bond | kernel> <optional on | off> \n        - bond | kernel (keyword) = specifies on-the-fly calculation of bond or
kernel         matrix elements \n
        - on | off (keyword) =  activate or discontinue on-the-fly mode \n
        \section examples
        <TT> fix_modify AtC on_the_fly bond on </TT> \n        <TT> fix_modify AtC on_the_fly kernel </TT> \n
        <TT> fix_modify AtC on_the_fly kernel off </TT> \n
        \section description
        Overrides normal mode of pre-calculating and storing bond pair-to-node a
nd
        kernel atom-to-node matrices. If activated, will calculate elements of t
hese
        matrices during repeated calls of field computations (i.e. "on-the-fly") and not store them for
        future use.   \n        on flag is optional - if omitted, on_the_fly will be activated for the s
pecified
        matrix. Can be deactivated using off flag. \n
        \section restrictions
        Must be used with the hardy/field type of AtC fix
        ( see \ref man_fix_atc )
        \section related
        \section default
        By default, on-the-fly calculation is not active (i.e. off). However, code does a memory allocation check to determine if it can store all needed bond and kernel matrix ele ments. If this allocation fails, on-the-fly is activated. \n
      */

      else if (strcmp(arg[argIdx],"on_the_fly")==0) {
        argIdx++;
        //if (!kernelFunction_)          { throw ATC_Error("on_the_fly requires a kernel function"); }
        if (strcmp(arg[argIdx],"bond")==0) {
          argIdx++;
          bondOnTheFly_ = true;
          if (narg > argIdx && strcmp(arg[argIdx],"off")==0) bondOnTheFly_ = false;
        }
        else if (strcmp(arg[argIdx],"kernel")==0) {
          argIdx++;
          kernelOnTheFly_ = true;
          if (narg > argIdx && strcmp(arg[argIdx],"off")==0) kernelOnTheFly_ = false;
        }
        else { throw ATC_Error("unsupported on_the_fly type"); }
        match = true;
      }

      /*! \page man_output fix_modify AtC output
        \section syntax
        fix_modify AtC output <filename_prefix> <frequency>
        [text | full_text | binary | vector_components | tensor_components ]
        fix_modify AtC output index [step | time ]
        - filename_prefix (string) = prefix for data files
        - frequency (integer) = frequency of output in time-steps
        - options (keyword/s): \n
        text = creates text output of index, step and nodal variable values for unique nodes \n
        full_text = creates text output index, nodal id, step, nodal coordinates and nodal variable values for unique and image nodes \n
        binary = creates binary Ensight output \n
        vector_components = outputs vectors as scalar components \n
        tensor_components = outputs tensor as scalar components
        (use this for Paraview)\n

        \section examples
        <TT> fix_modify AtC output heatFE 100 </TT> \n
        <TT> fix_modify AtC output hardyFE 1 text tensor_components </TT> \n
        <TT> fix_modify AtC output hardyFE 10 text binary tensor_components </TT> \n
        <TT> fix_modify AtC output index step </TT> \n
        \section description
        Creates text and/or binary (Ensight, "gold" format) output of nodal/mesh data
        which is transfer/physics specific. Output indexed by step or time is possible.
        \section restrictions
        \section related
        see \ref man_fix_atc
        \section default
        no default format
        output indexed by time
      */
      else if (strcmp(arg[argIdx],"output")==0) {
        argIdx++;
      /*! \page man_output_nodeset fix_modify AtC output nodeset
        \section syntax
        fix_modify AtC output nodeset <nodeset_name> <operation>
        - nodeset_name (string) = name of nodeset to be operated on
        - operation (keyword/s): \n
        sum = creates nodal sum over nodes in specified nodeset \n
        \section examples
        <TT> fix_modify AtC output nodeset nset1 sum </TT> \n
        \section description
        Performs operation over the nodes belonging to specified nodeset
        and outputs resulting variable values to GLOBALS file.
        \section restrictions
        \section related
        see \ref man_fix_atc
        \section default
        none
      */
        if (strcmp(arg[argIdx],"nodeset")==0) {
          argIdx++;
          string nset = arg[argIdx++];
          if       (strcmp(arg[argIdx],"sum")==0) {
            argIdx++;
            string field = arg[argIdx];
            pair < string, FieldName >  id(nset,string_to_field(field));
            nsetData_[id] = NODESET_SUM;
            match = true;
          }
          else if (strcmp(arg[argIdx],"average")==0) {
            argIdx++;
            string field = arg[argIdx];
            pair < string, FieldName >  id(nset,string_to_field(field));
            nsetData_[id] = NODESET_AVERAGE;
            match = true;
          }
        }

      /*! \page man_boundary_integral fix_modify AtC output boundary_integral
        \section syntax
        fix_modify AtC output boundary_integral [field] faceset [name]
        - field (string) : name of hardy field
        - name (string)  : name of faceset
        \section examples
        <TT> fix_modify AtC output boundary_integral stress faceset loop1 </TT> \n
        \section description
        Calculates a surface integral of the given field dotted with the
        outward normal of the faces and puts output in the "GLOBALS" file
        \section restrictions
        Must be used with the hardy/field type of AtC fix
        ( see \ref man_fix_atc )
        \section related
        \section default
        none
      */

      /*! \page man_contour_integral fix_modify AtC output contour_integral
        \section syntax
        fix_modify AtC output contour_integral [field] faceset [name] <axis [x | y | z
]>
        - field (string) : name of hardy field
        - name (string)  : name of faceset
        - axis (string)  : x or y or z
        \section examples
        <TT> fix_modify AtC output contour_integral stress faceset loop1 </TT> \n
        \section description
        Calculates a surface integral of the given field dotted with the
        outward normal of the faces and puts output in the "GLOBALS" file
        \section restrictions
        Must be used with the hardy/field type of AtC fix
        ( see \ref man_fix_atc )
        \section related
        \section default
        none
      */

        else if ( (strcmp(arg[argIdx],"boundary_integral")==0)
               || (strcmp(arg[argIdx],"contour_integral")==0) ) {
          FacesetIntegralType type = BOUNDARY_INTEGRAL;
          if  (strcmp(arg[argIdx],"contour_integral")==0)
                              type = CONTOUR_INTEGRAL;
          argIdx++;
          string field(arg[argIdx++]);
          if(strcmp(arg[argIdx],"faceset")==0) {
            argIdx++;
            string name(arg[argIdx++]);
            pair <string,string> pair_name(name,field);
            fsetData_[pair_name] = type;
            match = true;
          }
        } // end "boundary_integral" || "contour_integral"

      /*! \page man_output_elementset fix_modify AtC output elementset
        \section syntax
        fix_modify AtC output volume_integral <eset_name> <field>
        - set_name (string) = name of elementset to be integrated over
        - fieldname (string) = name of field to integrate
        csum = creates nodal sum over nodes in specified nodeset \n
        \section examples
        <TT> fix_modify AtC output eset1 mass_density </TT> \n
        \section description
        Performs volume integration of specified field over elementset
        and outputs resulting variable values to GLOBALS file.
        \section restrictions
        \section related
        see \ref man_fix_atc
        \section default
        none
      */

        else if ( (strcmp(arg[argIdx],"volume_integral")==0) ) {
          argIdx++;
          string name(arg[argIdx++]);
          string field(arg[argIdx++]);
          pair <string,FieldName> pair_name(name,string_to_field(field));
          if (++argIdx < narg) { // keyword average
            esetData_[pair_name] = ELEMENTSET_AVERAGE;
          }
          else {
            esetData_[pair_name] = ELEMENTSET_TOTAL;
          }
          match = true;
        }

        else if (strcmp(arg[argIdx],"now")==0) {
          argIdx++;
          double dt = 1.0;
          if (argIdx < narg) {
            dt = atof(arg[argIdx++]);
          }
          update_time(dt);
          update_step();
          outputNow_ = true;
          this->output();
          outputNow_ = false;
          match = true;
        }
        else
          if (strcmp(arg[argIdx],"index")==0) {
            argIdx++;
            if (strcmp(arg[argIdx],"step")==0) { outputTime_ = false; }
            else                               { outputTime_ = true; }
          match = true;
        }
        else {
          outputPrefix_ = arg[argIdx++];
          outputFrequency_ = atoi(arg[argIdx++]);
          bool ensight_output = false, full_text_output = false;
          bool text_output = false, vect_comp = false, tensor_comp = false;
          int rank = lammpsInterface_->comm_rank();
          for (int i = argIdx; i<narg; ++i) {
            if      (strcmp(arg[i],"full_text")==0) full_text_output = true;
            else if (strcmp(arg[i],"text")==0)           text_output = true;
            else if (strcmp(arg[i],"binary")==0)      ensight_output = true;
            else if (strcmp(arg[i],"vector_components")==0) vect_comp = true;
            else if (strcmp(arg[i],"tensor_components")==0) tensor_comp = true;
            else { throw ATC_Error(" output: unknown keyword ");  }
          }
          if (outputFrequency_>0) {
            set<int> otypes;
            if (full_text_output || text_output) {
              lammpsInterface_->print_msg_once("Warning : text output can create _LARGE_ files");
            }
            if (full_text_output) otypes.insert(FULL_GNUPLOT);
            if (text_output)      otypes.insert(GNUPLOT);
            if (ensight_output)   otypes.insert(ENSIGHT);
            if (ntracked() > 0) {
               string fstem = field_to_string(SPECIES_CONCENTRATION);
               string istem = field_to_intrinsic_name(SPECIES_CONCENTRATION);
               vector<string> tnames = tracked_names();
               vector<string> fnames;
               vector<string> inames;
               for (unsigned int i = 0; i < tnames.size(); i++) {
                 fnames.push_back(fstem+tnames[i]);
                 inames.push_back(istem+tnames[i]);
               }
               feEngine_->add_field_names(fstem,fnames);
               feEngine_->add_field_names(istem,inames);
            }
            feEngine_->initialize_output(rank,outputPrefix_,otypes);
            if (vect_comp)
              feEngine_->output_manager()
                ->set_option(OUTPUT_VECTOR_COMPONENTS,true);
            if (tensor_comp)
              feEngine_->output_manager()
                ->set_option(OUTPUT_TENSOR_COMPONENTS,true);
          }
          match = true;
        }
      }
    else if (strcmp(arg[argIdx],"write")==0) {
      argIdx++;
      FieldName thisField;
      int thisIndex;
      parse_field(arg,argIdx,thisField,thisIndex);
      string nsetName(arg[argIdx++]);
      string filename(arg[argIdx++]);
      stringstream  f;
      set<int> nodeSet = (feEngine_->fe_mesh())->nodeset(nsetName);
      set<int>::const_iterator iset;
      const DENS_MAT & field =(fields_.find(thisField)->second).quantity();
      for (iset = nodeSet.begin(); iset != nodeSet.end(); iset++) {
        int inode = *iset;
        double v = field(inode,thisIndex);
        f << inode << " " << std::setprecision(17) << v << "\n";
      }
      LammpsInterface::instance()->write_file(filename,f.str());
      match = true;
    }
    // add a species for tracking
    /*! \page man_add_species fix_modify AtC add_species
      \section syntax
      fix_modify_AtC add_species <TAG> <group|type> <ID> \n
      - <TAG> = tag for tracking a species \n
      - group|type = LAMMPS defined group or type of atoms \n
      - <ID> = name of group or type number \n
      \section examples
      <TT> fix_modify AtC add_species gold type 1 </TT> \n
      <TT> group GOLDGROUP type 1 </TT> \n
      <TT> fix_modify AtC add_species gold group GOLDGROUP </TT>
      \section description
      Associates a tag with all atoms of a specified type or within a specified group. \n
      \section restrictions
      \section related
      \section default
      No defaults for this command.
    */
    else if (strcmp(arg[argIdx],"add_species")==0) {
      argIdx++;
      string speciesTag = arg[argIdx];
      string tag = arg[argIdx];
      argIdx++;
      if (strcmp(arg[argIdx],"group")==0) {
        if (narg-argIdx == 2) {
          string name = arg[++argIdx];
          int id = lammpsInterface_->group_bit(name);
          groupList_.push_back(id);
          groupNames_.push_back(tag);
        }
        else {
          while (++argIdx < narg) {
            string name = arg[argIdx];
            int id = lammpsInterface_->group_bit(name);
            string tag = speciesTag+"-"+name;
            groupList_.push_back(id);
            groupNames_.push_back(tag);
          }
        }
      }
      else if (strcmp(arg[argIdx],"type")==0) {
        if (narg-argIdx == 2) {
          int id = atoi(arg[++argIdx]);
          typeList_.push_back(id);
          typeNames_.push_back(tag);
        }
        else {
          while (++argIdx < narg) {
            int id = atoi(arg[argIdx]);
            string tag = speciesTag+"_"+to_string(id);
            typeList_.push_back(id);
            typeNames_.push_back(tag);
          }
        }
      }
      else {
        throw ATC_Error("ATC_Method: add_species only handles groups or types"); }
      match = true;
    }

    // remove species from tracking

    /*! \page man_remove_species fix_modify AtC remove_species
      \section syntax
      fix_modify_AtC delete_species <TAG> \n

      - <TAG> = tag for tracking a species \n
      \section examples
      <TT> fix_modify AtC remove_species gold </TT> \n
      \section description
      Removes tag designated for tracking a specified species. \n
      \section restrictions
      \section related
      \section default
      No defaults for this command.
    */
    else if (strcmp(arg[argIdx],"delete_species")==0) {
      argIdx++;
      string tag = arg[argIdx++];
      if (strcmp(arg[argIdx],"group")==0) {
        for (unsigned int j = 0; j < groupList_.size(); j++) {
          if (tag == groupNames_[j]) {
            groupList_.erase(groupList_.begin()+j);
            groupNames_.erase(groupNames_.begin()+j);
            break;
          }
        }
      }
      else if (strcmp(arg[argIdx],"type")==0) {
        for (unsigned int j = 0; j < typeList_.size(); j++) {
          if (tag == typeNames_[j]) {
            typeList_.erase(typeList_.begin()+j);
            typeNames_.erase(typeNames_.begin()+j);
            break;
          }
        }
      }
      else {
        throw ATC_Error("ATC_Method: delete_species only handles groups or types"); }
      match = true;

    }

    // add a molecule for tracking
    /*! \page man_add_molecule fix_modify AtC add_molecule
      \section syntax
      fix_modify_AtC add_molecule <small|large> <TAG> <GROUP_NAME> \n

      - small|large = can be small if molecule size < cutoff radius, must be large otherwise \n
      - <TAG> = tag for tracking a species \n
      - <GROUP_NAME> = name of group that tracking will be applied to \n
      \section examples
      <TT> group WATERGROUP type 1 2 </TT> \n
      <TT> fix_modify AtC add_molecule small water WATERGROUP </TT> \n
      \section description
      Associates a tag with all molecules corresponding to a specified group. \n
      \section restrictions
      \section related
      \section default
      No defaults for this command.
    */
    else if (strcmp(arg[argIdx],"add_molecule")==0) {
      argIdx++;
      MolSize size;
      if (strcmp(arg[argIdx],"small")==0) {
        size = MOL_SMALL;
        //needXrefProcessorGhosts_ = true;
        needProcGhost_ = true;
      }
      else
        throw ATC_Error("ATC_CouplingMass:  Bad molecule size in add_molecule");
      argIdx++;
      string moleculeTag = arg[argIdx];

      argIdx++;
      int groupBit = lammpsInterface_->group_bit(arg[argIdx]);
      moleculeIds_[moleculeTag] = pair<MolSize,int>(size,groupBit);
      match = true;
    }

    // remove molecule from tracking
    /*! \page man_remove_molecule fix_modify AtC remove_molecule
      \section syntax
      fix_modify_AtC remove_molecule <TAG> \n

      - <TAG> = tag for tracking a molecule type \n
      \section examples
      <TT> fix_modify AtC remove_molecule water </TT> \n
      \section description
      Removes tag designated for tracking a specified set of molecules. \n
      \section restrictions
      \section related
      \section default
      No defaults for this command.
    */
    else if (strcmp(arg[argIdx],"remove_molecule")==0) {
      argIdx++;
      string moleculeTag = arg[argIdx];
      moleculeIds_.erase(moleculeTag);

      taggedDensMan_.erase(moleculeTag);
    }

      /*! \page man_boundary fix_modify AtC boundary
        \section syntax
        fix_modify AtC boundary type <atom-type-id>
        - <atom-type-id> = type id for atoms that represent a fictitious
        boundary internal to the FE mesh
        \section examples
        <TT> fix_modify AtC boundary type ghost_atoms </TT>
        \section description
        Command to define the atoms that represent the fictitious
        boundary internal to the FE mesh. For fully overlapped MD/FE
        domains with periodic boundary conditions no boundary atoms should
        be defined.
        \section restrictions
        \section default
        none
      */
      else if (strcmp(arg[argIdx],"boundary")==0) {
        argIdx++;
        groupTagGhost_ = arg[argIdx++];
        match = true;
      }

      /*! \page man_internal_atom_integrate fix_modify AtC internal_atom_integrate
        \section syntax
        fix_modify AtC internal_atom_integrate <on | off>
        <TT> fix_modify AtC internal_atom_integrate on </TT>
        \section description
        Has AtC perform time integration for the atoms in the group on which it operates.  This does not include boundary atoms.
        \section restrictions
        AtC must be created before any fixes doing time integration.  It must be on for coupling methods which impose constraints on velocities during the first verlet step, e.g. control momentum glc_velocity.
        \section default
        on for coupling methods, off for post-processors
        off
       */
      else if (strcmp(arg[argIdx],"internal_atom_integrate")==0) {
        argIdx++;
        if (strcmp(arg[argIdx],"off")==0) {
          integrateInternalAtoms_ = false;
          match = true;
        }
        else {
          integrateInternalAtoms_ = true;
          match = true;
        }
      }

      /*! \page man_internal_element_set fix_modify AtC internal_element_set
        \section syntax
        fix_modify AtC internal_element_set <element-set-name>
        - <element-set-name> = name of element set defining internal region, or off
        \section examples
        <TT> fix_modify AtC internal_element_set myElementSet </TT>
        <TT> fix_modify AtC internal_element_set off </TT>
        \section description
        Enables AtC to base the region for internal atoms to be an element set.
        If no ghost atoms are used, all the AtC atoms must be constrained to remain
        in this element set by the user, e.g., with walls.  If boundary atoms are
        used in conjunction with Eulerian atom maps
        AtC will partition all atoms of a boundary or internal type to be of type internal
        if they are in the internal region or to be of type boundary otherwise.
        \section restrictions
        If boundary atoms are used in conjunction with Eulerian atom maps, the Eulerian
        reset frequency must be an integer multiple of the Lammps reneighbor frequency
        \section related
        see \ref atom_element_map_type and \ref boundary
        \section default
        off
       */
      else if (strcmp(arg[argIdx],"internal_element_set")==0) {
        argIdx++;
        if (strcmp(arg[argIdx],"off")==0) {
          internalElementSet_ = "";
          match = true;
        }
        else {
          internalElementSet_ = string(arg[argIdx]);
          const set<int> & elementSet((feEngine_->fe_mesh())->elementset(internalElementSet_)); // check it exists and is not trivial
          if (elementSet.size()==0) throw ATC_Error("internal_element_set - element set " + internalElementSet_ + " has no elements");
          match = true;
        }
      }

    /*! \page man_atom_weight fix_modify AtC atom_weight
      \section syntax
      fix_modify AtC atom_weight <method> <arguments>
        - <method> = \n
          value: atoms in specified group assigned constant value given \n
          lattice: volume per atom for specified lattice type (e.g. fcc) and parameter \n
          element: element volume divided among atoms within element \n
          region: volume per atom determined based on the atom count in the MD regions and their volumes. Note: meaningful only if atoms completely fill all the regions. \n
          group: volume per atom determined based on the atom count in a group and its volume\n
          read_in: list of values for atoms are read-in from specified file \n
      \section examples
       <TT> fix_modify atc atom_weight constant myatoms 11.8 </TT> \n
       <TT> fix_modify atc atom_weight lattice </TT> \n
       <TT> fix_modify atc atom_weight read-in atm_wt_file.txt </TT> \n
      \section description
       Command for assigning the value of atomic weights used for atomic integration in
       atom-continuum coupled simulations.
      \section restrictions
      Use of lattice option requires a lattice type and parameter is already specified.
      \section related
      \section default
      lattice
    */
      else if (strcmp(arg[argIdx],"atom_weight")==0) {
        argIdx++;
        if (strcmp(arg[argIdx],"constant")==0) {
          argIdx++;
          atomWeightType_ = USER;
          int groupbit = -1;
          if (strcmp(arg[argIdx],"all")==0) {
          }
          else {
            groupbit = lammpsInterface_->group_bit(arg[argIdx]);
          }
          argIdx++;
          double value = atof(arg[argIdx]);
          Valpha_[groupbit] = value;
          match = true;
        }
        else if (strcmp(arg[argIdx],"lattice")==0) {
          atomWeightType_ = LATTICE;
          match = true;
        }
        else if (strcmp(arg[argIdx],"element")==0) {
          atomWeightType_ = ELEMENT;
          match = true;
        }
        else if (strcmp(arg[argIdx],"region")==0) {
          atomWeightType_ = REGION;
          match = true;
        }
        else if (strcmp(arg[argIdx],"group")==0) {
          atomWeightType_ = GROUP;
          match = true;
        }
        else if (strcmp(arg[argIdx],"multiscale")==0) {
          atomWeightType_ = MULTISCALE;
          match = true;
        }
        else if (strcmp(arg[argIdx],"node")==0) {
          atomWeightType_ = NODE;
          match = true;
        }
        else if (strcmp(arg[argIdx],"node_element")==0) {
          atomWeightType_ = NODE_ELEMENT;
          match = true;
        }
        else if (strcmp(arg[argIdx],"read_in")==0) {
          atomWeightType_ = READ_IN;
          argIdx++;
          atomicWeightsFile_ = arg[argIdx];
          match = true;
        }
        if (match) {
          needReset_ = true;
        }
      }

    /*! \page man_decomposition fix_modify AtC decomposition
      \section syntax
      fix_modify AtC decomposition <type>
        - <type> = \n
          replicated_memory: nodal information replicated on each processor \n
          distributed_memory: only owned nodal information on processor  \n
      \section examples
       <TT> fix_modify atc decomposition distributed_memory </TT> \n
      \section description
       Command for assigning the distribution of work and memory for parallel runs.
      \section restrictions
      replicated_memory is appropriate for simulations were the number of nodes << number of atoms
      \section related
      \section default
      replicated_memory
    */
      else if (strcmp(arg[argIdx],"decomposition")==0) {
        argIdx++;
        if (strcmp(arg[argIdx],"replicated_memory")==0) {
          domainDecomposition_ = REPLICATED_MEMORY;
          match = true;
        }
        else if (strcmp(arg[argIdx],"distributed_memory")==0) {
          domainDecomposition_ = DISTRIBUTED_MEMORY;
          match = true;
        }
      }

    /*! \page man_write_atom_weights fix_modify AtC write_atom_weights
      \section syntax
      fix_modify AtC write_atom_weights <filename> <frequency>
        - <filename> = name of file that atomic weights are written to \n
        - <frequency> = how often writes will occur \n
      \section examples
       <TT> fix_modify atc write_atom_weights atm_wt_file.txt 10 </TT> \n
      \section description
       Command for writing the values of atomic weights to a specified file.
      \section restrictions
      \section related
      \section default
    */
      else if (strcmp(arg[argIdx],"write_atom_weights")==0) {
        argIdx++;
        atomicWeightsFile_ = arg[argIdx];
        argIdx++;
        atomicWeightsWriteFrequency_ = atoi(arg[argIdx]);
        atomicWeightsWriteFlag_ = true;
        match = true;
      }


      /*! \page man_reset_time fix_modify AtC reset_time
      \section syntax
      fix_modify AtC reset_time <value>
      \section examples
       <TT> fix_modify atc reset_time 0.0 </TT> \n
      \section description
      Resets the simulation time counter.
      \section restrictions
      \section related
      \section default
      */
      else if (strcmp(arg[argIdx],"reset_time")==0) {
        argIdx++;
        set_time();
        if (narg > argIdx) {
          double time = atof(arg[argIdx]);
          set_time(time);
        }
        match = true;
      }

      /*! \page man_reset_time fix_modify AtC kernel_bandwidth
      \section syntax
      fix_modify AtC kernel_bandwidth <value>
      \section examples
       <TT> fix_modify atc kernel_bandwidth 8 </TT> \n
      \section description
      Sets a maximum parallel bandwidth for the kernel functions during parallel communication.  If the command is not issued, the default will be to assume the bandwidth of the kernel matrix corresponds to the number of sampling locations.
      \section restrictions
      Only is used if kernel functions are being used.
      \section related
      \section default
      Number of sample locations.
      */
      else if (strcmp(arg[argIdx],"kernel_bandwidth")==0) {
        argIdx++;
        accumulantBandwidth_ = atoi(arg[argIdx]);
        match = true;
      }

      /*! \page man_reset_atomic_reference_positions fix_modify AtC reset_atomic_reference_positions
      \section syntax
      fix_modify AtC reset_atomic_reference_positions
      \section examples
       <TT> fix_modify atc reset_atomic_reference_positions
      \section description
      Resets the atomic positions ATC uses to perform point to field operations.
      In can be used to use perfect lattice sites in ATC but a thermalized or
      deformed lattice in LAMMPS.
      \section restrictions
      \section related
      \section default
      Default is off
      */
      else if (strcmp(arg[argIdx],"reset_atomic_reference_positions")==0) {
        argIdx++;
        xRefFile_ = arg[argIdx];
        readXref_ = true;
        match = true;
      }

      /*! \page man_set fix_modify AtC set
        \section syntax
        fix_modify AtC set reference_potential_energy <value_or_filename(optional)>
        - value (double) : optional user specified zero point for PE in native LAMMPS energy units \n
        - filename (string) : optional user specified string for file of nodal PE values to be read-in
        \section examples
        <TT> fix_modify AtC set reference_potential_energy </TT> \n
        <TT> fix_modify AtC set reference_potential_energy -0.05 </TT> \n
        <TT> fix_modify AtC set reference_potential_energy myPEvalues </TT> \n
        \section description
        Used to set various quantities for the post-processing algorithms.
        It sets the zero point for the potential energy density using
        the value provided for all nodes, or from the current
        configuration of the lattice if no value is provided, or
        values provided within the specified filename.
        \section restrictions
        Must be used with the hardy/field type of AtC fix
        ( see \ref man_fix_atc )
        \section related
        \section default
        Defaults to lammps zero point i.e. isolated atoms
      */
      else if (strcmp(arg[argIdx],"set")==0) {
        argIdx++;
        if (strcmp(arg[argIdx],"reference_potential_energy")==0) {
          argIdx++;
          setRefPE_ = true;
          if (narg > argIdx) {
            string a(arg[argIdx]);
            if (is_dbl(a)) {
              double value = atof(arg[argIdx]);
              refPEvalue_ = value;
              setRefPEvalue_ = true;
            }
            else {
              nodalRefPEfile_ = arg[argIdx];
              readRefPE_ = true;
            }
          }
          match = true;
        }
      } // end "set"



      /*! \page man_atom_element_map fix_modify AtC atom_element_map
      \section syntax
      fix_modify AtC atom_element_map  <eulerian|lagrangian> <frequency> \n
      - frequency (int) : frequency of updating atom-to-continuum maps based on the
      current configuration - only for eulerian
      \section examples
      <TT> fix_modify atc atom_element_map eulerian 100 </TT>
      \section description
      Changes frame of reference from eulerian to lagrangian and sets the
      frequency for which the map from atoms to elements is reformed and
      all the attendant data is recalculated.
      \section restrictions
      Cannot change map type after initialization.
      \section related
      \section default
      lagrangian
      */
      else if (strcmp(arg[argIdx],"atom_element_map")==0) {
        argIdx++;
        if (strcmp(arg[argIdx],"eulerian")==0) {
          atomToElementMapType_ = EULERIAN;
          argIdx++;
          atomToElementMapFrequency_ = atoi(arg[argIdx]);
        }
        else {
          atomToElementMapType_ = LAGRANGIAN;
          atomToElementMapFrequency_ = 0;
        }
        match = true;
        needReset_ = true;
      }

      /*! \page man_read_restart fix_modify AtC read_restart
      \section syntax
      fix_modify AtC read_restart [file_name]  \n
      \section examples
      <TT> fix_modify AtC read_restart ATC_state </TT> \n
      \section description
      Reads the current state of the fields from a named text-based restart
      file.
      \section restrictions
      The restart file only contains fields and their time derivatives.
      The reference positions of the atoms and the commands that initialize
      the fix are not saved e.g. an identical mesh containing the same atoms
      will have to be recreated.
      \section related
      see write_restart \ref man_write_restart
      \section default
      none
      */
      else if (strcmp(arg[argIdx],"read_restart")==0) {
        argIdx++;
        restartFileName_  = arg[argIdx];
        useRestart_ = true;
        match = true;
      }

      /*! \page man_write_restart fix_modify AtC write_restart
      \section syntax
      fix_modify AtC write_restart [file_name]  \n
      \section examples
      <TT> fix_modify AtC write_restart restart.mydata </TT> \n
      \section description
      Dumps the current state of the fields to a named text-based restart file.
      This done when the command is invoked and not repeated, unlike the
      similar lammps command.
      \section restrictions
      The restart file only contains fields and their time derivatives.
      The reference positions of the atoms and the commands that initialize
      the fix are not saved e.g. an identical mesh containing the same atoms
      will have to be recreated.
      \section related
      see read_restart \ref man_read_restart
      \section default
      none
      */
      else if (strcmp(arg[argIdx],"write_restart")==0) {
        argIdx++;
        string restartFileName(arg[argIdx]);
        RESTART_LIST data;
        write_restart_data(restartFileName,data);
        match = true;
      }

    } // end else

    return match; // return to FixATC

  }

  //--------------------------------------------------
  // helper function for parser
  // handles : "displacement x"  and "temperature" by indexing argIdx
  // for fluxes : only normal fluxes can be prescribed
  //--------------------------------------------------
  void ATC_Method::parse_field(/*const*/ char ** args, int & argIdx,
                               FieldName & thisField)
  {
    string thisName = args[argIdx++];
    thisField = string_to_field(thisName);
    map<FieldName,int>::const_iterator iter = fieldSizes_.find(thisField);
    if (iter == fieldSizes_.end()) {
      throw ATC_Error("Bad field name: "+thisName);
    }
  }

  //--------------------------------------------------
  // helper function for parser
  // handles : "displacement x"  and "temperature" by indexing argIdx
  // for fluxes : only normal fluxes can be prescribed
  //--------------------------------------------------
  void ATC_Method::parse_field(/*const*/ char ** args, int & argIdx,
                           FieldName & thisField, int & thisIndex)
  {
    string thisName = args[argIdx++];
    if (args[argIdx] == nullptr) {
      throw ATC_Error("Need to give field '"+thisName+"' more args");
    }
    thisField = string_to_field(thisName);
    map<FieldName,int>::const_iterator iter = fieldSizes_.find(thisField);
    if (iter == fieldSizes_.end()) {
      throw ATC_Error("Bad field name: "+thisName);
    }
    string thisDim = args[argIdx];
    thisIndex = 0;
    if (string_to_index(thisDim,thisIndex)) {
      if ( !( thisIndex < fieldSizes_[thisField]) ) {
        throw ATC_Error("Bad field dimension "+thisDim);
      }
      argIdx++;
    }
  }

  //-------------------------------------------------------------------
  // this sets the peratom output

  void ATC_Method::update_peratom_output()
  {
    perAtomArray_ = perAtomOutput_;
    // copy values
    for (int i = 0; i < lammpsInterface_->nlocal(); i++) {
      for (int j = 0; j < nsd_; j++) {
        perAtomOutput_[i][j] = xref_[i][j];
      }
      for (int j = nsd_; j < sizePerAtomCols_; j++) {
        perAtomOutput_[i][j] = 0;
      }
    }
    int indx = nsd_;
    if (atomVolume_->nRows() > 0) { // kernel Hardy does not compute these
      const DIAG_MAT & myAtomicWeights(atomVolume_->quantity());
      for (int i = 0; i < nLocal_; i++) {
        double wg = myAtomicWeights(i,i);
        if (wg > 0) {
          int ii = internalToAtom_(i);
          perAtomOutput_[ii][indx] = 1./wg;
        }
      }
    }
  }

  void ATC_Method::adjust_xref_pbc()
  {

    int nlocal = lammpsInterface_->nlocal();
    int xperiodic = lammpsInterface_->xperiodic();
    int yperiodic = lammpsInterface_->yperiodic();
    int zperiodic = lammpsInterface_->zperiodic();
    double **x = lammpsInterface_->xatom();
    double boxxlo,boxxhi;
    double boxylo,boxyhi;
    double boxzlo,boxzhi;

    lammpsInterface_->box_bounds(boxxlo,boxxhi,
                                 boxylo,boxyhi,
                                 boxzlo,boxzhi);
//  bool changed = false;
    for (int i = 0; i < nlocal; i++) {
      if (xperiodic) {
        if (x[i][0] < boxxlo) {
          xref_[i][0] += Xprd_;
//        changed = true;
        }
        if (x[i][0] >= boxxhi) {
          xref_[i][0] -= Xprd_;
//        changed = true;
        }
      }

      if (yperiodic) {
        if (x[i][1] < boxylo) {
          xref_[i][1] += Yprd_;
//        changed = true;
        }
        if (x[i][1] >= boxyhi) {
          xref_[i][1] -= Yprd_;
//        changed = true;
        }
      }

      if (zperiodic) {
        if (x[i][2] < boxzlo) {
          xref_[i][2] += Zprd_;
//        changed = true;
        }
        if (x[i][2] >= boxzhi) {
          xref_[i][2] -= Zprd_;
//        changed = true;
        }
      }
    }

    // propagate reset if needed
    if (atomToElementMapType_ == LAGRANGIAN) {
      if (atomCoarseGrainingPositions_) {
        atomCoarseGrainingPositions_->force_reset();
      }
    }
    else if (atomReferencePositions_) {
      atomReferencePositions_->force_reset();
    }

  }
  //-------------------------------------------------------------------
  void ATC_Method::initialize()
  {
    feEngine_->partition_mesh();
    // initialized_ is set to true by derived class initialize()
    // localStep_ is a counter within a run or minimize
    localStep_ = 0;
    // STEP 1)  get basic information data from Lammps/fix
    // 1a)  group ids for all internal atoms
    groupbit_ = lammpsInterface_->group_bit(groupTag_);

    // 1b) group ids for ghost atoms
    groupbitGhost_ = 0;
    if (!groupTagGhost_.empty()) {
      groupbitGhost_ = lammpsInterface_->group_bit(groupTagGhost_);
    }

    // 1c) periodicity and box bounds/lengths
    if (!initialized_) {

      lammpsInterface_->box_periodicity(periodicity[0],
                                            periodicity[1],
                                            periodicity[2]);
      lammpsInterface_->box_bounds(box_bounds[0][0],box_bounds[1][0],
                                       box_bounds[0][1],box_bounds[1][1],
                                       box_bounds[0][2],box_bounds[1][2]);
      for (int k = 0; k < nsd_; k++) {
        box_length[k] = box_bounds[1][k] - box_bounds[0][k];
      }

      lammpsInterface_->set_reference_box();

      // get periodicity data from lammps for parallel exchange to adjust for periodicity
      Xprd_ = lammpsInterface_->domain_xprd();
      Yprd_ = lammpsInterface_->domain_yprd();
      Zprd_ = lammpsInterface_->domain_zprd();
//    box_length[0] = Xprd_;
//    box_length[1] = Yprd_;
//    box_length[2] = Zprd_;
      XY_ = lammpsInterface_->domain_xy();
      XZ_ = lammpsInterface_->domain_xz();
      YZ_ = lammpsInterface_->domain_yz();
    }

    // STEP 2 computational geometry
    // 2a) get basic information from continuum/FE
    this->set_continuum_data();

    // STEP 2b) set up data structures for computational geometry
    if (this->reset_methods()) {
      // clear memory manager
      interscaleManager_.clear_temporary_data();
      atomVolume_ = nullptr;

      // reference positions and energy
      if (!initialized_) {
        double **x = lammpsInterface_->xatom();
        for (int i = 0; i < lammpsInterface_->nmax(); i++) {
          for (int j = 0; j < nsd_; j++) {
            xref_[i][j] = x[i][j];
          }
        }

        // re-write non-ghosts' xref with values from a file
        if (readXref_) {
          bool success = read_atomic_ref_positions(xRefFile_.c_str());
          if (!success)
            throw ATC_Error("Error reading atomic reference positions");
          readXref_ = false;
        }

        // ensure initial configuration is consistent with element set

        if (internalElementSet_.size() && groupbitGhost_) {
          int *mask = lammpsInterface_->atom_mask();
          int nlocal = lammpsInterface_->nlocal();
          const FE_Mesh * feMesh = feEngine_->fe_mesh();
          const set<int> & elementSet(feMesh->elementset(internalElementSet_));
          int element;
          DENS_VEC coords(nsd_);
          for (int i = 0; i < nlocal; ++i) {
            if (mask[i] & groupbit_ || mask[i] & groupbitGhost_) {
              for (int j = 0; j < nsd_; j++) {
                coords(j) = xref_[i][j];
              }
              element = feMesh->map_to_element(coords);
              if (elementSet.find(element) == elementSet.end()) {
                mask[i] |= groupbitGhost_;
                mask[i] &= ~groupbit_;
              }
              else {
                mask[i] &= ~groupbitGhost_;
                mask[i] |= groupbit_;
              }
            }
          }
        }

        // set up maps from lammps to atc indexing
        reset_nlocal();
      }

      this->set_computational_geometry();
    }

    // 2c) basic data regarding atomic system, e.g. atom coordinates
    if (atomToElementMapType_ == EULERIAN) {
      reset_coordinates();
    }

    // STEP 3) set up variables which will be integrated in time
    this->construct_time_integration_data();

    // STEP 4) instantiate all the various specific algorithms and methods
    this->construct_methods();

    // STEP 5) construct dependency-managed data
    // 5b) all other transfer operators
    // needs to be done before every run in case options have changed or the atoms have been changed by the user

    if (this->reset_methods()) {
      // construct all the needed data structures
      this->construct_transfers();

      // allocate all space needed for lammps arrays
      interscaleManager_.grow_arrays(lammpsInterface_->nmax());
    }
    // reset all computes invoked flags and lammps data
    interscaleManager_.lammps_force_reset();

    // STEP 6) initialize data
    // 6b) size quantities which use pack_comm
    interscaleManager_.size_comm_quantities();

    // 6c) set coarse-graining functions and atomic weights
    if (!initialized_) {
      // FE_Engine allocates all required memory
      // assume initial atomic position is the reference position for now

      // \int_\Omega N_I dV : static if the mesh is
      NodeVolumes_.reset(nNodes_,nNodes_);
      invNodeVolumes_.reset(nNodes_,nNodes_);
      feEngine_->compute_lumped_mass_matrix(NodeVolumes_);
      invNodeVolumes_.set_quantity() = NodeVolumes_.inv();
    }
    atomVolume_->set_reset();

    // 6d) reference values
    this->set_reference_potential_energy();

    // 6e) atomic output for 0th step
    update_peratom_output();

    massMatInv_.reset(nNodes_,nNodes_);
    feEngine_->compute_lumped_mass_matrix(massMatInv_);
    for (int i = 0; i < nNodes_; ++i)  {
      massMatInv_(i,i) = 1./massMatInv_(i,i);
    }

    // clear need for resets
    needReset_ = false;

  }
  //-------------------------------------------------------------------
  void ATC_Method::set_continuum_data()
  {
    // initialize finite element engine and get basic properties
    if (!initialized_) {
      feEngine_->initialize();
      if (nsd_!=feEngine_->nsd()) {
        throw ATC_Error("Spatial dimensions inconsistent between LAMMPS and ATC");
      }
      nNodes_ = feEngine_->num_nodes();
    }
  }

  //-------------------------------------------------------------------
  void ATC_Method::set_computational_geometry()
  {
    // set positions used for coarse-graining operators




    if (!initialized_) {
      if (atomToElementMapType_ == EULERIAN) {
        FundamentalAtomQuantity * atomPositionsAll = interscaleManager_.fundamental_atom_quantity(LammpsInterface::ATOM_POSITION,ALL);
        ClonedAtomQuantity<double> * myAtomPositions =
          new ClonedAtomQuantity<double>(this,atomPositionsAll,INTERNAL);
        atomCoarseGrainingPositions_ = myAtomPositions;
        interscaleManager_.add_per_atom_quantity(myAtomPositions,
                                                 "AtomicCoarseGrainingPositions");

        if (trackDisplacement_) {
          XrefWrapper * myAtomReferencePositions = new XrefWrapper(this);
          atomReferencePositions_ = myAtomReferencePositions;
          interscaleManager_.add_per_atom_quantity(myAtomReferencePositions,
                                                   "AtomicReferencePositions");
          atomReferencePositions_->set_memory_type(PERSISTENT);
        }

        if (groupbitGhost_) {
          myAtomPositions = new ClonedAtomQuantity<double>(this,atomPositionsAll,GHOST);
          atomGhostCoarseGrainingPositions_ = myAtomPositions;
          interscaleManager_.add_per_atom_quantity(myAtomPositions,
                                                   "AtomicGhostCoarseGrainingPositions");
        }
        if(needProcGhost_){
          FundamentalAtomQuantity * atomPositionsAll = interscaleManager_.fundamental_atom_quantity(LammpsInterface::ATOM_POSITION,PROC_GHOST);
          ClonedAtomQuantity<double> * myAtomPositions =
            new ClonedAtomQuantity<double>(this,atomPositionsAll,PROC_GHOST);
          atomProcGhostCoarseGrainingPositions_ = myAtomPositions;
          interscaleManager_.add_per_atom_quantity(myAtomPositions,
                                                   "AtomicProcGhostCoarseGrainingPositions");
        }
      }
      else {
        XrefWrapper * myAtomPositions = new XrefWrapper(this);
        atomCoarseGrainingPositions_ = myAtomPositions;
        interscaleManager_.add_per_atom_quantity(myAtomPositions,
                                                 "AtomicCoarseGrainingPositions");
        atomReferencePositions_ = atomCoarseGrainingPositions_;

        if (groupbitGhost_) {
          myAtomPositions = new XrefWrapper(this,GHOST);
          atomGhostCoarseGrainingPositions_ = myAtomPositions;
          interscaleManager_.add_per_atom_quantity(myAtomPositions,
                                                   "AtomicGhostCoarseGrainingPositions");
        }
        if (needProcGhost_) {
          XrefWrapper * myAtomPositions = new XrefWrapper(this);
          atomProcGhostCoarseGrainingPositions_ = myAtomPositions;
          interscaleManager_.add_per_atom_quantity(myAtomPositions,
                                                   "AtomicProcGhostCoarseGrainingPositions");
        }
      }
      atomCoarseGrainingPositions_->set_memory_type(PERSISTENT);
      if (atomGhostCoarseGrainingPositions_) atomGhostCoarseGrainingPositions_->set_memory_type(PERSISTENT);
      if (atomProcGhostCoarseGrainingPositions_) atomProcGhostCoarseGrainingPositions_->set_memory_type(PERSISTENT);
    }

    // Add in atom to element map if using shape functions
    if (needsAtomToElementMap_) {
      atomElement_ = new AtomToElementMap(this);
      interscaleManager_.add_per_atom_int_quantity(atomElement_,"AtomElement");
    }
  }

  //-------------------------------------------------------------------
  void ATC_Method::construct_methods()
  {

    if (this->reset_methods()) {
      if (atomTimeIntegrator_) delete atomTimeIntegrator_;
      if (integrateInternalAtoms_) {
        atomTimeIntegrator_ = new AtomTimeIntegratorType(this,INTERNAL);
      }
      else {
        atomTimeIntegrator_ = new AtomTimeIntegrator();
      }

      // set up integration schemes for ghosts
      ghostManager_.construct_methods();
    }
  }

  //-------------------------------------------------------------------
  void ATC_Method::construct_transfers()
  {
    this->construct_interpolant();

    this->construct_molecule_transfers();

    atomTimeIntegrator_->construct_transfers();
    ghostManager_.construct_transfers();



  }
  //-------------------------------------------------------------------
  PerAtomDiagonalMatrix<double> * ATC_Method::create_atom_volume()
  {
    if (atomVolume_) {
      return atomVolume_;
    }
    else {
      // set variables to compute atomic weights
      DENS_MAN * nodalVolume(nullptr);
      switch (atomWeightType_) {
      case USER:
        atomVolume_ = new AtomVolumeUser(this,Valpha_);
        break;
      case LATTICE:
        atomVolume_ = new AtomVolumeLattice(this);
        break;
      case ELEMENT:
        atomVolume_ = new AtomVolumeElement(this);
        break;
      case REGION:
        atomVolume_ = new AtomVolumeRegion(this);
        break;
      case GROUP:
        atomVolume_ = new AtomVolumeGroup(this,Valpha_);
        break;
      case MULTISCALE:
        if (!shpFcn_) {
          throw ATC_Error("ATC_Method::create_atom_volume - Multiscale algorithm requires an interpolant");
        }
        nodalVolume = new NodalAtomVolume(this,shpFcn_);
        interscaleManager_.add_dense_matrix(nodalVolume,"NodalAtomVolume");
        atomVolume_ = new FtaShapeFunctionProlongationDiagonalMatrix(this,nodalVolume,shpFcn_);
        break;
      case NODE:
        if (!shpFcn_) {
          throw ATC_Error("ATC_Method::create_atom_volume - Node algorithm requires an interpolant");
        }
        nodalVolume = new NodalVolume(this,shpFcn_);
        interscaleManager_.add_dense_matrix(nodalVolume,"NodalVolume");
        atomVolume_ = new FtaShapeFunctionProlongationDiagonalMatrix(this,nodalVolume,shpFcn_);
        break;
      case NODE_ELEMENT:
        if (!shpFcn_) {
          throw ATC_Error("ATC_Method::create_atom_volume - Node-Element algorithm requires an interpolant");
        }
        nodalVolume = new NodalAtomVolumeElement(this,shpFcn_);
        interscaleManager_.add_dense_matrix(nodalVolume,"NodalAtomVolumeElement");
        atomVolume_ = new FtaShapeFunctionProlongationDiagonalMatrix(this,nodalVolume,shpFcn_);
        break;
      case READ_IN:
        atomVolume_ = new AtomVolumeFile(this,atomicWeightsFile_);
        break;
      }
      if (atomVolume_) {
        interscaleManager_.add_per_atom_diagonal_matrix(atomVolume_,"AtomVolume");
      }
      else {
        throw ATC_Error("ATC_Method::create_atom_volume - bad option for atom volume algorithm");
      }

      return atomVolume_;
    }
  }
  //--------------------------------------------------------
  void ATC_Method::init_integrate()
  {
    atomTimeIntegrator_->init_integrate_velocity(dt());
    ghostManager_.init_integrate_velocity(dt());
    // account for other fixes doing time integration
    interscaleManager_.fundamental_force_reset(LammpsInterface::ATOM_VELOCITY);

    atomTimeIntegrator_->init_integrate_position(dt());
    ghostManager_.init_integrate_position(dt());
    // account for other fixes doing time integration
    interscaleManager_.fundamental_force_reset(LammpsInterface::ATOM_POSITION);
  }
  //-------------------------------------------------------------------
  void ATC_Method::post_init_integrate()
  {
    ghostManager_.post_init_integrate();
  }
  //-------------------------------------------------------------------
  void ATC_Method::pre_exchange()
  {
    adjust_xref_pbc();
    // call interscale manager to sync atc per-atom data with lammps array ahead of parallel communication
    interscaleManager_.prepare_exchange();

    // change types based on moving from internal region to ghost region
    if ((atomToElementMapType_ == EULERIAN) && (step() % atomToElementMapFrequency_ == 0)) {
      ghostManager_.pre_exchange();
    }
  }
  //-------------------------------------------------------------------
  void ATC_Method::setup_pre_exchange()
  {
    adjust_xref_pbc();
    // call interscale manager to sync atc per-atom data with lammps array ahead of parallel communication
    interscaleManager_.prepare_exchange();
  }
  //-------------------------------------------------------------------
  void ATC_Method::pre_neighbor()
  {
    // reset quantities arising from atom exchange
    reset_nlocal();

    interscaleManager_.post_exchange();

    // forward_comm should go here
  }
  //-------------------------------------------------------------------
  void ATC_Method::min_post_force()
  {
    post_force();
  }
  //-------------------------------------------------------------------
  void ATC_Method::post_force()
  {
    // this resets allow for the possibility of other fixes modifying positions and velocities, e.g. walls, but reduces efficiency
    interscaleManager_.lammps_force_reset();
  }
  //--------------------------------------------------------
  void ATC_Method::final_integrate()
  {
    atomTimeIntegrator_->final_integrate(dt());
    ghostManager_.final_integrate(dt());
    // account for other fixes doing time integration
    interscaleManager_.fundamental_force_reset(LammpsInterface::ATOM_VELOCITY);
  }
  //-------------------------------------------------------------------
  void ATC_Method::post_final_integrate()
  {
    if (atomicWeightsWriteFlag_ && (step() % atomicWeightsWriteFrequency_ == 0)) {
      write_atomic_weights(atomicWeightsFile_,atomVolume_->quantity());
    }
  }
  //-------------------------------------------------------------------
  void ATC_Method::end_of_step()
  {
    localStep_ += 1;
  }
  //--------------------------------------------------------------
  void ATC_Method::finish()
  {
    // FE Engine
    if (feEngine_) feEngine_->finish();
    feEngine_->departition_mesh();
  }

  //--------------------------------------------------------------
  /** method to add new fields to the included list */
  //--------------------------------------------------------------
  void ATC_Method::add_fields(map<FieldName,int> & newFieldSizes)
  {
    map<FieldName,int>::const_iterator field;
    for (field = newFieldSizes.begin(); field!=newFieldSizes.end(); field++) {
      FieldName thisField = field->first;
      int thisSize = field->second;
      if (fieldSizes_.find(thisField)==fieldSizes_.end()) {
          fieldSizes_[thisField] = thisSize;
      }
    }
  }

//-------------------------------------------------------------------
  void ATC_Method::set_reference_potential_energy(void)
  {
    if (setRefPE_) {
      if (setRefPEvalue_) {
        nodalRefPotentialEnergy_->set_quantity() = refPEvalue_;
        setRefPEvalue_ = false;
      }
      else if (readRefPE_) {
        if (LammpsInterface::instance()->rank_zero()) {
          stringstream ss;
          ss << "reading reference potential energy from " << nodalRefPEfile_;
          LammpsInterface::instance()->print_msg(ss.str());
        }
        (nodalRefPotentialEnergy_->set_quantity()).from_file(nodalRefPEfile_);
        readRefPE_ = false;
      }
      else {
        hasRefPE_ = false;
        SPAR_MAN * referenceAccumulant = interscaleManager_.sparse_matrix("ReferenceAccumulant");
        if (referenceAccumulant) {
          referenceAccumulant->set_quantity() = accumulant_->quantity();
        }
        DIAG_MAN * referenceAccumulantInverseVolumes = interscaleManager_.diagonal_matrix("ReferenceAccumulantInverseVolumes");
        if (referenceAccumulantInverseVolumes) {
          referenceAccumulantInverseVolumes->set_quantity() = accumulantInverseVolumes_->quantity();
        }
        PAQ * atomicRefPe = interscaleManager_.per_atom_quantity("AtomicReferencePotential");
        if (!atomicRefPe) {
          throw ATC_Error("ATC_Method::set_reference_potential_energy - atomic reference PE object was not created during construct_transfers");
        }
        PAQ* pe = interscaleManager_.per_atom_quantity("AtomicPotentialEnergy");
        if (!pe) {
          throw ATC_Error("ATC_Method::set_reference_potential_energy - atomic PE object was not created during construct_transfers");
        }
        atomicRefPe->set_quantity() = pe->quantity();
        atomicRefPe->fix_quantity();
      }
      setRefPE_ = false;
      hasRefPE_ = true;
    }
  }
//-------------------------------------------------------------------


  //=================================================================
  // memory management and processor information exchange
  //=================================================================


  //-----------------------------------------------------------------
  // number of doubles
  //-----------------------------------------------------------------
  int ATC_Method::doubles_per_atom() const
  {

    int doubles = 4;
    doubles += interscaleManager_.memory_usage();
    return doubles;
  }

  //-----------------------------------------------------------------
  // memory usage of local atom-based arrays
  //-----------------------------------------------------------------
  int ATC_Method::memory_usage()
  {
    int bytes = doubles_per_atom();
    bytes *= lammpsInterface_->nmax() * sizeof(double);
    return bytes;
  }

  //-----------------------------------------------------------------
  // allocate local atom-based arrays
  //-----------------------------------------------------------------
  void ATC_Method::grow_arrays(int nmax)
  {
    xref_ =
      lammpsInterface_->grow_2d_double_array(xref_,nmax,3,"fix_atc:xref");

    perAtomOutput_ =
      lammpsInterface_->grow_2d_double_array(perAtomOutput_,nmax,sizePerAtomCols_,"fix_atc:perAtomOutput");
    interscaleManager_.grow_arrays(nmax);
  }

  //-----------------------------------------------------------------
  // copy values within local atom-based arrays
  //-----------------------------------------------------------------
  void ATC_Method::copy_arrays(int i, int j)
  {
    xref_[j][0] = xref_[i][0];
    xref_[j][1] = xref_[i][1];
    xref_[j][2] = xref_[i][2];

    for (int ii = 0 ; ii < sizePerAtomCols_ ; ii++ ) {
      perAtomOutput_[j][ii] = perAtomOutput_[i][ii];
    }
    interscaleManager_.copy_arrays(i,j);
  }

  //-----------------------------------------------------------------
  // pack values in local atom-based arrays for exchange with another proc
  //-----------------------------------------------------------------
  int ATC_Method::pack_exchange(int i, double *buf)
  {
    buf[0] = xref_[i][0];
    buf[1] = xref_[i][1];
    buf[2] = xref_[i][2];

    int j = 4;
    for (int ii = 0 ; ii < sizePerAtomCols_ ; ii++ ) {
      buf[j++] = perAtomOutput_[i][ii];
    }
    int interscaleSizeComm = interscaleManager_.pack_exchange(i,&buf[j]);
    return sizeComm_ + interscaleSizeComm;
  }

  //-----------------------------------------------------------------
  // unpack values in local atom-based arrays from exchange with another proc
  //-----------------------------------------------------------------
  int ATC_Method::unpack_exchange(int nlocal, double *buf)
  {
    xref_[nlocal][0] = buf[0];
    xref_[nlocal][1] = buf[1];
    xref_[nlocal][2] = buf[2];

    int j = 4;
    for (int ii = 0 ; ii < sizePerAtomCols_ ; ii++ ) {
      perAtomOutput_[nlocal][ii] = buf[j++];
    }
    int interscaleSizeComm = interscaleManager_.unpack_exchange(nlocal,&buf[j]);
    return sizeComm_ + interscaleSizeComm;
  }

  //-----------------------------------------------------------------
  // pack values in local atom-based arrays from exchange with another proc
  //-----------------------------------------------------------------
  int ATC_Method::pack_comm(int n, int *list, double *buf,
                            int pbc_flag, int *pbc)
  {
    int i,j,m;
    double dx = 0,dy = 0,dz = 0;

    int * num_bond = lammpsInterface_->num_bond();
    int ** bond_atom = lammpsInterface_->bond_atom();

    m = 0;
    if (pbc_flag == 0) {
      for (i = 0; i < n; i++) {
        j = list[i];
        buf[m++] = xref_[j][0];
        buf[m++] = xref_[j][1];
        buf[m++] = xref_[j][2];

        if (num_bond) {
          buf[m++] = num_bond[j];
          for (int ii = 0; ii < lammpsInterface_->bond_per_atom(); ii++) {
            buf[m++] = bond_atom[j][ii];
          }
        }
      }
    }
    else {
      if (lammpsInterface_->domain_triclinic() == 0) {
        dx = pbc[0]*Xprd_;
        dy = pbc[1]*Yprd_;
        dz = pbc[2]*Zprd_;
      }
      else {
        dx = pbc[0]*Xprd_ + pbc[5]*XY_ + pbc[4]*XZ_;
        dy = pbc[1]*Yprd_ + pbc[3]*YZ_;
        dz = pbc[2]*Zprd_;
      }
      for (i = 0; i < n; i++) {
        j = list[i];
        buf[m++] = xref_[j][0] + dx;
        buf[m++] = xref_[j][1] + dy;
        buf[m++] = xref_[j][2] + dz;

        if (num_bond) {
          buf[m++] = num_bond[j];
          for (int ii = 0; ii < lammpsInterface_->bond_per_atom(); ii++) {
            buf[m++] = bond_atom[j][ii];
          }
        }

      }
    }
    return m;  // total amount of data sent
  }

  //-----------------------------------------------------------------
  // unpack values in local atom-based arrays from exchange with another proc
  //-----------------------------------------------------------------
  void ATC_Method::unpack_comm(int n, int first, double *buf)
  {
    int i,m,last;

    int * num_bond = lammpsInterface_->num_bond();
    int ** bond_atom = lammpsInterface_->bond_atom();

    m = 0;
    last = first + n;
    for (i = first; i < last; i++) {
      xref_[i][0] = buf[m++];
      xref_[i][1] = buf[m++];
      xref_[i][2] = buf[m++];

      if (num_bond) {
        num_bond[i] = static_cast<int>(buf[m++]);
        for (int ii = 0; ii < lammpsInterface_->bond_per_atom(); ii++) {
          bond_atom[i][ii] = static_cast<int>(buf[m++]);
        }
      }

    }
  }

  //-----------------------------------------------------------------
  //
  //-----------------------------------------------------------------
  int ATC_Method::comm_forward()
  {
    int size = 3;
    if (lammpsInterface_->num_bond())
      { size += lammpsInterface_->bond_per_atom()+1; }
    return size;
  }

  //-----------------------------------------------------------------
  //
  //-----------------------------------------------------------------
  void ATC_Method::reset_nlocal()
  {
    nLocalTotal_ = lammpsInterface_->nlocal();
    const int * mask = lammpsInterface_->atom_mask();
    nLocal_ = 0;
    nLocalGhost_ = 0;

    for (int i = 0; i < nLocalTotal_; ++i) {
      if (mask[i] & groupbit_) nLocal_++;
      if (mask[i] & groupbitGhost_) nLocalGhost_++;
    }

    // set up internal & ghost maps

    if (nLocal_>0) {
      // set map
      internalToAtom_.resize(nLocal_);
      int j = 0;
      // construct internalToAtom map
      //  : internal index -> local lammps atom index
      for (int i = 0; i < nLocalTotal_; ++i) {
        if (mask[i] & groupbit_) internalToAtom_(j++) = i;
      }
#ifdef EXTENDED_ERROR_CHECKING
      stringstream ss;
      ss << "Nlocal = " << nLocal_ << " but only found " << j << "atoms";
      if (j!=nLocal_) throw ATC_Error(ss.str());
#endif
      // construct reverse map
      atomToInternal_.clear();
      for (int i = 0; i < nLocal_; ++i) {
        atomToInternal_[internalToAtom_(i)] = i;
      }
    }
    if (nLocalGhost_>0) {
      // set map
      ghostToAtom_.resize(nLocalGhost_);
      int j = 0;
      for (int i = 0; i < nLocalTotal_; ++i) {
        if (mask[i] & groupbitGhost_) ghostToAtom_(j++) = i;
      }
    }

    //WIP_JAT this should not be needed at all, but a memory problem with sparse matrices requires them to be reset (possibly related to note in SparseMatrix-inl.h::_delete())
    interscaleManager_.reset_nlocal();

  }

  //-------------------------------------------------------------------
  void ATC_Method::reset_coordinates()
  {
    // update coarse graining positions for internal and ghost atoms
    atomCoarseGrainingPositions_->unfix_quantity();
    atomCoarseGrainingPositions_->quantity();
    atomCoarseGrainingPositions_->fix_quantity();
    if (atomGhostCoarseGrainingPositions_) {
      atomGhostCoarseGrainingPositions_->unfix_quantity();
      atomGhostCoarseGrainingPositions_->quantity();
      atomGhostCoarseGrainingPositions_->fix_quantity();
    }
     if (atomProcGhostCoarseGrainingPositions_) {
      atomProcGhostCoarseGrainingPositions_->unfix_quantity();
      atomProcGhostCoarseGrainingPositions_->quantity();
      atomProcGhostCoarseGrainingPositions_->fix_quantity();
    }
  }

  //-----------------------------------------------------------------
  //
  //-----------------------------------------------------------------
  void ATC_Method::write_atomic_weights(const string filename, const DIAG_MAT & atomicVolumeMatrix)
  {
    int nlocal = lammpsInterface_->nlocal();
    int nlocalmax;
    LammpsInterface::instance()->int_allmax(&nlocal,&nlocalmax);
    int natoms = int(lammpsInterface_->natoms());
    ofstream out;
    const char* fname = &filename[0];

    // create tag to local id map for this processor
    map <int,int> id2tag;
    map <int,int>::const_iterator itr;
    int * atom_tag = lammpsInterface_->atom_tag();
    for (int i = 0; i < nlocal; ++i) {
      id2tag[i] = atom_tag[i];
    }

    int comm_rank = LammpsInterface::instance()->comm_rank();
    int nprocs;
    LammpsInterface::instance()->int_allmax(&comm_rank,&nprocs);
    nprocs += 1;

    if (comm_rank == 0) {
      out.open(fname);
      // print header lines
      out << "Atomic Weights for LAMMPS/atc analysis\n";
      out << " \n";
      out << natoms << " Atoms in system\n";
      out << " \n";
      // print atomic weights from proc 0
      for(int i = 0; i < nlocal; i++) {
        out << id2tag[i] << "  " << atomicVolumeMatrix(i,i) << "\n";
      }
    }

    if (nprocs > 1) {
      int max_size,send_size;
      send_size = nlocal;
      LammpsInterface::instance()->int_allmax(&send_size,&max_size);

      if (comm_rank == 0) {
        int *intbuf = new int[max_size];
        double *buf = new double[max_size];
        for (int iproc = 1; iproc < nprocs; iproc++) {
          LammpsInterface::instance()->int_recv(intbuf,max_size,iproc);
          LammpsInterface::instance()->recv(buf,max_size,iproc);
          for (int i = 0; i < max_size; i++) {
            out << intbuf[i] << "  " << buf[i] << "\n";
          }
        }
        delete[] intbuf;
        delete[] buf;
      } else {
        int *intbuf = new int[send_size];
        double *buf = new double[send_size];
        for (int i = 0; i < send_size; i++) {
          intbuf[i] = id2tag[i];
          buf[i] = atomicVolumeMatrix(i,i);
        }
        LammpsInterface::instance()->int_send(intbuf,send_size);
        LammpsInterface::instance()->send(buf,send_size);
        delete[] intbuf;
        delete[] buf;
      }
    }

    if (comm_rank == 0) {
      out.close();
    }
  }

  //-----------------------------------------------------------------
  //
  //-----------------------------------------------------------------
  void ATC_Method::compute_consistent_md_mass_matrix(const SPAR_MAT & shapeFunctionMatrix,
                                                       SPAR_MAT & mdMassMatrix) const
  {

    int nCols = shapeFunctionMatrix.nCols();
    DENS_MAT massMatrixLocal(nCols,nCols);
    DENS_MAT denseMdMassMatrix(nCols,nCols);
    if (nLocal_>0)
      massMatrixLocal = shapeFunctionMatrix.transMat(shapeFunctionMatrix);

    lammpsInterface_->allsum(massMatrixLocal.ptr(),
                             denseMdMassMatrix.ptr(),
                             denseMdMassMatrix.size());
    mdMassMatrix.reset(denseMdMassMatrix,1.e-10);
  }

  //=================================================================
  // Interscale operators
  //=================================================================
  // in the spirit of the current design of ATC: atoms local, nodes global




  bool ATC_Method::nodal_influence(const int groupbit,
                              set<int> & nset, set<int> & aset, double tol)
  {
    int nghost = nodal_influence(groupbit,nset,aset,true,tol);
    int local_nghost = nghost;
    lammpsInterface_->int_allsum(&local_nghost,&nghost);
    if (nghost == 0) {
       nodal_influence(groupbit,nset,aset,false,tol);
    }
    return (nghost > 0);
  }
  int ATC_Method::nodal_influence(const int groupbit,
        set<int> & nset, set<int> & aset, bool ghost, double tol)
  {
    Array<int> & amap = (ghost) ? ghostToAtom_ : internalToAtom_;
    int natoms = (ghost) ? nLocalGhost_ : nLocal_;
    DENS_MAT influence(nNodes_,1);
    DENS_MAT atomInfluence(natoms,1);
    const int *mask = lammpsInterface_->atom_mask();
    for (int i = 0; i < natoms; i++) {
      if (mask[amap(i)] & groupbit) {
         atomInfluence(i,0) = 1;
         aset.insert(i);
      }
    }
    // relies on shape functions
    if (ghost) {
      restrict_volumetric_quantity(atomInfluence,influence,(interscaleManager_.per_atom_sparse_matrix("InterpolantGhost"))->quantity());
    }
    else {
    restrict_volumetric_quantity(atomInfluence,influence);
    }

    DENS_MAT localInfluence = influence;
    lammpsInterface_->allsum(localInfluence.ptr(),
                             influence.ptr(),
                             influence.size());

    for (int i = 0; i < nNodes_; i++) {
      if (fabs(influence(i,0)) > tol)  { nset.insert(i);  }
    }
    return aset.size();
  }


  //--------------------------------------------------------
  void ATC_Method::restrict_volumetric_quantity(const MATRIX & atomData,
                                                MATRIX & nodeData,
                                                const SPAR_MAT & shpFcn)
  {
    // computes nodeData = N*DeltaVAtom*atomData where N are the shape functions
    DENS_MAT workNodeArray(nodeData.nRows(),nodeData.nCols());
    //DENS_MAT workNodeArray;


    if (atomData.nRows() > 0) { // or shpFcn_???
      workNodeArray = shpFcn.transMat(atomData);
    }
    int count = nodeData.nRows()*nodeData.nCols();
    lammpsInterface_->allsum(workNodeArray.ptr(),nodeData.ptr(),count);
    return;
  }


  //--------------------------------------------------------
  void ATC_Method::restrict_volumetric_quantity(const MATRIX & atomData,
                                                MATRIX & nodeData)
  {
    restrict_volumetric_quantity(atomData,nodeData,shpFcn_->quantity());
    return;
  }


  //--------------------------------------------------------
  void ATC_Method::prolong(const MATRIX & nodeData,
                             MATRIX & atomData)
  {
    // computes the finite element interpolation at atoms atomData = N*nodeData
    if (nLocal_>0) {
      atomData = (shpFcn_->quantity())*nodeData;
    }
    return;
  }

  //========================================================
  // FE functions
  //========================================================

  //--------------------------------------------------------
  void ATC_Method::output()
  {
//  if (lammpsInterface_->comm_rank() == 0) {
      compute_nodeset_output();
      compute_faceset_output();
      compute_elementset_output();
//  }
  }
  //--------------------------------------------------------
  void ATC_Method::compute_nodeset_output(void)
  {
    map< pair <string, FieldName>, NodesetOperationType >::const_iterator iter;
    for (iter = nsetData_.begin(); iter != nsetData_.end();iter++){
      pair <string, FieldName> id = iter->first;
      string nsetName = id.first;
      FieldName field = id.second;
      double sum = 0.0;
      const set<int> nset = feEngine_->fe_mesh()->nodeset(nsetName);
      const DENS_MAT & thisField = (fields_.find(field)->second).quantity();
      set< int >::const_iterator itr;
      for (itr = nset.begin(); itr != nset.end();itr++){
        int node = *itr;
        sum += thisField(node,0);
      }
      string name = nsetName + "_" + field_to_string(field);
      if (iter->second == NODESET_AVERAGE) {
        sum /= nset.size();
        name = "average_"+name;
      }
      feEngine_->add_global(name, sum);
    }
  }
  //--------------------------------------------------------
  void ATC_Method::compute_faceset_output(void)
  {
    map < pair<string,string>, FacesetIntegralType >::const_iterator iter;
    DENS_MAT values;
    for (iter = fsetData_.begin(); iter !=  fsetData_.end(); iter++) {
      string bndyName  = (iter->first).first;
      string fieldName = (iter->first).second;
      const set< PAIR > & faceSet = (feEngine_->fe_mesh())->faceset(bndyName);
      ATOMIC_DATA::iterator data_iter = filteredData_.find(fieldName);
      if (data_iter == filteredData_.end()) {
        string msg = "Specified fieldName "+fieldName+
          " not found in filteredData_ while attempting surface integration";
        throw ATC_Error(msg);
      }
      const DENS_MAT & data =  ((data_iter->second).quantity());
      string stem = bndyName + "_" + fieldName + "_";
      bool tf = false;
      if (iter->second == CONTOUR_INTEGRAL) {
        stem = "contour_"+stem;
        tf = true;
      }
      feEngine_->field_surface_flux(data,faceSet,values,tf);
      for (int i = 0; i < values.nRows() ; ++i ) {
        string name = stem + to_string(i+1);
        feEngine_->add_global(name, values(i,0));
      }
    }
  }
  //--------------------------------------------------------
  void ATC_Method::compute_elementset_output(void)
  {
    map< pair <string, FieldName>, ElementsetOperationType >::const_iterator iter;
    for (iter = esetData_.begin(); iter != esetData_.end();iter++){
      pair <string, FieldName> id = iter->first;
      string esetName = id.first;
      FieldName field = id.second;
      const ESET eset = feEngine_->fe_mesh()->elementset(esetName);
      const DENS_MAT & thisField = (fields_.find(field)->second).quantity();
      DENS_VEC total = feEngine_->integrate(thisField,eset);
      string name = esetName + "_" + field_to_string(field);
      if (iter->second == ELEMENTSET_AVERAGE) {
        DENS_MAT ones(nNodes_,0); ones = 1;
        DENS_VEC V = feEngine_->integrate(ones,eset);
        total /= V[0];
        name = "average_"+name;
      }
      if (total.size() == 1) {
        feEngine_->add_global(name, total[0]);
      }
      else {
        for (int i = 0; i < total.size(); i++) {
          feEngine_->add_global(name+to_string(i), total[i]);
        }
      }
    }
  }


  //=================================================================
  //
  //=================================================================
  //--------------------------------------------------------
  bool ATC_Method::read_atomic_ref_positions(const char * filename)
  {
    int nlocal = lammpsInterface_->nlocal();
    ifstream in;
    const int lineSize = 256;
    char line[lineSize];

    // create tag to local id map for this processor
    map <int,int> tag2id;
    map <int,int>::const_iterator itr;
    int * atom_tag = lammpsInterface_->atom_tag();
    for (int i = 0; i < nlocal; ++i) {
      tag2id[atom_tag[i]] = i;
    }

    // get number of atoms
    int natoms = 0;
    int ncols = 0;
    int style = LammpsInterface::CHARGE_STYLE;
    if (LammpsInterface::instance()->rank_zero()) {
      in.open(filename);
      string msg;
      string name = filename;
      msg = "no "+name+" reference file found";
      if (! in.good()) throw ATC_Error(msg);
      in.getline(line,lineSize); // header
      in.getline(line,lineSize); // blank line
      in >> natoms;
      stringstream ss;
      ss << "found " << natoms << " atoms in reference " << filename ;
      while(in.good()) {
        in.getline(line,lineSize);
        string str(line);
        int pos = str.find("Atoms");
        if (pos > -1) {
          in.getline(line,lineSize); // blank line
          break;
        }
      }
      in.getline(line,lineSize);
      std::vector<std::string> tokens;
      ATC_Utility::command_strings(line, tokens);
      ncols = tokens.size();
      switch (ncols) {
      // atomic: id type x y z
      case 5:
      case 8:
         ss << " style:atomic";
         style = LammpsInterface::ATOMIC_STYLE;
         break;
      // charge: id type q x y z
      // molecule : id molecule-ID type x y z
      case 6:
         ss << " style:charge";
         style = LammpsInterface::CHARGE_STYLE;
         break;
      // full  : id molecule-ID type q x y z
      case 7:
         ss << " style:full";
         style = LammpsInterface::FULL_STYLE;
         break;
      default:
         throw ATC_Error("cannot determine atom style, columns:"+to_string(ncols));
         break;
      }
      LammpsInterface::instance()->print_msg(ss.str());
      in.close();
    }
    LammpsInterface::instance()->int_broadcast(&natoms);

    // read atoms and assign
    if (LammpsInterface::instance()->rank_zero()) {
      in.open(filename);
      while(in.good()) {
        in.getline(line,lineSize);
        string str(line);
        int pos = str.find("Atoms");
        if (pos > -1) {
          in.getline(line,lineSize); // blank line
          break;
        }
      }
    }
    int nread = 0,type = -1, tag = -1, count = 0, mId = -1;
    double x[3]={0,0,0}, q =0;
    while (nread < natoms) {
      if (LammpsInterface::instance()->rank_zero()) {
         in.getline(line,lineSize);
         stringstream ss (line,stringstream::in | stringstream::out);
         if      (style == LammpsInterface::CHARGE_STYLE)
         ss >> tag >> type >> q >> x[0] >> x[1] >> x[2];
         else if (style == LammpsInterface::FULL_STYLE)
         ss >> tag >> mId >> type >> q >> x[0] >> x[1] >> x[2];
         else
         ss >> tag >> type >> x[0] >> x[1] >> x[2];
         nread++;
      }
      LammpsInterface::instance()->int_broadcast(&nread);
      LammpsInterface::instance()->int_broadcast(&tag);
      LammpsInterface::instance()->broadcast(x,3);
      itr = tag2id.find(tag);
      if (itr != tag2id.end()) {
        int iatom = itr->second;
        xref_[iatom][0] = x[0];
        xref_[iatom][1] = x[1];
        xref_[iatom][2] = x[2];
        count++;
      }
    }
    if (LammpsInterface::instance()->rank_zero()) {
      in.close();
      stringstream ss;
      ss << "read  " << natoms << " reference positions";
      LammpsInterface::instance()->print_msg(ss.str());
    }
    if (count != nlocal)
       throw ATC_Error("reset "+to_string(count)+" atoms vs "+to_string(nlocal));


    return true;
  }

//--------------------------------------------------------
  void ATC_Method::remap_ghost_ref_positions(void)
  {

    int nlocal = lammpsInterface_->nlocal();
    int nghost = lammpsInterface_->nghost();

    double box_bounds[2][3];
    lammpsInterface_->box_bounds(box_bounds[0][0],box_bounds[1][0],
                                    box_bounds[0][1],box_bounds[1][1],
                                    box_bounds[0][2],box_bounds[1][2]);
    double xlo = box_bounds[0][0], xhi = box_bounds[1][0];
    double ylo = box_bounds[0][1], yhi = box_bounds[1][1];
    double zlo = box_bounds[0][2], zhi = box_bounds[1][2];

    double box_length[3];
    for (int k = 0; k < 3; k++) {
      box_length[k] = box_bounds[1][k] - box_bounds[0][k];
    }
    double Lx = box_length[0], Ly = box_length[1], Lz = box_length[2];

    // create tag to local id map for this processor
    map <int,int> tag2id;
    map <int,int>::const_iterator itr;
    int * atom_tag = lammpsInterface_->atom_tag();
    for (int i = 0; i < nlocal; ++i) {
      tag2id[atom_tag[i]] = i;
    }

    // loop over ghosts
    double ** x = lammpsInterface_->xatom();
    for (int j = nlocal; j < nlocal + nghost; j++) {
      int tag = atom_tag[j];
      int i = tag2id[tag];
      //itr = tag2id.find(tag);
      //if (itr != tag2id.end())
      double* xj = x[j];
      double* Xj = xref_[j];
      //double Xj[3];
      double* Xi = xref_[i];
      // the assumption is that xref_[j] has been shuffled
      // so make an image of xref_[i] that is close to x[j]
      if (xj[0] <= xlo) Xj[0] = Xi[0] -Lx;
      if (xj[0] >= xhi) Xj[0] = Xi[0] +Lx;
      if (xj[1] <= ylo) Xj[1] = Xi[1] -Ly;
      if (xj[1] >= yhi) Xj[1] = Xi[1] +Ly;
      if (xj[2] <= zlo) Xj[2] = Xi[2] -Lz;
      if (xj[2] >= zhi) Xj[2] = Xi[2] +Lz;
    }
  }
};