1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
#ifndef ATC_METHOD_H
#define ATC_METHOD_H
// ATC_Method headers
#include "ATC_TypeDefs.h"
#include "PhysicsModel.h"
#include "MatrixLibrary.h"
#include "Array.h"
#include "Array2D.h"
#include "OutputManager.h"
#include "Function.h"
#include "FE_Element.h"
#include "TimeFilter.h"
#include "LammpsInterface.h"
#include "FE_Engine.h"
#include "ExtrinsicModel.h"
#include "InterscaleOperators.h"
#include "TransferLibrary.h"
#include "GhostManager.h"
// Other headers
#include <vector>
#include <set>
#include <utility>
#include <string>
#include <map>
namespace ATC {
// forward declarations
class AtomTimeIntegrator;
/**
* @class ATC_Method
* @brief Base class for atom-continuum coupling or transfer operators
*/
class ATC_Method {
public: /** methods */
/** constructor */
ATC_Method(std::string groupName, double **& perAtomArray, LAMMPS_NS::Fix * thisFix);
/** destructor */
virtual ~ATC_Method();
std::string version() {return "2.0";}
/** parser/modifier */
virtual bool modify(int narg, char **arg);
void parse_field(/*const*/ char ** args, int &argIndex,
FieldName &thisField);
void parse_field(/*const*/ char ** args, int &argIndex,
FieldName &thisField, int &thisIndex);
/** initialize any computes that will be needed prior to the first timestep */
virtual void init_computes() {
lammpsInterface_->computes_addstep(lammpsInterface_->ntimestep());
};
/** pre integration run */
virtual void initialize();
/** Predictor phase, executed before Verlet */
virtual void pre_init_integrate() {
feEngine_->partition_mesh();
update_step();
};
/** Predictor phase, Verlet first step for velocity and position */
virtual void init_integrate();
/** Predictor phase, executed after Verlet */
virtual void post_init_integrate();
/** Corrector phase, executed before Verlet */
virtual void pre_final_integrate(){};
/** Corrector phase, Verlet second step for velocity */
virtual void final_integrate();
/** Corrector phase, executed after Verlet*/
virtual void post_final_integrate();
/** post integration run : called at end of run or simulation */
virtual void finish();
/** pre/post atomic force calculation */
virtual void pre_force(){};
/** pre/post atomic force calculation in minimize */
virtual void min_pre_force(){};
virtual void min_post_force();
/** called at end of step for run or minimize */
virtual void end_of_step();
//---------------------------------------------------------------
/** \name memory management and processor information exchange */
//---------------------------------------------------------------
/*@{*/
/** pre_exchange is our indicator that atoms have moved across processors */
virtual void pre_exchange();
void setup_pre_exchange();
virtual void pre_neighbor();
virtual void post_force();
int doubles_per_atom() const;
virtual int memory_usage();
virtual void grow_arrays(int);
void copy_arrays(int, int);
int pack_exchange(int, double *);
int unpack_exchange(int, double *);
int comm_forward(void);
int pack_comm(int , int *, double *, int, int *);
void unpack_comm(int, int, double *);
/*@}*/
//---------------------------------------------------------------
/** \name managers */
//---------------------------------------------------------------
/*@{*/
/** access to FE engine */
const FE_Engine * fe_engine() const {return feEngine_;};
/** access to interscale manager */
InterscaleManager & interscale_manager() {return interscaleManager_;};
/** access to lammps interface */
LammpsInterface const * lammps_interface() const {return lammpsInterface_;};
/** access to time filter */
TimeFilterManager * time_filter_manager() {return &timeFilterManager_;};
/*@}*/
//---------------------------------------------------------------
/** \name access methods for output computation data */
//---------------------------------------------------------------
/*@{*/
/** compute scalar for output */
virtual double compute_scalar() {return 0.;}
/** compute vector for output */
virtual double compute_vector(int /* n */) {return 0.;}
/** compute vector for output */
virtual double compute_array(int /* irow */, int /* icol */) {return 0.;};
int scalar_flag() const {return scalarFlag_;}
int vector_flag() const {return vectorFlag_;}
int size_vector() const {return sizeVector_;}
int peratom_flag() const {return sizePerAtomCols_ > 0;}
int size_peratom_cols() const {return sizePerAtomCols_;}
int peratom_freq() const {return 1;}
void set_peratom_pointer(double ** & ptr) { ptr = perAtomOutput_; }
int global_freq() const {return scalarVectorFreq_;};
int extscalar() const {return extScalar_;};
int extvector() const {return extVector_;};
int * extlist() {return extList_;};
int thermo_energy_flag() const {return thermoEnergyFlag_;};
bool parallel_consistency() const {return parallelConsistency_;};
/** access to step number */
int step() const {return stepCounter_;};
double time() const {return simTime_;};
double dt() const {return lammpsInterface_->dt();}
/** time/step functions */
bool sample_now(void) const
{
int s = step();
bool now = ( (sampleFrequency_ > 0) && (s % sampleFrequency_ == 0));
return now;
}
bool output_now(void) const
{
int s = step();
bool now = ( (outputFrequency_ > 0) && (s == 1 || s % outputFrequency_ == 0) );
now = now || outputNow_;
return now;
}
double output_index(void) const
{
if (outputTime_) return time();
else return step();
}
/** print tracked types and groups */
int print_tracked() const
{
std::string msg = "species:\n";
for(unsigned int i = 0; i < typeList_.size(); i++) {
msg+=" type:"+ATC_Utility::to_string(typeList_[i])+" name: "+ typeNames_[i]+"\n"; }
for(unsigned int i = 0; i < groupList_.size(); i++) {
msg+=" group (bit):"+ATC_Utility::to_string(groupList_[i])+" name: "+ groupNames_[i]+"\n";
}
ATC::LammpsInterface::instance()->print_msg_once(msg);
return typeList_.size()+groupList_.size();
}
std::vector<std::string> tracked_names() const
{
std::vector<std::string> names(typeList_.size()+groupList_.size());
int j = 0;
for(unsigned int i = 0; i < typeList_.size(); i++) {
names[j++] = typeNames_[i];
}
for(unsigned int i = 0; i < groupList_.size(); i++) {
names[j++] = groupNames_[i];
}
return names;
}
int tag_to_type(std::string tag) const {
for(unsigned int i = 0; i < typeList_.size(); i++) {
if (tag == typeNames_[i]) return typeList_[i];
}
return -1;
}
int type_index(int t) const {
for(unsigned int i = 0; i < typeList_.size(); i++) {
if (t == typeList_[i]) return i;
}
return -1;
}
/*@}*/
//---------------------------------------------------------------
/** \name Access methods for sizes */
//---------------------------------------------------------------
/*@{*/
/** get number of unique FE nodes */
int num_nodes() const {return nNodes_;};
/** get number of spatial dimensions */
int nsd() const {return nsd_;};
/** get number of ATC internal atoms on this processor */
int nlocal() const {return nLocal_;};
/** get total number of LAMMPS atoms on this processor */
int nlocal_total() const {return nLocalTotal_;};
/** get number of ATC ghost atoms on this processor */
int nlocal_ghost() const {return nLocalGhost_;};
/** get the number of all LAMMPS real and parallel ghost atoms on this processor */
int nproc_ghost() const {return nLocalTotal_ + lammpsInterface_->nghost();};
/** match group bits */
bool is_ghost_group(int grpbit) { return (grpbit == groupbitGhost_); }
bool is_internal_group(int grpbit) { return (grpbit == groupbit_); }
unsigned int ntracked() { return typeList_.size()+groupList_.size(); }
bool has_tracked_species() { return typeList_.size()+groupList_.size() > 0; }
/*@}*/
virtual void initialize_mesh_data(void){meshDataInitialized_=true;}
//---------------------------------------------------------------
/** \name Access methods for data used by various methods */
//---------------------------------------------------------------
/*@{*/
/** access to name FE fields */
DENS_MAN &field(FieldName thisField){return fields_[thisField];};
/** access to FE field time derivatives */
DENS_MAT &get_dot_field(FieldName thisField){return dot_fields_[thisField].set_quantity();};
DENS_MAN &dot_field(FieldName thisField){return dot_fields_[thisField];};
/** access to nodal fields of atomic variables */
DENS_MAT &get_atomic_field(FieldName thisField)
{ return nodalAtomicFields_[thisField].set_quantity(); };
DENS_MAN &nodal_atomic_field(FieldName thisField)
{ return nodalAtomicFields_[thisField]; };
/** access to all fields */
FIELDS &fields() {return fields_;};
/** access to all fields rates of change (roc) */
FIELDS &fields_roc() {return dot_fields_;};
/** add a new field */
void add_fields(std::map<FieldName,int> & newFieldSizes);
/** access FE rate of change */
DENS_MAT &get_field_roc(FieldName thisField)
{ return dot_fields_[thisField].set_quantity(); };
DENS_MAN &field_roc(FieldName thisField)
{ return dot_fields_[thisField]; };
/** access atomic rate of change contributions to finite element equation */
DENS_MAT &get_nodal_atomic_field_roc(FieldName thisField)
{ return nodalAtomicFieldsRoc_[thisField].set_quantity(); };
DENS_MAN &nodal_atomic_field_roc(FieldName thisField)
{ return nodalAtomicFieldsRoc_[thisField]; };
/** access to second time derivative (2roc) */
DENS_MAT &get_field_2roc(FieldName thisField)
{ return ddot_fields_[thisField].set_quantity(); };
DENS_MAN &field_2roc(FieldName thisField)
{ return ddot_fields_[thisField]; };
/** access to third time derivative (3roc) */
DENS_MAT &get_field_3roc(FieldName thisField)
{ return dddot_fields_[thisField].set_quantity(); };
DENS_MAN &field_3roc(FieldName thisField)
{ return dddot_fields_[thisField]; };
/** group bit */
int groupbit() {return groupbit_;};
/** group bit for ghosts */
int groupbit_ghost() {return groupbitGhost_;};
/** internal atom to global map */
const Array<int> &internal_to_atom_map() {return internalToAtom_;};
/** ghost atom to global map */
const Array<int> &ghost_to_atom_map() {return ghostToAtom_;};
const std::map<int,int> & atom_to_internal_map() {return atomToInternal_;};
/** access to xref */
double ** xref() {return xref_;};
/** access to faceset names */
const std::set<PAIR> &faceset(const std::string & name) const {return (feEngine_->fe_mesh())->faceset(name);};
DENS_VEC copy_nodal_coordinates(int i) const { return feEngine_->fe_mesh()->nodal_coordinates(i); }
/** access to set of DENS_MANs accessed by tagging */
DENS_MAN & tagged_dens_man(const std::string & tag) {return taggedDensMan_[tag];};
/** access to atom to element type map */
AtomToElementMapType atom_to_element_map_type() {return atomToElementMapType_;};
/** access to atom to element update frequency */
int atom_to_element_map_frequency() {return atomToElementMapFrequency_;};
/** flag on whether atc is initialized */
bool is_initialized() const {return initialized_;};
/** step number within a run or minimize */
int local_step() const {return localStep_;};
/** flags whether a methods reset is required */
virtual bool reset_methods() const {return (!initialized_) || timeFilterManager_.need_reset() || timeFilterManager_.end_equilibrate() || ghostManager_.need_reset();};
/** sizes of each field being considered */
const std::map<FieldName,int> & field_sizes() {return fieldSizes_;};
/*@}*/
/** compute the consistent MD mass matrix */
void compute_consistent_md_mass_matrix(const SPAR_MAT & shapeFunctionMatrix,
SPAR_MAT & mdMassMatrix) const;
/** access to molecule ids */
const std::map<std::string,std::pair<MolSize,int> > & molecule_ids() const {return moleculeIds_;};
/** access to internal element set */
const std::string & internal_element_set() {return internalElementSet_;};
//----------------------------------------------------------------
/** \name mass matrix operations */
//----------------------------------------------------------------
void apply_inverse_mass_matrix(MATRIX & data) {
data = massMatInv_*data;
}
// inverted using GMRES
void apply_inverse_mass_matrix(MATRIX & data, FieldName thisField)
{
if (useConsistentMassMatrix_(thisField)) {
//data = consistentMassInverse_*data;
data = (consistentMassMatsInv_[thisField].quantity())*data;
return;
}
data = (massMatsInv_[thisField].quantity())*data;
};
/** multiply inverse mass matrix times given data and return result */
void apply_inverse_mass_matrix(const MATRIX & data_in, MATRIX & data_out,
FieldName thisField)
{
if (useConsistentMassMatrix_(thisField)) {
//data_out = consistentMassInverse_*data_in;
data_out = (consistentMassMatsInv_[thisField].quantity())*data_in;
return;
}
data_out = (massMatsInv_[thisField].quantity())*data_in;
};
void apply_inverse_md_mass_matrix(const MATRIX & data_in, MATRIX & data_out,
FieldName thisField)
{ data_out = (massMatsMdInv_[thisField].quantity())*data_in; };
DIAG_MAN &mass_mat(FieldName thisField)
{ return massMats_[thisField];};
//---------------------------------------------------------------
/** \name mass matrices */
//---------------------------------------------------------------
/*@{*/
/** access to mass matrices */
/** access to inverse mass matrices */
DIAG_MAT &get_mass_mat_inv(FieldName thisField)
{ return massMatsInv_[thisField].set_quantity();};
DIAG_MAN &mass_mat_inv(FieldName thisField)
{ return massMatsInv_[thisField];};
/** nodal volumes associated with the atoms, used for the atomic mass matrix */
AdmtfShapeFunctionRestriction * nodalAtomicVolume_;
void register_mass_matrix_dependency(DependencyManager * dependent,
FieldName thisField)
{
if (useConsistentMassMatrix_(thisField)) {
consistentMassMatsInv_[thisField].register_dependence(dependent);
return;
}
massMatsInv_[thisField].register_dependence(dependent);
};
void apply_inverse_md_mass_matrix(MATRIX & data, FieldName thisField)
{ data = (massMatsMdInv_[thisField].quantity())*data; };
void register_md_mass_matrix_dependency(DependencyManager * dependent,
FieldName thisField)
{massMatsMdInv_[thisField].register_dependence(dependent);}
// /** determine weighting method for atomic integration */
// void compute_consistent_md_mass_matrix(const SPAR_MAT & shapeFunctionMatrix,
// SPAR_MAT & mdMassMatrix);
virtual void compute_md_mass_matrix(FieldName /* thisField */,
DIAG_MAT & /* massMat */) {};
/** access to md mass matrices */
DIAG_MAN &mass_mat_md_inv(FieldName thisField)
{ return massMatsMdInv_[thisField];};
DIAG_MAN &set_mass_mat_md(FieldName thisField)
{ return massMatsMd_[thisField]; };
const DIAG_MAN &mass_mat_md(FieldName thisField) const
{
MASS_MATS::const_iterator man = massMatsMd_.find(thisField);
if (man == massMatsMd_.end() ) {
std::string msg = " MD mass for " + field_to_string(thisField) + " does not exist";
throw ATC_Error(msg);
}
return man->second;
};
/*@}*/
//----------------------------------------------------------------
/** \name Interscale operators */
//----------------------------------------------------------------
bool use_md_mass_normalization() const { return mdMassNormalization_;}
bool kernel_based() { return kernelBased_; }
bool kernel_on_the_fly() const { return kernelOnTheFly_;}
bool has_kernel_function() { return kernelFunction_ != nullptr; }
KernelFunction * kernel_function() { return kernelFunction_; }
std::vector<int> & type_list() { return typeList_; }
std::vector<int> & group_list() { return groupList_; }
SPAR_MAN* interpolant() { return shpFcn_; }
SPAR_MAN* accumulant() { return accumulant_; }
DIAG_MAN* accumulant_weights() { return accumulantWeights_;}
DIAG_MAN* accumulant_inverse_volumes() { return accumulantInverseVolumes_; }
int accumulant_bandwidth() const { if (accumulantBandwidth_) return accumulantBandwidth_; else return feEngine_->num_nodes(); };
PerAtomQuantity<double> * atom_coarsegraining_positions() { return atomCoarseGrainingPositions_; }
PerAtomQuantity<double> * atom_reference_positions() { return atomReferencePositions_; }
PerAtomQuantity<int> * atom_to_element_map() { return atomElement_;}
double ke_scale() { return keScale_; }
double pe_scale() { return peScale_; }
/** from a atom group, find the nodes that have non-zero shape function contributions */
bool nodal_influence(const int groupbit, std::set<int>& nset, std::set<int>& aset, double tol =1.e-8);
int nodal_influence(const int groupbit, std::set<int>& nset, std::set<int>& aset,
bool ghost,
double tol =1.e-8);
/*@{*/
/** Restrict based on atomic volume integration for volumetric quantities : given w_\alpha, w_I = \sum_\alpha N_{I\alpha} w_\alpha */
void restrict_volumetric_quantity(const MATRIX &atomData,
MATRIX &nodeData);
void restrict_volumetric_quantity(const MATRIX &atomData,
MATRIX &nodeData,
const SPAR_MAT & shpFcn);
/** Prolong : given w_I, w_\alpha = \sum_I N_{I\alpha} w_I */
void prolong(const MATRIX &nodeData, MATRIX &atomData);
//---------------------------------------------------------------
/** \name quadrature weights */
//---------------------------------------------------------------
PerAtomDiagonalMatrix<double> * create_atom_volume();
//---------------------------------------------------------------
/** \name access to potential energy reference */
//---------------------------------------------------------------
/*@{*/
DENS_MAN * nodal_ref_potential_energy(void) { return nodalRefPotentialEnergy_; }
protected: /** methods */
/** time functions */
void set_time(double t=0) {simTime_=t;};
void update_time(double alpha = 1.0)
{
double dt = lammpsInterface_->dt();
simTime_ += alpha*dt;
if (dt == 0.0) simTime_ = stepCounter_;
}
// note step counter different than lammps step e.g. min
void update_step(void) { ++stepCounter_; }
//---------------------------------------------------------------
/** initialization routines */
//---------------------------------------------------------------
/** gets baseline data from continuum model */
virtual void set_continuum_data();
/** sets up all data necessary to define the computational geometry */
virtual void set_computational_geometry();
/** constructs all data which is updated with time integration, i.e. fields */
virtual void construct_time_integration_data() = 0;
/** create methods, e.g. time integrators, filters */
virtual void construct_methods();
/** set up data which is dependency managed */
virtual void construct_transfers();
/** sets up accumulant & interpolant */
virtual void construct_interpolant()=0;
/** sets up mol transfers */
virtual void construct_molecule_transfers()=0;
/** update the peratom output pointers */
void update_peratom_output(void);
virtual void read_restart_data(std::string fileName_, RESTART_LIST & data);
virtual void write_restart_data(std::string fileName_, RESTART_LIST & data);
void pack_fields(RESTART_LIST & data);
/** mass matrices */
DIAG_MAT massMatInv_;
MASS_MATS massMats_;
MASS_MATS massMatsInv_;
MASS_MATS massMatsMd_;
MASS_MATS massMatsMdInstantaneous_;
MASS_MATS massMatsMdInv_;
MASS_MATS massMatsFE_;
MASS_MATS massMatsAq_;
MASS_MATS massMatsAqInstantaneous_;
Array<bool> useConsistentMassMatrix_;
std::map<FieldName,SPAR_MAN> consistentMassMats_;
std::map<FieldName,DENS_MAN> consistentMassMatsInv_;
std::map<FieldName,TimeFilter * > massMatTimeFilters_;
//---------------------------------------------------------------
/** \name quadrature weight function */
//---------------------------------------------------------------
/*@{*/
void write_atomic_weights(const std::string filename,const DIAG_MAT & atomicVolumeMatrix);
/** resets shape function matrices based on atoms on this processor */
virtual void reset_nlocal();
virtual void reset_coordinates();
/*@}*/
/** re-read reference positions */
bool read_atomic_ref_positions(const char * filename);
void remap_ghost_ref_positions(void);
void adjust_xref_pbc();
//---------------------------------------------------------------
/** \name output functions */
//---------------------------------------------------------------
/*@{*/
virtual void output();
void compute_nodeset_output(void);
void compute_faceset_output(void);
void compute_elementset_output(void);
/*@}*/
//---------------------------------------------------------------
/** \name types, groups, and molecules */
//---------------------------------------------------------------
/*@{*/
/** map from species string tag to LAMMPS type id or group bit */
std::map<std::string,std::pair<MolSize,int> > moleculeIds_;
/** a list of lammps types & groups ATC tracks */
std::vector<std::string> typeNames_;
std::vector<std::string> groupNames_;
std::vector<int> typeList_;
std::vector<int> groupList_;
/*@}*/
void reset_fields();
private: /** methods */
ATC_Method(); // do not define
protected: /** data */
/* parsed input requires changes */
bool needReset_;
// managers
/** pointer to lammps interface class */
LammpsInterface * lammpsInterface_;
/** manager for atomic quantities and interscale operations */
InterscaleManager interscaleManager_;
TimeFilterManager timeFilterManager_;
/** check to see if we are integrating the atoms */
bool integrateInternalAtoms_;
/** object which integrates atoms */
AtomTimeIntegrator * atomTimeIntegrator_;
/** objects which handles integration and modification of ghost atoms */
GhostManager ghostManager_;
/** finite element handler */
FE_Engine * feEngine_;
// status flags
/** flag on if initialization has been performed */
bool initialized_;
bool meshDataInitialized_;
/** counter for steps of a run or minimize */
int localStep_;
// sizes
/** size of per atom communication */
int sizeComm_;
/** atomic coordinates for coarse graining */
PerAtomQuantity<double> * atomCoarseGrainingPositions_;
PerAtomQuantity<double> * atomGhostCoarseGrainingPositions_;
PerAtomQuantity<double> * atomProcGhostCoarseGrainingPositions_;
PerAtomQuantity<double> * atomReferencePositions_;
/** number of unique FE nodes */
int nNodes_;
/** Number of Spatial Dimensions */
int nsd_;
#ifdef EXTENDED_ERROR_CHECKING
/** data for handling atoms crossing processors */
bool atomSwitch_;
#endif
/** reference position of the atoms */
double ** xref_;
bool readXref_;
bool needXrefProcessorGhosts_;
std::string xRefFile_;
/** flag for tracking displacements or not, depending on physics */
bool trackDisplacement_;
/** map from reference positions to element id, pointer is to internal only */
bool needsAtomToElementMap_;
PerAtomQuantity<int> * atomElement_;
PerAtomQuantity<int> * atomGhostElement_;
/* use element sets to define internal and/or ghost regions */
std::string internalElementSet_;
/** atomic ATC material tag */
double Xprd_,Yprd_,Zprd_; // lengths of periodic box in reference frame
double XY_,YZ_,XZ_;
double boxXlo_,boxXhi_; // lo/hi bounds of periodic box in reference frame
double boxYlo_,boxYhi_; // lo/hi bounds of periodic box in reference frame
double boxZlo_,boxZhi_; // lo/hi bounds of periodic box in reference frame
// next data members are for consistency with existing ATC_Transfer, but are redundant and do not
// conform to naming standards, and should be accessible through the mesh
/** periodicity flags and lengths */
int periodicity[3];
double box_bounds[2][3];
double box_length[3];
/** pointers to needed atom quantities and transfers */
FundamentalAtomQuantity * atomMasses_;
FundamentalAtomQuantity * atomPositions_;
FundamentalAtomQuantity * atomVelocities_;
FundamentalAtomQuantity * atomForces_;
//---------------------------------------------------------------
/** \name output data */
//---------------------------------------------------------------
/*@{*/
//private:
bool parallelConsistency_;
/** base name for output files */
std::string outputPrefix_;
/** output flag */
bool outputNow_;
/** output time or step (for lammps compatibility) */
bool outputTime_;
/** output frequency */
int outputFrequency_;
/** sample frequency */
int sampleFrequency_;
/** sample counter */
int sampleCounter_;
TAG_FIELDS filteredData_;
double peScale_,keScale_;
//protected:
/*@}*/
//---------------------------------------------------------------
/** \name member data related to compute_scalar() and compute_vector() */
//---------------------------------------------------------------
/*@{*/
int scalarFlag_; // 0/1 if compute_scalar() function exists
int vectorFlag_; // 0/1 if compute_vector() function exists
int sizeVector_; // N = size of global vector
int scalarVectorFreq_; // frequency compute s/v data is available at
int sizePerAtomCols_; // N = size of per atom vector to dump
double **perAtomOutput_; // per atom data
double **&perAtomArray_; // per atom data
int extScalar_; // 0/1 if scalar is intensive/extensive
int extVector_; // 0/1/-1 if vector is all int/ext/extlist
int *extList_; // list of 0/1 int/ext for each vec component
int thermoEnergyFlag_; // 0/1 if fix adds to overall energy
/*@}*/
//---------------------------------------------------------------
/** \name fields and necessary data for FEM */
//---------------------------------------------------------------
/*@{*/
std::map<FieldName,int> fieldSizes_;
FIELDS fields_;
/*@}*/
//---------------------------------------------------------------
/** \name time integration and filtering fields */
//---------------------------------------------------------------
/*@{*/
FIELDS dot_fields_;
FIELDS ddot_fields_;
FIELDS dddot_fields_;
/** Restricted Fields */
FIELDS nodalAtomicFields_; // replaces fieldNdFiltered_
FIELDS nodalAtomicFieldsRoc_;
/*@}*/
//---------------------------------------------------------------
/** \name quadrature weights */
//---------------------------------------------------------------
/*@{*/
DIAG_MAT NodeVolumes_;
DIAG_MAN invNodeVolumes_;
/** atomic quadrature integration weights (V_\alpha) */
ProtectedAtomDiagonalMatrix<double> * atomVolume_;
std::string atomicWeightsFile_;
bool atomicWeightsWriteFlag_;
int atomicWeightsWriteFrequency_;
double atomicVolume_; // global atomic volume for homogeneous set of atoms
std::map<int,double> Valpha_;
AtomicWeightType atomWeightType_;
/*@}*/
//---------------------------------------------------------------
/** \name domain decomposition */
//---------------------------------------------------------------
/*@{*/
DomainDecompositionType domainDecomposition_;
/*@}*/
//---------------------------------------------------------------
/** \name atom data */
//---------------------------------------------------------------
/*@{*/
/** bitwise comparisons for boundary (ghost) atoms */
int groupbit_;
int groupbitGhost_;
bool needProcGhost_;
std::string groupTag_;
std::string groupTagGhost_;
/** number of atoms of correct type,
ghosts are atoms outside our domain of interest
boundary are atoms contributing to boundary flux terms */
/** Number of "internal" atoms on this processor */
int nLocal_;
/** Number of atoms on this processor */
int nLocalTotal_;
int nLocalGhost_;
Array<int> internalToAtom_;
std::map<int,int> atomToInternal_;
Array<int> ghostToAtom_;
/*@}*/
//----------------------------------------------------------------
/** \name maps and masks */
//----------------------------------------------------------------
/*@{*/
AtomToElementMapType atomToElementMapType_;
int atomToElementMapFrequency_;
int regionID_;
/*@}*/
//----------------------------------------------------------------
/** \name shape function matrices */
//----------------------------------------------------------------
/*@{*/
// sparse matrix where columns correspond to global node numbering
SPAR_MAN * shpFcn_;
VectorDependencyManager<SPAR_MAT * > * shpFcnDerivs_;
/** map from species std::string tag to the species density */
std::map<std::string,DENS_MAN> taggedDensMan_;
/** weighted shape function matrices at overlap nodes
for use with thermostats */
SPAR_MAN NhatOverlap_;
/*@}*/
//----------------------------------------------------------------
/** \name accumulant matrices */
//----------------------------------------------------------------
/*@{*/
/** compute kernel shape functions on-the-fly w/o storing N_Ia */
bool mdMassNormalization_;
bool kernelBased_;
bool kernelOnTheFly_;
class KernelFunction * kernelFunction_;
bool bondOnTheFly_;
SPAR_MAN* accumulant_;
SPAR_MAN* accumulantMol_; // KKM add
SPAR_MAN* accumulantMolGrad_; // KKM add
SPAR_MAN kernelAccumulantMol_; // KKM add
SPAR_MAN kernelAccumulantMolGrad_; // KKM add
DIAG_MAN* accumulantWeights_;
DIAG_MAN* accumulantInverseVolumes_;
int accumulantBandwidth_;
/*@}*/
//---------------------------------------------------------------
/** \name restart procedures */
//---------------------------------------------------------------
bool useRestart_;
std::string restartFileName_;
//---------------------------------------------------------------
/** \name data specific to node/faceset for global output */
//---------------------------------------------------------------
/** group computes : type, group_id -> value */
std::map< std::pair<std::string, FieldName > , NodesetOperationType> nsetData_;
std::map< std::pair<std::string,std::string>, FacesetIntegralType > fsetData_;
std::map< std::pair<std::string, FieldName>,ElementsetOperationType > esetData_;
//---------------------------------------------------------------
/** \name reference data */
//---------------------------------------------------------------
bool hasRefPE_;
bool setRefPE_;
bool setRefPEvalue_;
double refPEvalue_;
bool readRefPE_;
std::string nodalRefPEfile_;
DENS_MAN* nodalRefPotentialEnergy_;
void set_reference_potential_energy(void);
private: /** data */
/** current time in simulation */
double simTime_;
/** step counter */
int stepCounter_;
};
};
#endif
|