1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
|
// ATC_Transfer headers
#include "ATC_Transfer.h"
#include "ATC_Error.h"
#include "FE_Engine.h"
#include "LammpsInterface.h"
#include "Quadrature.h"
#include "VoigtOperations.h"
#include "TransferLibrary.h"
#include "Stress.h"
#include "KernelFunction.h"
#include "PerPairQuantity.h"
#include "FieldManager.h"
#define ESHELBY_VIRIAL
#include "LinearSolver.h"
// Other Headers
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <fstream>
#include <sstream>
#include <exception>
// PLAN:
//* energies
//* filters - make filterFields class
//* output directly
//* enum, tagged, computes, mat(field to field) functions
//* grads & rates
//* on-the-fly
// * remove derived classes
using namespace std;
using namespace ATC_Utility;
using namespace voigt3;
namespace ATC {
const int numFields_ = 17;
FieldName indices_[numFields_] = {
CHARGE_DENSITY,
MASS_DENSITY,
SPECIES_CONCENTRATION,
NUMBER_DENSITY,
MOMENTUM,
VELOCITY,
PROJECTED_VELOCITY,
DISPLACEMENT,
POTENTIAL_ENERGY,
KINETIC_ENERGY,
KINETIC_TEMPERATURE,
TEMPERATURE,
CHARGE_FLUX,
SPECIES_FLUX,
THERMAL_ENERGY,
ENERGY,
INTERNAL_ENERGY
};
//KINETIC_STRESS;
//ELECTRIC_POTENTIAL};
ATC_Transfer::ATC_Transfer(string groupName,
double ** & perAtomArray,
LAMMPS_NS::Fix * thisFix,
string matParamFile)
: ATC_Method(groupName,perAtomArray,thisFix),
xPointer_(nullptr),
outputStepZero_(true),
neighborReset_(false),
pairMap_(nullptr),
bondMatrix_(nullptr),
pairVirial_(nullptr),
pairHeatFlux_(nullptr),
nComputes_(0),
hasPairs_(true),
hasBonds_(false),
resetKernelFunction_(false),
dxaExactMode_(true),
cauchyBornStress_(nullptr)
{
nTypes_ = lammpsInterface_->ntypes();
peScale_=1.;
keScale_= lammpsInterface_->mvv2e();
// if surrogate model of md (no physics model created)
if (matParamFile != "none") {
fstream fileId(matParamFile.c_str(), std::ios::in);
if (!fileId.is_open()) throw ATC_Error("cannot open material file");
CbData cb;
LammpsInterface *lmp = LammpsInterface::instance();
lmp->lattice(cb.cell_vectors, cb.basis_vectors);
cb.inv_atom_volume = 1.0 / lmp->volume_per_atom();
cb.e2mvv = 1.0 / lmp->mvv2e();
cb.atom_mass = lmp->atom_mass(1);
cb.boltzmann = lmp->boltz();
cb.hbar = lmp->hbar();
cauchyBornStress_ = new StressCauchyBorn(fileId, cb);
}
// Defaults
set_time();
outputFlags_.reset(NUM_TOTAL_FIELDS);
outputFlags_ = false;
fieldFlags_.reset(NUM_TOTAL_FIELDS);
fieldFlags_ = false;
gradFlags_.reset(NUM_TOTAL_FIELDS);
gradFlags_ = false;
rateFlags_.reset(NUM_TOTAL_FIELDS);
rateFlags_ = false;
outputFields_.resize(NUM_TOTAL_FIELDS);
for (int i = 0; i < NUM_TOTAL_FIELDS; i++) { outputFields_[i] = nullptr; }
// Hardy requires ref positions for processor ghosts for bond list
//needXrefProcessorGhosts_ = true;
}
//-------------------------------------------------------------------
ATC_Transfer::~ATC_Transfer()
{
interscaleManager_.clear();
if (cauchyBornStress_) delete cauchyBornStress_;
}
//-------------------------------------------------------------------
// called before the beginning of a "run"
void ATC_Transfer::initialize()
{
if (kernelOnTheFly_ && !readRefPE_ && !setRefPEvalue_) {
if (setRefPE_) {
stringstream ss;
ss << "WARNING: Reference PE requested from atoms, but not yet implemented for on-the-fly, ignoring";
lammpsInterface_->print_msg_once(ss.str());
setRefPE_ = false;
}
}
ATC_Method::initialize();
if (!initialized_) {
if (cauchyBornStress_) cauchyBornStress_->initialize();
}
if (!initialized_ || ATC::LammpsInterface::instance()->atoms_sorted() || resetKernelFunction_) {
// initialize kernel function matrix N_Ia
if (! kernelOnTheFly_) {
try{
if (!moleculeIds_.empty()) compute_kernel_matrix_molecule(); //KKM add
}
catch(bad_alloc&) {
ATC::LammpsInterface::instance()->print_msg("kernel will be computed on-the-fly");
kernelOnTheFly_ = true;
}
}
resetKernelFunction_ = false;
}
// clears need for reset
ghostManager_.initialize();
// initialize bond matrix B_Iab
if ((! bondOnTheFly_)
&& ( ( fieldFlags_(STRESS)
|| fieldFlags_(ESHELBY_STRESS)
|| fieldFlags_(HEAT_FLUX) ) ) ) {
try {
compute_bond_matrix();
}
catch(bad_alloc&) {
ATC::LammpsInterface::instance()->print_msg("stress/heat_flux will be computed on-the-fly");
bondOnTheFly_ = true;
}
}
// set sample frequency to output if sample has not be specified
if (sampleFrequency_ == 0) sampleFrequency_ = outputFrequency_;
// output for step 0
if (!initialized_) {
if (outputFrequency_ > 0) {
// initialize filtered data
compute_fields();
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if(fieldFlags_(index)) {
string name = field_to_string((FieldName) index);
filteredData_[name] = hardyData_[name];
timeFilters_(index)->initialize(filteredData_[name].quantity());
}
if (rateFlags_(index)) {
string name = field_to_string((FieldName) index);
string rate_field = name + "_rate";
filteredData_[rate_field] = hardyData_[rate_field];
}
if (gradFlags_(index)) {
string name = field_to_string((FieldName) index);
string grad_field = name + "_gradient";
filteredData_[grad_field] = hardyData_[grad_field];
}
}
int index = NUM_TOTAL_FIELDS;
map <string,int>::const_iterator iter;
for (iter = computes_.begin(); iter != computes_.end(); iter++) {
string tag = iter->first;
filteredData_[tag] = hardyData_[tag];
timeFilters_(index)->initialize(filteredData_[tag].quantity());
#ifdef ESHELBY_VIRIAL
if (tag == "virial" && fieldFlags_(ESHELBY_STRESS)) {
filteredData_["eshelby_virial"] = hardyData_["eshelby_virial"];
}
#endif
index++;
}
output();
}
}
initialized_ = true;
lammpsInterface_->computes_addstep(lammpsInterface_->ntimestep()+sampleFrequency_);
//remap_ghost_ref_positions();
update_peratom_output();
}
//-------------------------------------------------------------------
void ATC_Transfer::set_continuum_data()
{
ATC_Method::set_continuum_data();
if (!initialized_) {
nNodesGlobal_ = feEngine_->fe_mesh()->num_nodes();
}
}
//-------------------------------------------------------------------
void ATC_Transfer::construct_time_integration_data()
{
if (!initialized_) {
// size arrays for requested/required fields
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (fieldFlags_(index)) {
int size = FieldSizes[index];
if (atomToElementMapType_ == EULERIAN) {
if (index == STRESS) size=6;
if (index == CAUCHY_BORN_STRESS) size=6;
}
if (size == 0) {
if (index == SPECIES_CONCENTRATION) size=typeList_.size()+groupList_.size();
}
string name = field_to_string((FieldName) index);
hardyData_ [name].reset(nNodes_,size);
filteredData_[name].reset(nNodes_,size);
}
}
// size arrays for projected compute fields
map <string,int>::const_iterator iter;
for (iter = computes_.begin(); iter != computes_.end(); iter++) {
string tag = iter->first;
COMPUTE_POINTER cmpt = lammpsInterface_->compute_pointer(tag);
int ncols = lammpsInterface_->compute_ncols_peratom(cmpt);
hardyData_ [tag].reset(nNodes_,ncols);
filteredData_[tag].reset(nNodes_,ncols);
#ifdef ESHELBY_VIRIAL
if (tag == "virial" && fieldFlags_(ESHELBY_STRESS)) {
string esh = "eshelby_virial";
int size = FieldSizes[ESHELBY_STRESS];
hardyData_ [esh].reset(nNodes_,size);
filteredData_[esh].reset(nNodes_,size);
}
#endif
}
}
}
//--------------------------------------------------------
// set_computational_geometry
// constructs needed transfer operators which define
// hybrid atom/FE computational geometry
//--------------------------------------------------------
void ATC_Transfer::set_computational_geometry()
{
ATC_Method::set_computational_geometry();
}
//-------------------------------------------------------------------
// construct_interpolant
// constructs: interpolatn, accumulant, weights, and spatial derivatives
//--------------------------------------------------------
void ATC_Transfer::construct_interpolant()
{
// interpolant
if (!(kernelOnTheFly_)) {
// finite element shape functions for interpolants
PerAtomShapeFunction * atomShapeFunctions = new PerAtomShapeFunction(this);
interscaleManager_.add_per_atom_sparse_matrix(atomShapeFunctions,"Interpolant");
shpFcn_ = atomShapeFunctions;
}
// accummulant and weights
this->create_atom_volume();
// accumulants
if (kernelFunction_) {
// kernel-based accumulants
if (kernelOnTheFly_) {
ConstantQuantity<double> * atomCount = new ConstantQuantity<double>(this,1.);
interscaleManager_.add_per_atom_quantity(atomCount,"AtomCount");
OnTheFlyKernelAccumulation * myWeights
= new OnTheFlyKernelAccumulation(this,
atomCount, kernelFunction_, atomCoarseGrainingPositions_);
interscaleManager_.add_dense_matrix(myWeights,
"KernelInverseWeights");
accumulantWeights_ = new OnTheFlyKernelWeights(myWeights);
}
else {
PerAtomKernelFunction * atomKernelFunctions = new PerAtomKernelFunction(this);
interscaleManager_.add_per_atom_sparse_matrix(atomKernelFunctions,
"Accumulant");
accumulant_ = atomKernelFunctions;
accumulantWeights_ = new AccumulantWeights(accumulant_);
}
accumulantInverseVolumes_ = new KernelInverseVolumes(this,kernelFunction_);
interscaleManager_.add_diagonal_matrix(accumulantInverseVolumes_,
"AccumulantInverseVolumes");
interscaleManager_.add_diagonal_matrix(accumulantWeights_,
"AccumulantWeights");
}
else {
// mesh-based accumulants
if (kernelOnTheFly_) {
ConstantQuantity<double> * atomCount = new ConstantQuantity<double>(this,1.);
interscaleManager_.add_per_atom_quantity(atomCount,"AtomCount");
OnTheFlyMeshAccumulation * myWeights
= new OnTheFlyMeshAccumulation(this,
atomCount, atomCoarseGrainingPositions_);
interscaleManager_.add_dense_matrix(myWeights,
"KernelInverseWeights");
accumulantWeights_ = new OnTheFlyKernelWeights(myWeights);
} else {
accumulant_ = shpFcn_;
accumulantWeights_ = new AccumulantWeights(accumulant_);
interscaleManager_.add_diagonal_matrix(accumulantWeights_,
"AccumulantWeights");
}
}
// gradient matrix
if (gradFlags_.has_member(true)) {
NativeShapeFunctionGradient * gradientMatrix = new NativeShapeFunctionGradient(this);
interscaleManager_.add_vector_sparse_matrix(gradientMatrix,"GradientMatrix");
gradientMatrix_ = gradientMatrix;
}
}
//-------------------------------------------------------------------
void ATC_Transfer::construct_molecule_transfers()
{
// molecule centroid, molecule charge, dipole moment and quadrupole moment calculations KKM add
if (!moleculeIds_.empty()) {
map<string,pair<MolSize,int> >::const_iterator molecule;
InterscaleManager & interscaleManager = this->interscale_manager(); // KKM add, may be we do not need this as interscaleManager_ already exists.
PerAtomQuantity<double> * atomProcGhostCoarseGrainingPositions_ = interscaleManager.per_atom_quantity("AtomicProcGhostCoarseGrainingPositions");
FundamentalAtomQuantity * mass = interscaleManager_.fundamental_atom_quantity(LammpsInterface::ATOM_MASS,PROC_GHOST);
molecule = moleculeIds_.begin();
int groupbit = (molecule->second).second;
smallMoleculeSet_ = new SmallMoleculeSet(this,groupbit);
smallMoleculeSet_->initialize(); // KKM add, why should we?
interscaleManager_.add_small_molecule_set(smallMoleculeSet_,"MoleculeSet");
moleculeCentroid_ = new SmallMoleculeCentroid(this,mass,smallMoleculeSet_,atomProcGhostCoarseGrainingPositions_);
interscaleManager_.add_dense_matrix(moleculeCentroid_,"MoleculeCentroid");
AtomToSmallMoleculeTransfer<double> * moleculeMass =
new AtomToSmallMoleculeTransfer<double>(this,mass,smallMoleculeSet_);
interscaleManager_.add_dense_matrix(moleculeMass,"MoleculeMass");
FundamentalAtomQuantity * atomicCharge = interscaleManager_.fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE,PROC_GHOST);
AtomToSmallMoleculeTransfer<double> * moleculeCharge =
new AtomToSmallMoleculeTransfer<double>(this,atomicCharge,smallMoleculeSet_);
interscaleManager_.add_dense_matrix(moleculeCharge,"MoleculeCharge");
dipoleMoment_ = new SmallMoleculeDipoleMoment(this,atomicCharge,smallMoleculeSet_,atomProcGhostCoarseGrainingPositions_,moleculeCentroid_);
interscaleManager_.add_dense_matrix(dipoleMoment_,"DipoleMoment");
quadrupoleMoment_ = new SmallMoleculeQuadrupoleMoment(this,atomicCharge,smallMoleculeSet_,atomProcGhostCoarseGrainingPositions_,moleculeCentroid_);
interscaleManager_.add_dense_matrix(quadrupoleMoment_,"QuadrupoleMoment");
}
}
//----------------------------------------------------------------------
// constructs quantities
void ATC_Transfer::construct_transfers()
{
// set pointer to positions
// REFACTOR use method's handling of xref/xpointer
set_xPointer();
ATC_Method::construct_transfers();
// reference potential energy
if (setRefPE_) {
if (!setRefPEvalue_ && !readRefPE_) {
FieldManager fmgr(this);
nodalRefPotentialEnergy_ = fmgr.nodal_atomic_field(REFERENCE_POTENTIAL_ENERGY);
}
else {
nodalRefPotentialEnergy_ = new DENS_MAN(nNodes_,1);
nodalRefPotentialEnergy_->set_memory_type(PERSISTENT);
interscaleManager_.add_dense_matrix(nodalRefPotentialEnergy_,
field_to_string(REFERENCE_POTENTIAL_ENERGY));
}
}
// for hardy-based fluxes
bool needsBondMatrix = (! bondOnTheFly_ ) &&
(fieldFlags_(STRESS)
|| fieldFlags_(ESHELBY_STRESS)
|| fieldFlags_(HEAT_FLUX));
if (needsBondMatrix) {
if (hasPairs_ && hasBonds_) {
pairMap_ = new PairMapBoth(lammpsInterface_,groupbit_);
}
else if (hasBonds_) {
pairMap_ = new PairMapBond(lammpsInterface_,groupbit_);
}
else if (hasPairs_) {
pairMap_ = new PairMapNeighbor(lammpsInterface_,groupbit_);
}
}
if (pairMap_) interscaleManager_.add_pair_map(pairMap_,"PairMap");
if ( fieldFlags_(STRESS) || fieldFlags_(ESHELBY_STRESS) || fieldFlags_(HEAT_FLUX) ) {
const FE_Mesh * fe_mesh = feEngine_->fe_mesh();
if (!kernelBased_) {
bondMatrix_ = new BondMatrixPartitionOfUnity(lammpsInterface_,*pairMap_,xPointer_,fe_mesh,accumulantInverseVolumes_);
}
else {
bondMatrix_ = new BondMatrixKernel(lammpsInterface_,*pairMap_,xPointer_,fe_mesh,kernelFunction_);
}
}
if (bondMatrix_) interscaleManager_.add_sparse_matrix(bondMatrix_,"BondMatrix");
if ( fieldFlags_(STRESS) || fieldFlags_(ESHELBY_STRESS) ) {
if (atomToElementMapType_ == LAGRANGIAN) {
pairVirial_ = new PairVirialLagrangian(lammpsInterface_,*pairMap_,xref_);
}
else if (atomToElementMapType_ == EULERIAN) {
pairVirial_ = new PairVirialEulerian(lammpsInterface_,*pairMap_);
}
else {
throw ATC_Error("no atom to element map specified");
}
}
if (pairVirial_) interscaleManager_.add_dense_matrix(pairVirial_,"PairVirial");
if ( fieldFlags_(HEAT_FLUX) ) {
if (atomToElementMapType_ == LAGRANGIAN) {
pairHeatFlux_ = new PairPotentialHeatFluxLagrangian(lammpsInterface_,*pairMap_,xref_);
}
else if (atomToElementMapType_ == EULERIAN) {
pairHeatFlux_ = new PairPotentialHeatFluxEulerian(lammpsInterface_,*pairMap_);
}
else {
throw ATC_Error("no atom to element map specified");
}
}
if (pairHeatFlux_) interscaleManager_.add_dense_matrix(pairHeatFlux_,"PairHeatFlux");
FieldManager fmgr(this);
// for(int index=0; index < NUM_TOTAL_FIELDS; ++index)
for(int i=0; i < numFields_; ++i) {
FieldName index = indices_[i];
if (fieldFlags_(index)) {
outputFields_[index] = fmgr.nodal_atomic_field(index);
}
}
// WIP REJ - move to fmgr
if (fieldFlags_(ELECTRIC_POTENTIAL)) {
PerAtomQuantity<double> * atomCharge = interscaleManager_.fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE);
restrictedCharge_ = fmgr.restricted_atom_quantity(CHARGE_DENSITY,"default",atomCharge);
}
// computes
map <string,int>::const_iterator iter;
for (iter = computes_.begin(); iter != computes_.end(); iter++) {
string tag = iter->first;
ComputedAtomQuantity * c = new ComputedAtomQuantity(this, tag);
interscaleManager_.add_per_atom_quantity(c,tag);
int projection = iter->second;
DIAG_MAN * w = nullptr;
if (projection == VOLUME_NORMALIZATION )
{ w = accumulantInverseVolumes_; }
else if (projection == NUMBER_NORMALIZATION )
{ w = accumulantWeights_; }
if (kernelFunction_ && kernelOnTheFly_) {
OnTheFlyKernelAccumulationNormalized * C = new OnTheFlyKernelAccumulationNormalized(this, c, kernelFunction_, atomCoarseGrainingPositions_, w);
interscaleManager_.add_dense_matrix(C,tag);
outputFieldsTagged_[tag] = C;
}
else {
AtfProjection * C = new AtfProjection(this, c, accumulant_, w);
interscaleManager_.add_dense_matrix(C,tag);
outputFieldsTagged_[tag] = C;
}
}
}
//-------------------------------------------------------------------
// sets initial values of filtered quantities
void ATC_Transfer::construct_methods()
{
ATC_Method::construct_methods();
if ((!initialized_) || timeFilterManager_.need_reset()) {
timeFilters_.reset(NUM_TOTAL_FIELDS+nComputes_);
sampleCounter_ = 0;
// for filtered fields
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (fieldFlags_(index)) {
string name = field_to_string((FieldName) index);
filteredData_[name] = 0.0;
timeFilters_(index) = timeFilterManager_.construct();
}
}
// for filtered projected computes
// lists/accessing of fields ( & computes)
map <string,int>::const_iterator iter;
int index = NUM_TOTAL_FIELDS;
for (iter = computes_.begin(); iter != computes_.end(); iter++) {
string tag = iter->first;
filteredData_[tag] = 0.0;
timeFilters_(index) = timeFilterManager_.construct();
index++;
}
}
}
//-------------------------------------------------------------------
// called after the end of a "run"
void ATC_Transfer::finish()
{
// base class
ATC_Method::finish();
}
//-------------------------------------------------------------------
// this is the parser
bool ATC_Transfer::modify(int narg, char **arg)
{
bool match = false;
int argIdx = 0;
// check to see if it is a transfer class command
/*! \page man_hardy_fields fix_modify AtC fields
\section syntax
fix_modify AtC fields <all | none> \n
fix_modify AtC fields <add | delete> <list_of_fields> \n
- all | none (keyword) = output all or no fields \n
- add | delete (keyword) = add or delete the listed output fields \n
- fields (keyword) = \n
density : mass per unit volume \n
displacement : displacement vector \n
momentum : momentum per unit volume \n
velocity : defined by momentum divided by density \n
projected_velocity : simple kernel estimation of atomic velocities \n
temperature : temperature derived from the relative atomic kinetic energy (as done by ) \n
kinetic_temperature : temperature derived from the full kinetic energy \n
number_density : simple kernel estimation of number of atoms per unit volume \n
stress :
Cauchy stress tensor for eulerian analysis (atom_element_map), or
1st Piola-Kirchhoff stress tensor for lagrangian analysis \n
transformed_stress :
1st Piola-Kirchhoff stress tensor for eulerian analysis (atom_element_map), or
Cauchy stress tensor for lagrangian analysis \n
heat_flux : spatial heat flux vector for eulerian,
or referential heat flux vector for lagrangian \n
potential_energy : potential energy per unit volume \n
kinetic_energy : kinetic energy per unit volume \n
thermal_energy : thermal energy (kinetic energy - continuum kinetic energy) per unit volume \n
internal_energy : total internal energy (potential + thermal) per unit volume \n
energy : total energy (potential + kinetic) per unit volume \n
number_density : number of atoms per unit volume \n
eshelby_stress: configurational stress (energy-momentum) tensor defined by Eshelby
[References: Philos. Trans. Royal Soc. London A, Math. Phys. Sci., Vol. 244,
No. 877 (1951) pp. 87-112; J. Elasticity, Vol. 5, Nos. 3-4 (1975) pp. 321-335] \n
vacancy_concentration: volume fraction of vacancy content \n
type_concentration: volume fraction of a specific atom type \n
\section examples
<TT> fix_modify AtC fields add velocity temperature </TT>
\section description
Allows modification of the fields calculated and output by the
transfer class. The commands are cumulative, e.g.\n
<TT> fix_modify AtC fields none </TT> \n
followed by \n
<TT> fix_modify AtC fields add velocity temperature </TT> \n
will only output the velocity and temperature fields.
\section restrictions
Must be used with the hardy/field type of AtC fix, see \ref man_fix_atc.
Currently, the stress and heat flux formulas are only correct for
central force potentials, e.g. Lennard-Jones and EAM
but not Stillinger-Weber.
\section related
See \ref man_hardy_gradients , \ref man_hardy_rates and \ref man_hardy_computes
\section default
By default, no fields are output
*/
if (strcmp(arg[argIdx],"fields")==0) {
argIdx++;
if (strcmp(arg[argIdx],"all")==0) {
outputFlags_ = true;
match = true;
}
else if (strcmp(arg[argIdx],"none")==0) {
outputFlags_ = false;
match = true;
}
else if (strcmp(arg[argIdx],"add")==0) {
argIdx++;
for (int i = argIdx; i < narg; ++i) {
FieldName field_name = string_to_field(arg[i]);
outputFlags_(field_name) = true;
}
match = true;
}
else if (strcmp(arg[argIdx],"delete")==0) {
argIdx++;
for (int i = argIdx; i < narg; ++i) {
FieldName field_name = string_to_field(arg[i]);
outputFlags_(field_name) = false;
}
match = true;
}
check_field_dependencies();
if (fieldFlags_(DISPLACEMENT)) { trackDisplacement_ = true; }
}
/*! \page man_hardy_gradients fix_modify AtC gradients
\section syntax
fix_modify AtC gradients <add | delete> <list_of_fields> \n
- add | delete (keyword) = add or delete the calculation of gradients for the listed output fields \n
- fields (keyword) = \n
gradients can be calculated for all fields listed in \ref man_hardy_fields
\section examples
<TT> fix_modify AtC gradients add temperature velocity stress </TT> \n
<TT> fix_modify AtC gradients delete velocity </TT> \n
\section description
Requests calculation and output of gradients of the fields from the
transfer class. These gradients will be with regard to spatial or material
coordinate for eulerian or lagrangian analysis, respectively, as specified by
atom_element_map (see \ref man_atom_element_map )
\section restrictions
Must be used with the hardy/field type of AtC fix
( see \ref man_fix_atc )
\section related
\section default
No gradients are calculated by default
*/
else if (strcmp(arg[argIdx],"gradients")==0) {
argIdx++;
if (strcmp(arg[argIdx],"add")==0) {
argIdx++;
FieldName field_name;
for (int i = argIdx; i < narg; ++i) {
field_name = string_to_field(arg[i]);
gradFlags_(field_name) = true;
}
match = true;
}
else if (strcmp(arg[argIdx],"delete")==0) {
argIdx++;
FieldName field_name;
for (int i = argIdx; i < narg; ++i) {
field_name = string_to_field(arg[i]);
gradFlags_(field_name) = false;
}
match = true;
}
}
/*! \page man_hardy_rates fix_modify AtC rates
\section syntax
fix_modify AtC rates <add | delete> <list_of_fields> \n
- add | delete (keyword) = add or delete the calculation of rates (time derivatives) for the listed output fields \n
- fields (keyword) = \n
rates can be calculated for all fields listed in \ref man_hardy_fields
\section examples
<TT> fix_modify AtC rates add temperature velocity stress </TT> \n
<TT> fix_modify AtC rates delete stress </TT> \n
\section description
Requests calculation and output of rates (time derivatives) of the fields from the
transfer class. For eulerian analysis (see \ref man_atom_element_map ), these rates
are the partial time derivatives of the nodal fields, not the full (material) time
derivatives. \n
\section restrictions
Must be used with the hardy/field type of AtC fix
( see \ref man_fix_atc )
\section related
\section default
No rates are calculated by default
*/
else if (strcmp(arg[argIdx],"rates")==0) {
argIdx++;
if (strcmp(arg[argIdx],"add")==0) {
argIdx++;
FieldName field_name;
for (int i = argIdx; i < narg; ++i) {
field_name = string_to_field(arg[i]);
rateFlags_(field_name) = true;
}
match = true;
}
else if (strcmp(arg[argIdx],"delete")==0) {
argIdx++;
FieldName field_name;
for (int i = argIdx; i < narg; ++i) {
field_name = string_to_field(arg[i]);
rateFlags_(field_name) = false;
}
match = true;
}
}
/*! \page man_pair_interactions fix_modify AtC pair_interactions/bond_interactions
\section syntax
fix_modify AtC pair_interactions <on|off> \n
fix_modify AtC bond_interactions <on|off> \n
\section examples
<TT> fix_modify AtC bond_interactions on </TT> \n
\section description
include bonds and/or pairs in the stress and heat flux computations
\section restrictions
\section related
\section default
pair interactions: on, bond interactions: off
*/
if (strcmp(arg[argIdx],"pair_interactions")==0) { // default true
argIdx++;
if (strcmp(arg[argIdx],"on")==0) { hasPairs_ = true; }
else { hasPairs_ = false;}
match = true;
}
if (strcmp(arg[argIdx],"bond_interactions")==0) { // default false
argIdx++;
if (strcmp(arg[argIdx],"on")==0) { hasBonds_ = true; }
else { hasBonds_ = false;}
match = true;
}
/*! \page man_hardy_computes fix_modify AtC computes
\section syntax
fix_modify AtC computes <add | delete> [per-atom compute id] <volume | number> \n
- add | delete (keyword) = add or delete the calculation of an equivalent continuum field
for the specified per-atom compute as volume or number density quantity \n
- per-atom compute id = name/id for per-atom compute,
fields can be calculated for all per-atom computes available from LAMMPS \n
- volume | number (keyword) = field created is a per-unit-volume quantity
or a per-atom quantity as weighted by kernel functions \n
\section examples
<TT> compute virial all stress/atom </TT> \n
<TT> fix_modify AtC computes add virial volume </TT> \n
<TT> fix_modify AtC computes delete virial </TT> \n
\n
<TT> compute centrosymmetry all centro/atom </TT> \n
<TT> fix_modify AtC computes add centrosymmetry number </TT> \n
\section description
Calculates continuum fields corresponding to specified per-atom computes created by LAMMPS \n
\section restrictions
Must be used with the hardy/field type of AtC fix ( see \ref man_fix_atc ) \n
Per-atom compute must be specified before corresponding continuum field can be requested \n
\section related
See manual page for compute
\section default
No defaults exist for this command
*/
else if (strcmp(arg[argIdx],"computes")==0) {
argIdx++;
if (strcmp(arg[argIdx],"add")==0) {
argIdx++;
string tag(arg[argIdx++]);
int normalization = NO_NORMALIZATION;
if (narg > argIdx) {
if (strcmp(arg[argIdx],"volume")==0) {
normalization = VOLUME_NORMALIZATION;
}
else if (strcmp(arg[argIdx],"number")==0) {
normalization = NUMBER_NORMALIZATION;
}
else if (strcmp(arg[argIdx],"mass")==0) {
normalization = MASS_NORMALIZATION;
throw ATC_Error("mass normalized not implemented");
}
}
computes_[tag] = normalization;
nComputes_++;
match = true;
}
else if (strcmp(arg[argIdx],"delete")==0) {
argIdx++;
string tag(arg[argIdx]);
if (computes_.find(tag) != computes_.end()) {
computes_.erase(tag);
nComputes_--;
}
else {
throw ATC_Error(tag+" compute is not in list");
}
match = true;
}
}
/*! \page man_sample_frequency fix_modify AtC sample_frequency
\section syntax
fix_modify AtC sample_frequency [freq]
- freq (int) : frequency to sample field in number of steps
\section examples
<TT> fix_modify AtC sample_frequency 10
\section description
Specifies a frequency at which fields are computed for the case
where time filters are being applied.
\section restrictions
Must be used with the hardy/field AtC fix ( see \ref man_fix_atc )
and is only relevant when time filters are being used.
\section related
\section default
none
*/
else if (strcmp(arg[argIdx],"sample_frequency")==0) {
argIdx++;
int value = outputFrequency_; // default to output frequency
if (narg > 1) {
if (atoi(arg[argIdx]) > 0) value = atoi(arg[argIdx]);
}
sampleFrequency_ = value;
match = true;
} // end "sample_frequency"
// no match, call base class parser
if (!match) {
match = ATC_Method::modify(narg, arg);
}
return match;
}
//-------------------------------------------------------------------
// called at the beginning of a timestep
void ATC_Transfer::pre_init_integrate()
{
ATC_Method::pre_init_integrate();
}
//-------------------------------------------------------------------
// called at the beginning of second half timestep
// REFACTOR move this to post_neighbor
void ATC_Transfer::pre_final_integrate()
{
// update time
update_time(); // time uses step if dt = 0
if ( neighborReset_ && sample_now() ) {
if (! kernelOnTheFly_ ) {
if (!moleculeIds_.empty()) compute_kernel_matrix_molecule(); //KKM add
}
neighborReset_ = false;
}
}
//-------------------------------------------------------------------
// called at the end of second half timestep
void ATC_Transfer::post_final_integrate()
{
// compute spatially smoothed quantities
double dt = lammpsInterface_->dt();
if ( sample_now() ) {
bool needsBond = (! bondOnTheFly_ ) &&
(fieldFlags_(STRESS)
|| fieldFlags_(ESHELBY_STRESS)
|| fieldFlags_(HEAT_FLUX));
if ( needsBond ) {
if (pairMap_->need_reset()) {
// ATC::LammpsInterface::instance()->print_msg("Recomputing bond matrix due to atomReset_ value");
compute_bond_matrix();
}
}
time_filter_pre (dt);
compute_fields();
time_filter_post(dt);
lammpsInterface_->computes_addstep(lammpsInterface_->ntimestep()+sampleFrequency_);
}
// output
if ( output_now() && !outputStepZero_ ) output();
outputStepZero_ = false;
//ATC_Method::post_final_integrate();
}
//-------------------------------------------------------------------
void ATC_Transfer::compute_bond_matrix(void)
{
bondMatrix_->reset();
}
//-------------------------------------------------------------------
void ATC_Transfer::compute_fields(void)
{
// keep per-atom computes fresh. JAZ and REJ not sure why;
// need to confer with JAT. (JAZ, 4/5/12)
interscaleManager_.lammps_force_reset();
// (1) direct quantities
for(int i=0; i < numFields_; ++i) {
FieldName index = indices_[i];
if (fieldFlags_(index)) {
DENS_MAT & data(hardyData_[field_to_string(index)].set_quantity());
data = (outputFields_[index])->quantity();
}
}
if (fieldFlags_(STRESS))
compute_stress(hardyData_["stress"].set_quantity());
if (fieldFlags_(HEAT_FLUX))
compute_heatflux(hardyData_["heat_flux"].set_quantity());
// molecule data
if (fieldFlags_(DIPOLE_MOMENT))
compute_dipole_moment(hardyData_["dipole_moment"].set_quantity());
if (fieldFlags_(QUADRUPOLE_MOMENT))
compute_quadrupole_moment(hardyData_["quadrupole_moment"].set_quantity());
if (fieldFlags_(DISLOCATION_DENSITY))
compute_dislocation_density(hardyData_["dislocation_density"].set_quantity());
// (2) derived quantities
// compute: gradients
if (gradFlags_.has_member(true)) {
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (gradFlags_(index)) {
string field= field_to_string((FieldName) index);
string grad_field = field + "_gradient";
if (hardyData_.find(field) == hardyData_.end() ) {
throw ATC_Error("field " + field + " needs to be defined for gradient");
}
gradient_compute(hardyData_[field].quantity(), hardyData_[grad_field].set_quantity());
}
}
}
// compute: eshelby stress
if (fieldFlags_(ESHELBY_STRESS)) {
{
compute_eshelby_stress(hardyData_["eshelby_stress"].set_quantity(),
hardyData_["internal_energy"].quantity(),
hardyData_["stress"].quantity(),
hardyData_["displacement_gradient"].quantity());
}
}
if (fieldFlags_(CAUCHY_BORN_ESHELBY_STRESS)) {
DENS_MAT & H = hardyData_["displacement_gradient"].set_quantity();
DENS_MAT E(H.nRows(),1);
ATOMIC_DATA::const_iterator tfield = hardyData_.find("temperature");
const DENS_MAT *temp = tfield==hardyData_.end() ? nullptr : &((tfield->second).quantity());
//DENS_MAT & T = hardyData_["temperature"];
//cauchy_born_entropic_energy(H,E,T); E += hardyData_["internal_energy"];
cauchy_born_energy(H, E, temp);
compute_eshelby_stress(hardyData_["cauchy_born_eshelby_stress"].set_quantity(),
E,hardyData_["stress"].quantity(),
hardyData_["displacement_gradient"].quantity());
}
// compute: cauchy born stress
if (fieldFlags_(CAUCHY_BORN_STRESS)) {
ATOMIC_DATA::const_iterator tfield = hardyData_.find("temperature");
const DENS_MAT *temp = tfield==hardyData_.end() ? nullptr : &((tfield->second).quantity());
cauchy_born_stress(hardyData_["displacement_gradient"].quantity(),
hardyData_["cauchy_born_stress"].set_quantity(), temp);
}
// compute: cauchy born energy
if (fieldFlags_(CAUCHY_BORN_ENERGY)) {
ATOMIC_DATA::const_iterator tfield = hardyData_.find("temperature");
const DENS_MAT *temp = tfield==hardyData_.end() ? nullptr : &((tfield->second).quantity());
cauchy_born_energy(hardyData_["displacement_gradient"].quantity(),
hardyData_["cauchy_born_energy"].set_quantity(), temp);
}
// 1st PK transformed to cauchy (lag) or cauchy transformed to 1st PK (eul)
if (fieldFlags_(TRANSFORMED_STRESS)) {
compute_transformed_stress(hardyData_["transformed_stress"].set_quantity(),
hardyData_["stress"].quantity(),
hardyData_["displacement_gradient"].quantity());
}
if (fieldFlags_(VACANCY_CONCENTRATION)) {
compute_vacancy_concentration(hardyData_["vacancy_concentration"].set_quantity(),
hardyData_["displacement_gradient"].quantity(),
hardyData_["number_density"].quantity());
}
if (fieldFlags_(ELECTRIC_POTENTIAL)) {
compute_electric_potential(
hardyData_[field_to_string(ELECTRIC_POTENTIAL)].set_quantity());
}
// compute: rotation and/or stretch from deformation gradient
if (fieldFlags_(ROTATION) || fieldFlags_(STRETCH)) {
compute_polar_decomposition(hardyData_["rotation"].set_quantity(),
hardyData_["stretch"].set_quantity(),
hardyData_["displacement_gradient"].quantity());
}
// compute: rotation and/or stretch from deformation gradient
if (fieldFlags_(CAUCHY_BORN_ELASTIC_DEFORMATION_GRADIENT)) {
compute_elastic_deformation_gradient2(hardyData_["elastic_deformation_gradient"].set_quantity(),
hardyData_["stress"].quantity(),
hardyData_["displacement_gradient"].quantity());
}
// (3) computes
lammpsInterface_->computes_clearstep();
map <string,int>::const_iterator iter;
for (iter = computes_.begin(); iter != computes_.end(); iter++) {
string tag = iter->first;
COMPUTE_POINTER cmpt = lammpsInterface_->compute_pointer(tag);
int projection = iter->second;
int ncols = lammpsInterface_->compute_ncols_peratom(cmpt);;
DENS_MAT atomicData(nLocal_,ncols);
if (ncols == 1) {
double * atomData = lammpsInterface_->compute_vector_peratom(cmpt);
for (int i = 0; i < nLocal_; i++) {
int atomIdx = internalToAtom_(i);
atomicData(i,0) = atomData[atomIdx];
}
}
else {
double ** atomData = lammpsInterface_->compute_array_peratom(cmpt);
for (int i = 0; i < nLocal_; i++) {
int atomIdx = internalToAtom_(i);
for (int k = 0; k < ncols; k++) {
atomicData(i,k) = atomData[atomIdx][k];
}
}
}
// REFACTOR -- make dep manage
if (projection == NO_NORMALIZATION) {
project(atomicData,hardyData_[tag].set_quantity());
}
else if (projection == VOLUME_NORMALIZATION) {
project_volume_normalized(atomicData,hardyData_[tag].set_quantity());
}
else if (projection == NUMBER_NORMALIZATION) {
project_count_normalized(atomicData,hardyData_[tag].set_quantity());
}
else if (projection == MASS_NORMALIZATION) {
throw ATC_Error("unimplemented normalization");
}
else {
throw ATC_Error("unimplemented normalization");
}
#ifdef ESHELBY_VIRIAL
if (tag == "virial" && fieldFlags_(ESHELBY_STRESS)) {
if (atomToElementMapType_ == LAGRANGIAN) {
DENS_MAT tmp = hardyData_[tag].quantity();
DENS_MAT & myData(hardyData_[tag].set_quantity());
myData.reset(nNodes_,FieldSizes[STRESS]);
DENS_MAT F(3,3),FT(3,3),FTINV(3,3),CAUCHY(3,3),PK1(3,3);
const DENS_MAT& H(hardyData_["displacement_gradient"].quantity());
for (int k = 0; k < nNodes_; k++ ) {
vector_to_symm_matrix(k,tmp,CAUCHY);
vector_to_matrix(k,H,F);
F(0,0) += 1.0; F(1,1) += 1.0; F(2,2) += 1.0;
FT = F.transpose();
FTINV = inv(FT);
// volumes are already reference volumes.
PK1 = CAUCHY*FTINV;
matrix_to_vector(k,PK1,myData);
}
}
compute_eshelby_stress(hardyData_["eshelby_virial"].set_quantity(),
hardyData_["internal_energy"].quantity(),hardyData_[tag].quantity(),
hardyData_["displacement_gradient"].quantity());
}
#endif
}
}// end of compute_fields routine
//-------------------------------------------------------------------
void ATC_Transfer::time_filter_pre(double dt)
{
sampleCounter_++;
string name;
double delta_t = dt*sampleFrequency_;
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (fieldFlags_(index)) {
name = field_to_string((FieldName) index);
timeFilters_(index)->apply_pre_step1(filteredData_[name].set_quantity(),
hardyData_[name].quantity(), delta_t);
}
}
map <string,int>::const_iterator iter;
int index = NUM_TOTAL_FIELDS;
for (iter = computes_.begin(); iter != computes_.end(); iter++) {
string tag = iter->first;
timeFilters_(index)->apply_pre_step1(filteredData_[tag].set_quantity(),
hardyData_[tag].quantity(), delta_t);
index++;
}
}
//-------------------------------------------------------------------
void ATC_Transfer::time_filter_post(double dt)
{
sampleCounter_++;
string name;
double delta_t = dt*sampleFrequency_;
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (fieldFlags_(index)) {
name = field_to_string((FieldName) index);
timeFilters_(index)->apply_post_step2(filteredData_[name].set_quantity(),
hardyData_[name].quantity(), delta_t);
}
}
if (rateFlags_.has_member(true)) {
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (rateFlags_(index)) {
string field= field_to_string((FieldName) index);
string rate_field = field + "_rate";
timeFilters_(index)->rate(hardyData_[rate_field].set_quantity(),
filteredData_[field].quantity(),
hardyData_[field].quantity(), delta_t);
}
}
}
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (rateFlags_(index)) {
name = field_to_string((FieldName) index);
string rate_field = name + "_rate";
filteredData_[rate_field] = hardyData_[rate_field];
}
if (gradFlags_(index)) {
name = field_to_string((FieldName) index);
string grad_field = name + "_gradient";
filteredData_[grad_field] = hardyData_[grad_field];
}
}
// lists/accessing of fields ( & computes)
map <string,int>::const_iterator iter;
int index = NUM_TOTAL_FIELDS;
for (iter = computes_.begin(); iter != computes_.end(); iter++) {
string tag = iter->first;
timeFilters_(index)->apply_post_step2(filteredData_[tag].set_quantity(),
hardyData_[tag].quantity(), delta_t);
#ifdef ESHELBY_VIRIAL
if (tag == "virial" && fieldFlags_(ESHELBY_STRESS)) {
filteredData_["eshelby_virial"] = hardyData_["eshelby_virial"];
}
#endif
index++;
}
}
//-------------------------------------------------------------------
void ATC_Transfer::output()
{
feEngine_->departition_mesh();
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (outputFlags_(index)) {
FieldName fName = (FieldName) index;
string name= field_to_string(fName);
fields_[fName] = filteredData_[name];
}
}
ATC_Method::output();
if (lammpsInterface_->comm_rank() == 0) {
// data
OUTPUT_LIST output_data;
#ifdef REFERENCE_PE_OUTPUT
output_data["reference_potential_energy"] = nodalRefPotentialEnergy_->quantity();
#endif
for(int index=0; index < NUM_TOTAL_FIELDS; ++index) {
if (outputFlags_(index)) {
string name= field_to_string((FieldName) index);
output_data[name] = & ( filteredData_[name].set_quantity());
}
if (rateFlags_(index)) {
string name= field_to_string((FieldName) index);
string rate_name = name + "_rate";
output_data[rate_name] = & ( filteredData_[rate_name].set_quantity());
}
if (gradFlags_(index)) {
string name= field_to_string((FieldName) index);
string grad_name = name + "_gradient";
output_data[grad_name] = & ( filteredData_[grad_name].set_quantity());
}
}
// lists/accessing of fields ( & computes)
map <string,int>::const_iterator iter;
for (iter = computes_.begin(); iter != computes_.end(); iter++) {
string tag = iter->first;
output_data[tag] = & ( filteredData_[tag].set_quantity());
#ifdef ESHELBY_VIRIAL
if (tag == "virial" && fieldFlags_(ESHELBY_STRESS)) {
output_data["eshelby_virial"] = & ( filteredData_["eshelby_virial"].set_quantity() );
}
#endif
}
DENS_MAT nodalInverseVolumes = CLON_VEC(accumulantInverseVolumes_->quantity());
output_data["NodalInverseVolumes"] = &nodalInverseVolumes;
// output
feEngine_->write_data(output_index(), & output_data);
}
feEngine_->partition_mesh();
}
/////// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/////// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//-------------------------------------------------------------------
// computes nodeData = N*atomData
void ATC_Transfer::project(const DENS_MAT & atomData,
DENS_MAT & nodeData)
{
if (! kernelOnTheFly_ ) {
nodeData.reset(nNodes_,atomData.nCols(),true);
DENS_MAT workNodeArray(nodeData.nRows(),nodeData.nCols());
if (nLocal_>0) workNodeArray = (accumulant_->quantity()).transMat(atomData);
int count = nodeData.nRows()*nodeData.nCols();
lammpsInterface_->allsum(workNodeArray.ptr(),nodeData.ptr(),count);
}
else {
compute_projection(atomData,nodeData);
}
}
//-------------------------------------------------------------------
// computes nodeData = N*molData specially for molecules
void ATC_Transfer::project_molecule(const DENS_MAT & molData,
DENS_MAT & nodeData)
{
if (! kernelOnTheFly_ ) {
nodeData.reset(nNodes_,molData.nCols(),true);
DENS_MAT workNodeArray(nodeData.nRows(),nodeData.nCols());
if (nLocal_>0) workNodeArray = (accumulantMol_->quantity()).transMat(molData);
int count = nodeData.nRows()*nodeData.nCols();
lammpsInterface_->allsum(workNodeArray.ptr(),nodeData.ptr(),count);
}
else {
compute_projection(molData,nodeData);
}
}
//-------------------------------------------------------------------
// computes nodeData = gradient of N*molData specially for molecules
void ATC_Transfer::project_molecule_gradient(const DENS_MAT & molData,
DENS_MAT & nodeData)
{
if (! kernelOnTheFly_ ) {
nodeData.reset(nNodes_,molData.nCols(),true);
DENS_MAT workNodeArray(nodeData.nRows(),nodeData.nCols());
if (nLocal_>0) workNodeArray = (accumulantMolGrad_->quantity()).transMat(molData);
int count = nodeData.nRows()*nodeData.nCols();
lammpsInterface_->allsum(workNodeArray.ptr(),nodeData.ptr(),count);
}
else {
compute_projection(molData,nodeData);
}
}
//-------------------------------------------------------------------
// count normalized
void ATC_Transfer::project_count_normalized(const DENS_MAT & atomData,
DENS_MAT & nodeData)
{
DENS_MAT tmp;
project(atomData,tmp);
nodeData = (accumulantWeights_->quantity())*tmp;
}
//-------------------------------------------------------------------
// volume normalized
void ATC_Transfer::project_volume_normalized(const DENS_MAT & atomData,
DENS_MAT & nodeData)
{
DENS_MAT tmp;
project(atomData,tmp);
nodeData = (accumulantInverseVolumes_->quantity())*tmp;
}
//-------------------------------------------------------------------
// volume normalized molecule
void ATC_Transfer::project_volume_normalized_molecule(const DENS_MAT & molData,
DENS_MAT & nodeData)
{
DENS_MAT tmp;
project_molecule(molData,tmp);
nodeData = (accumulantInverseVolumes_->quantity())*tmp;
}
//-------------------------------------------------------------------
// volume normalized molecule_gradient
void ATC_Transfer::project_volume_normalized_molecule_gradient(const DENS_MAT & molData,
DENS_MAT & nodeData)
{
DENS_MAT tmp;
project_molecule_gradient(molData,tmp);
nodeData = (accumulantInverseVolumes_->quantity())*tmp;
}
//-------------------------------------------------------------------
void ATC_Transfer::gradient_compute(const DENS_MAT & inNodeData,
DENS_MAT & outNodeData)
{
int nrows = inNodeData.nRows();
int ncols = inNodeData.nCols();
outNodeData.reset(nrows,ncols*nsd_);
int index = 0;
for (int n = 0; n < ncols; n++) { //output v1,1 v1,2 v1,3 ...
for (int m = 0; m < nsd_; m++) {
CLON_VEC inData(inNodeData,CLONE_COL,n);
CLON_VEC outData(outNodeData,CLONE_COL,index);
outData = (*((gradientMatrix_->quantity())[m]))*inData;
++index;
}
}
}
//-------------------------------------------------------------------
void ATC_Transfer::compute_force_matrix()
{
atomicForceMatrix_ = pairVirial_->quantity();
}
//-------------------------------------------------------------------
// computes "virial" part of heat flux
// This is correct ONLY for pair potentials.
void ATC_Transfer::compute_heat_matrix()
{
atomicHeatMatrix_ = pairHeatFlux_->quantity();
}
//-------------------------------------------------------------------
// set xPointer_ to xref or xatom depending on Lagrangian/Eulerian analysis
void ATC_Transfer::set_xPointer()
{
xPointer_ = xref_;
if (atomToElementMapType_ == EULERIAN) {
xPointer_ = lammpsInterface_->xatom();
}
}
//-------------------------------------------------------------------
// SOON TO BE OBSOLETE
// check consistency of fieldFlags_
void ATC_Transfer::check_field_dependencies()
{
fieldFlags_ = outputFlags_;
if (fieldFlags_(TRANSFORMED_STRESS)) {
fieldFlags_(STRESS) = true;
fieldFlags_(DISPLACEMENT) = true;
}
if (fieldFlags_(ESHELBY_STRESS)) {
fieldFlags_(STRESS) = true;
fieldFlags_(INTERNAL_ENERGY) = true;
fieldFlags_(DISPLACEMENT) = true;
}
if (fieldFlags_(CAUCHY_BORN_STRESS)
|| fieldFlags_(CAUCHY_BORN_ENERGY)
|| fieldFlags_(CAUCHY_BORN_ESHELBY_STRESS)
|| fieldFlags_(CAUCHY_BORN_ELASTIC_DEFORMATION_GRADIENT)) {
if (! (cauchyBornStress_) ) {
throw ATC_Error("can't compute cauchy-born stress w/o cauchy born model");
}
}
if (fieldFlags_(CAUCHY_BORN_ELASTIC_DEFORMATION_GRADIENT)) {
fieldFlags_(STRESS) = true;
}
if (fieldFlags_(CAUCHY_BORN_STRESS)
|| fieldFlags_(CAUCHY_BORN_ENERGY)) {
fieldFlags_(TEMPERATURE) = true;
fieldFlags_(DISPLACEMENT) = true;
}
if (fieldFlags_(CAUCHY_BORN_ESHELBY_STRESS)) {
fieldFlags_(TEMPERATURE) = true;
fieldFlags_(DISPLACEMENT) = true;
fieldFlags_(STRESS) = true;
}
if (fieldFlags_(VACANCY_CONCENTRATION)) {
fieldFlags_(DISPLACEMENT) = true;
fieldFlags_(NUMBER_DENSITY) = true;
}
if (fieldFlags_(INTERNAL_ENERGY)) {
fieldFlags_(POTENTIAL_ENERGY) = true;
fieldFlags_(THERMAL_ENERGY) = true;
}
if (fieldFlags_(ENERGY)) {
fieldFlags_(POTENTIAL_ENERGY) = true;
fieldFlags_(KINETIC_ENERGY) = true;
}
if (fieldFlags_(TEMPERATURE) || fieldFlags_(HEAT_FLUX) ||
fieldFlags_(KINETIC_ENERGY) || fieldFlags_(THERMAL_ENERGY) ||
fieldFlags_(ENERGY) || fieldFlags_(INTERNAL_ENERGY) ||
fieldFlags_(KINETIC_ENERGY) || (fieldFlags_(STRESS) &&
atomToElementMapType_ == EULERIAN) ) {
fieldFlags_(VELOCITY) = true;
fieldFlags_(MASS_DENSITY) = true;
}
if (fieldFlags_(VELOCITY)) {
fieldFlags_(MASS_DENSITY) = true;
fieldFlags_(MOMENTUM) = true;
}
if (fieldFlags_(DISPLACEMENT)) {
fieldFlags_(MASS_DENSITY) = true;
}
if (fieldFlags_(TEMPERATURE) ) {
fieldFlags_(NUMBER_DENSITY) = true;
}
if (fieldFlags_(ROTATION) ||
fieldFlags_(STRETCH)) {
fieldFlags_(DISPLACEMENT) = true;
}
if (fieldFlags_(ESHELBY_STRESS)
|| fieldFlags_(CAUCHY_BORN_STRESS)
|| fieldFlags_(CAUCHY_BORN_ENERGY)
|| fieldFlags_(CAUCHY_BORN_ESHELBY_STRESS)
|| fieldFlags_(CAUCHY_BORN_ELASTIC_DEFORMATION_GRADIENT)
|| fieldFlags_(VACANCY_CONCENTRATION)
|| fieldFlags_(ROTATION)
|| fieldFlags_(STRETCH) ) {
gradFlags_(DISPLACEMENT) = true;
}
// check whether single_enable==0 for stress/heat flux calculation
if (fieldFlags_(STRESS) || fieldFlags_(HEAT_FLUX)) {
if (lammpsInterface_->single_enable()==0) {
throw ATC_Error("Calculation of stress field not possible with selected pair type.");
}
}
}
//============== THIN WRAPPERS ====================================
// OBSOLETE
// HARDY COMPUTES
// ***************UNCONVERTED**************************
//-------------------------------------------------------------------
// MOLECULE
//-------------------------------------------------------------------
void ATC_Transfer::compute_dipole_moment(DENS_MAT & dipole_moment)
{
const DENS_MAT & molecularVector(dipoleMoment_->quantity());
project_volume_normalized_molecule(molecularVector,dipole_moment); // KKM add
//
}
//-------------------------------------------------------------------
void ATC_Transfer::compute_quadrupole_moment(DENS_MAT & quadrupole_moment)
{
const DENS_MAT & molecularVector(quadrupoleMoment_->quantity());
project_volume_normalized_molecule_gradient(molecularVector,quadrupole_moment); // KKM add
//
}
//-------------------------------------------------------------------
void ATC_Transfer::compute_stress(DENS_MAT & stress)
{
// table of bond functions already calculated in initialize function
// get conversion factor for nktV to p units
double nktv2p = lammpsInterface_->nktv2p();
// calculate kinetic energy tensor part of stress for Eulerian analysis
if (atomToElementMapType_ == EULERIAN && nLocal_>0) {
compute_kinetic_stress(stress);
}
else {
// zero stress table for Lagrangian analysis or if nLocal_ = 0
stress.zero();
}
// add-in potential part of stress tensor
int nrows = stress.nRows();
int ncols = stress.nCols();
DENS_MAT local_potential_hardy_stress(nrows,ncols);
if (nLocal_>0) {
if (bondOnTheFly_) {
compute_potential_stress(local_potential_hardy_stress);
}
else {
// compute table of force & position dyad
compute_force_matrix();
// calculate force part of stress tensor
local_potential_hardy_stress = atomicBondMatrix_*atomicForceMatrix_;
local_potential_hardy_stress *= 0.5;
}
}
// global summation of potential part of stress tensor
DENS_MAT potential_hardy_stress(nrows,ncols);
int count = nrows*ncols;
lammpsInterface_->allsum(local_potential_hardy_stress.ptr(),
potential_hardy_stress.ptr(), count);
stress += potential_hardy_stress;
stress = nktv2p*stress;
}
//-------------------------------------------------------------------
// kinetic energy portion of stress
void ATC_Transfer::compute_kinetic_stress(DENS_MAT& stress)
{
const DENS_MAT& density = hardyData_["mass_density"].quantity();
const DENS_MAT& velocity = hardyData_["velocity"].quantity();
int * type = lammpsInterface_->atom_type();
double * mass = lammpsInterface_->atom_mass();
double * rmass = lammpsInterface_->atom_rmass();
double ** vatom = lammpsInterface_->vatom();
double mvv2e = lammpsInterface_->mvv2e(); // [MV^2]-->[Energy]
atomicTensor_.reset(nLocal_,6);
for (int i = 0; i < nLocal_; i++) {
int atomIdx = internalToAtom_(i);
double ma = mass ? mass[type[atomIdx]]: rmass[atomIdx];
ma *= mvv2e; // convert mass to appropriate units
double* v = vatom[atomIdx];
atomicTensor_(i,0) -= ma*v[0]*v[0];
atomicTensor_(i,1) -= ma*v[1]*v[1];
atomicTensor_(i,2) -= ma*v[2]*v[2];
atomicTensor_(i,3) -= ma*v[0]*v[1];
atomicTensor_(i,4) -= ma*v[0]*v[2];
atomicTensor_(i,5) -= ma*v[1]*v[2];
}
project_volume_normalized(atomicTensor_, stress);
for (int i = 0; i < nNodes_; i++) {
double rho_i = mvv2e*density(i,0);
stress(i,0) += rho_i*velocity(i,0)*velocity(i,0);
stress(i,1) += rho_i*velocity(i,1)*velocity(i,1);
stress(i,2) += rho_i*velocity(i,2)*velocity(i,2);
stress(i,3) += rho_i*velocity(i,0)*velocity(i,1);
stress(i,4) += rho_i*velocity(i,0)*velocity(i,2);
stress(i,5) += rho_i*velocity(i,1)*velocity(i,2);
}
}
//-------------------------------------------------------------------
void ATC_Transfer::compute_heatflux(DENS_MAT & flux)
{
// calculate kinetic part of heat flux
if (atomToElementMapType_ == EULERIAN && nLocal_>0) {
compute_kinetic_heatflux(flux);
}
else {
flux.zero(); // zero stress table for Lagrangian analysis
}
// add potential part of heat flux vector
int nrows = flux.nRows();
int ncols = flux.nCols();
DENS_MAT local_hardy_heat(nrows,ncols);
if (nLocal_>0) {
if (bondOnTheFly_) {
compute_potential_heatflux(local_hardy_heat);
}
else {
// calculate force/potential-derivative part of heat flux
compute_heat_matrix();
local_hardy_heat = atomicBondMatrix_*atomicHeatMatrix_;
}
}
// global summation of potential part of heat flux vector
DENS_MAT hardy_heat(nrows,ncols);
int count = nrows*ncols;
lammpsInterface_->allsum(local_hardy_heat.ptr(),
hardy_heat.ptr(), count);
flux += hardy_heat;
}
//-------------------------------------------------------------------
// compute kinetic part of heat flux
void ATC_Transfer::compute_kinetic_heatflux(DENS_MAT& flux)
{
const DENS_MAT& velocity = hardyData_["velocity"].quantity();
const DENS_MAT& energy = hardyData_["mass_density"].quantity();
const DENS_MAT& stress = hardyData_["stress"].quantity();
int * type = lammpsInterface_->atom_type();
double * mass = lammpsInterface_->atom_mass();
double * rmass = lammpsInterface_->atom_rmass();
double ** vatom = lammpsInterface_->vatom();
double mvv2e = lammpsInterface_->mvv2e();
double * atomPE = lammpsInterface_->compute_pe_peratom();
double atomKE, atomEnergy;
atomicVector_.reset(nLocal_,3);
for (int i = 0; i < nLocal_; i++) {
int atomIdx = internalToAtom_(i);
double ma = mass ? mass[type[atomIdx]]: rmass[atomIdx];
ma *= mvv2e; // convert mass to appropriate units
double* v = vatom[atomIdx];
atomKE = 0.0;
for (int k = 0; k < nsd_; k++) { atomKE += v[k]*v[k]; }
atomKE *= 0.5*ma;
atomEnergy = atomKE + atomPE[atomIdx];
for (int j = 0; j < nsd_; j++) {
atomicVector_(i,j) += atomEnergy*v[j];
}
}
project_volume_normalized(atomicVector_,flux);
// - e^0_I v_I + \sigma^T_I v_I
for (int i = 0; i < nNodes_; i++) {
double e_i = energy(i,0);
flux(i,0) += (e_i + stress(i,0))*velocity(i,0)
+ stress(i,3)*velocity(i,1)+ stress(i,4)*velocity(i,2);
flux(i,1) += (e_i + stress(i,1))*velocity(i,1)
+ stress(i,3)*velocity(i,0)+ stress(i,5)*velocity(i,2);
flux(i,2) += (e_i + stress(i,2))*velocity(i,2)
+ stress(i,4)*velocity(i,0)+ stress(i,5)*velocity(i,1);
}
}
//--------------------------------------------------------------------
void ATC_Transfer::compute_electric_potential(DENS_MAT & phi)
{
// Poisson solve with insulating bcs
const DENS_MAT & rho = (restrictedCharge_->quantity());
SPAR_MAT K;
feEngine_->stiffness_matrix(K);
double permittivity = lammpsInterface_->dielectric();
permittivity *= LammpsInterface::instance()->epsilon0();
K *= permittivity;
BC_SET bcs;
bcs.insert(pair<int,int>(0,0));
LinearSolver solver(K,bcs);
CLON_VEC x = column(phi,0);
CLON_VEC b = column(rho,0);
solver.solve(x,b);
//x.print("x:phi");
//b.print("b:rho");
//LinearSolver solver(K,AUTO_SOLVE,true);
}
//--------------------------------------------------------------------
void ATC_Transfer::compute_vacancy_concentration(DENS_MAT & Cv,
const DENS_MAT & H, const DENS_MAT & /* rhoN */)
{
int * type = lammpsInterface_->atom_type();
DENS_MAT new_rho(nNodes_,1);
DENS_MAT atomCnt(nLocal_,1);
double atomic_weight_sum = 0.0;
double site_weight_sum = 0.0;
int number_atoms = 0;
const DIAG_MAT & myAtomicWeights(atomVolume_->quantity());
for (int i = 0; i < nLocal_; i++) {
int atomIdx = internalToAtom_(i);
if (type[atomIdx] != 13) {
atomCnt(i,0) = myAtomicWeights(i,i);
atomic_weight_sum += myAtomicWeights(i,i);
number_atoms++;
}
site_weight_sum += myAtomicWeights(i,i);
}
project_volume_normalized(atomCnt, new_rho);
DENS_MAT F(3,3);
for (int i = 0; i < nNodes_; i++) {
if (atomToElementMapType_ == EULERIAN) {
// for Eulerian analysis: F = (1-H)^{-1}
DENS_MAT G(3,3);
vector_to_matrix(i,H,G);
G *= -1.;
G(0,0) += 1.0; G(1,1) += 1.0; G(2,2) += 1.0;
F = inv(G);
}
else if (atomToElementMapType_ == LAGRANGIAN) {
// for Lagrangian analysis: F = (1+H)
vector_to_matrix(i,H,F);
F(0,0) += 1.0; F(1,1) += 1.0; F(2,2) += 1.0;
}
double J = det(F);
double volume_per_atom = lammpsInterface_->volume_per_atom();
J *= volume_per_atom;
Cv(i,0) = 1.0 - J*new_rho(i,0);
}
}
//--------------------------------------------------------------------
void ATC_Transfer::compute_eshelby_stress(DENS_MAT & M,
const DENS_MAT & E, const DENS_MAT & S, const DENS_MAT & H)
{
// eshelby stress:M, energy:E, stress:S, displacement gradient: H
// eshelby stress = W I - F^T.P = W I - C.S [energy]
// symmetric if isotropic S = a_0 I + a_1 C + a_2 C^2
M.reset(nNodes_,FieldSizes[ESHELBY_STRESS]);
double nktv2p = lammpsInterface_->nktv2p();
DENS_MAT P(3,3),F(3,3),FT(3,3),FTP(3,3),ESH(3,3);
for (int i = 0; i < nNodes_; i++) {
double W = E(i,0);
ESH.identity();
ESH *= W;
// copy to local
if (atomToElementMapType_ == LAGRANGIAN) {
// Stress notation convention:: 0:11 1:12 2:13 3:21 4:22 5:23 6:31 7:32 8:33
vector_to_matrix(i,S,P);
vector_to_matrix(i,H,F);
#ifndef H_BASED
F(0,0) += 1.0; F(1,1) += 1.0; F(2,2) += 1.0;
#endif
FT = F.transpose();
}
else if (atomToElementMapType_ == EULERIAN) {
vector_to_symm_matrix(i,S,P);
vector_to_matrix(i,H,F);
FT = F.transpose();
}
FTP = (1.0/nktv2p)*FT*P;
ESH -= FTP;
if (atomToElementMapType_ == EULERIAN) {
// For Eulerian analysis, M = F^T*(w-H^T.CauchyStress)
DENS_MAT Q(3,3);
Q.identity();
// Q stores (1-H)
Q -= FT.transpose();
DENS_MAT F(3,3);
F = inv(Q);
FT = F.transpose();
ESH = FT*ESH;
}
// copy to global
matrix_to_vector(i,ESH,M);
}
}
//---------------------------------------------------------------------------
// Computes the Cauchy Born stress tensor, T given displacement gradient, H
// and optional temperature argument (passed by pointer), TEMP
//---------------------------------------------------------------------------
void ATC_Transfer::cauchy_born_stress(const DENS_MAT &H, DENS_MAT &T, const DENS_MAT *temp)
{
FIELD_MATS uField; // uField should contain temperature.
DENS_MAT_VEC tField;
GRAD_FIELD_MATS hField;
DENS_MAT_VEC &h = hField[DISPLACEMENT];
h.assign(nsd_, DENS_MAT(nNodes_,nsd_));
tField.assign(nsd_, DENS_MAT(nNodes_,nsd_));
// each row is the CB stress at a node stored in voigt form
T.reset(nNodes_,FieldSizes[CAUCHY_BORN_STRESS]);
const double nktv2p = lammpsInterface_->nktv2p();
const double fact = -lammpsInterface_->mvv2e()*nktv2p;
// reshape H (#nodes,9) into h [3](#nodes,3) displacement gradient
vector_to_dens_mat_vec(H,h);
// if temperature is provided, then set it
if (temp) uField[TEMPERATURE] = *temp;
// Computes the stress at each node.
cauchyBornStress_->stress(uField, hField, tField);
// reshapes the stress, T to a (#node,6) DenseMatrix.
DENS_MAT S(nNodes_,6);
symm_dens_mat_vec_to_vector(tField,S);
S *= fact;
// tField/S holds the 2nd P-K stress tensor. Transform to
// Cauchy for EULERIAN analysis, transform to 1st P-K
// for LAGRANGIAN analysis.
DENS_MAT PK2(3,3),G(3,3),F(3,3),FT(3,3),STRESS(3,3);
for (int i = 0; i < nNodes_; i++) {
vector_to_symm_matrix(i,S,PK2);
if (atomToElementMapType_ == EULERIAN) {
// for Eulerian analysis: F = (1-H)^{-1}
vector_to_matrix(i,H,G);
G *= -1.;
G(0,0) += 1.0; G(1,1) += 1.0; G(2,2) += 1.0;
F = inv(G);
FT = transpose(F);
double J = det(F);
STRESS = F*PK2*FT;
STRESS *= 1/J;
symm_matrix_to_vector(i,STRESS,T);
}
else{
// for Lagrangian analysis: F = 1 + H
vector_to_matrix(i,H,F);
F(0,0) += 1.0; F(1,1) += 1.0; F(2,2) += 1.0;
STRESS = F*PK2;
matrix_to_vector(i,STRESS,T);
}
}
}
//---------------------------------------------------------------------------
// Computes the Cauchy Born energy density, E given displacement gradient, H
// and optional temperature argument (passed by pointer), TEMP
//---------------------------------------------------------------------------
void ATC_Transfer::cauchy_born_energy(const DENS_MAT &H, DENS_MAT &E, const DENS_MAT *temp)
{
FIELD_MATS uField; // uField should contain temperature.
GRAD_FIELD_MATS hField;
DENS_MAT_VEC &h = hField[DISPLACEMENT];
h.assign(nsd_, DENS_MAT(nNodes_,nsd_));
// reshape H (#nodes,9) into h [3](#nodes,3) displacement gradient
vector_to_dens_mat_vec(H,h);
// if temperature is provided, then set it
if (temp) uField[TEMPERATURE] = *temp;
// Computes the free/potential energy at each node.
cauchyBornStress_->elastic_energy(uField, hField, E);
// convert back to energy units for ( ATC coupling uses MLT units)
double mvv2e = lammpsInterface_->mvv2e(); // [MV^2]-->[Energy]
E *= mvv2e;
// for Eulerian analysis, convert energy density to per-unit deformed volume
if (atomToElementMapType_ == EULERIAN) {
DENS_MAT G(3,3),F(3,3);
for (int i = 0; i < nNodes_; i++) {
// for Eulerian analysis: F = (1-H)^{-1}
vector_to_matrix(i,H,G);
G *= -1.;
G(0,0) += 1.0; G(1,1) += 1.0; G(2,2) += 1.0;
F = inv(G);
double J = det(F);
E(i,0) *= 1/J;
}
}
// subtract zero point energy
if (nodalRefPotentialEnergy_)
E -= nodalRefPotentialEnergy_->quantity();
}
//---------------------------------------------------------------------------
// Computes the M/LH entropic energy density
//---------------------------------------------------------------------------
void ATC_Transfer::cauchy_born_entropic_energy(const DENS_MAT &H, DENS_MAT &E, const DENS_MAT &T)
{
FIELD_MATS uField; // uField should contain temperature.
uField[TEMPERATURE] = T;
GRAD_FIELD_MATS hField;
DENS_MAT_VEC &h = hField[DISPLACEMENT];
h.assign(nsd_, DENS_MAT(nNodes_,nsd_));
// reshape H (#nodes,9) into h [3](#nodes,3) displacement gradient
vector_to_dens_mat_vec(H,h);
// Computes the free/potential energy at each node.
cauchyBornStress_->entropic_energy(uField, hField, E);
// convert back to energy units for ( ATC coupling uses MLT units)
double mvv2e = lammpsInterface_->mvv2e(); // [MV^2]-->[Energy]
E *= mvv2e;
// for Eulerian analysis, convert energy density to per-unit deformed volume
if (atomToElementMapType_ == EULERIAN) {
DENS_MAT G(3,3),F(3,3);
for (int i = 0; i < nNodes_; i++) {
// for Eulerian analysis: F = (1-H)^{-1}
vector_to_matrix(i,H,G);
G *= -1.;
G(0,0) += 1.0; G(1,1) += 1.0; G(2,2) += 1.0;
F = inv(G);
double J = det(F);
E(i,0) *= 1/J;
}
}
}
//--------------------------------------------------------------------
void ATC_Transfer::compute_transformed_stress(DENS_MAT & stress,
const DENS_MAT & T, const DENS_MAT & H)
{
stress.reset(nNodes_,FieldSizes[TRANSFORMED_STRESS]);
DENS_MAT S(3,3),FT(3,3),P(3,3);
for (int i = 0; i < nNodes_; i++) {
if (atomToElementMapType_ == EULERIAN) {
vector_to_symm_matrix(i,T,P);
// for Eulerian analysis: F^T = (1-H)^{-T}
DENS_MAT G(3,3);
vector_to_matrix(i,H,G);
G *= -1.;
G(0,0) += 1.0; G(1,1) += 1.0; G(2,2) += 1.0;
FT = inv(G.transpose());
}
else{
vector_to_matrix(i,T,P);
// for Lagrangian analysis: F^T = (1+H)^T
DENS_MAT F(3,3);
vector_to_matrix(i,H,F);
F(0,0) += 1.0; F(1,1) += 1.0; F(2,2) += 1.0;
FT = F.transpose();
}
//
double J = det(FT);
FT *= 1/J;
if (atomToElementMapType_ == EULERIAN) {
FT = inv(FT);
}
S = P*FT;
matrix_to_vector(i,S,stress);
}
}
//--------------------------------------------------------------------
void ATC_Transfer::compute_polar_decomposition(DENS_MAT & rotation,
DENS_MAT & stretch, const DENS_MAT & H)
{
DENS_MAT F(3,3),R(3,3),U(3,3);
for (int i = 0; i < nNodes_; i++) {
vector_to_matrix(i,H,F);
F(0,0) += 1.0; F(1,1) += 1.0; F(2,2) += 1.0;
if (atomToElementMapType_ == EULERIAN) {
polar_decomposition(F,R,U,false); } // F = V R
else {
polar_decomposition(F,R,U); } // F = R U
// copy to local
if ( fieldFlags_(ROTATION) ) {
matrix_to_vector(i,R,rotation);
}
if ( fieldFlags_(STRETCH) ) {
matrix_to_vector(i,U,stretch);
}
}
}
//--------------------------------------------------------------------
void ATC_Transfer::compute_elastic_deformation_gradient(DENS_MAT & Fe,
const DENS_MAT & P, const DENS_MAT & H)
{
// calculate Fe for every node
const double nktv2p = lammpsInterface_->nktv2p();
const double fact = 1.0/ ( lammpsInterface_->mvv2e()*nktv2p );
for (int i = 0; i < nNodes_; i++) {
DENS_VEC Pv = global_vector_to_vector(i,P);
Pv *= fact;
CBElasticTangentOperator tangent(cauchyBornStress_, Pv);
NonLinearSolver solver(&tangent);
DENS_VEC Fv = global_vector_to_vector(i,H); // pass in initial guess
add_identity_voigt_unsymmetric(Fv);
solver.solve(Fv);
vector_to_global_vector(i,Fv,Fe);
}
}
//--------------------------------------------------------------------
void ATC_Transfer::compute_elastic_deformation_gradient2(DENS_MAT & Fe,
const DENS_MAT & P, const DENS_MAT & H)
{
// calculate Fe for every node
const double nktv2p = lammpsInterface_->nktv2p();
const double fact = 1.0/ ( lammpsInterface_->mvv2e()*nktv2p );
DENS_MAT F(3,3),R(3,3),U(3,3),PP(3,3),S(3,3);
for (int i = 0; i < nNodes_; i++) {
// get F = RU
vector_to_matrix(i,H,F);
F(0,0) += 1.0; F(1,1) += 1.0; F(2,2) += 1.0;
if (atomToElementMapType_ == EULERIAN) {
polar_decomposition(F,R,U,false); } // F = V R
else {
polar_decomposition(F,R,U); } // F = R U
// get S
vector_to_matrix(i,P,PP);
//S = PP*transpose(F);
S = inv(F)*PP;
S += S.transpose(); S *= 0.5; // symmetrize
DENS_VEC Sv = to_voigt(S);
Sv *= fact;
// solve min_U || S - S_CB(U) ||
CB2ndElasticTangentOperator tangent(cauchyBornStress_, Sv);
NonLinearSolver solver(&tangent);
//DENS_VEC Uv = to_voigt_unsymmetric(U); // pass in initial guess
DENS_VEC Uv = to_voigt(U); // pass in initial guess
//DENS_VEC Uv(6); Uv(0)=1;Uv(1)=1;Uv(2)=1;Uv(3)=0;Uv(4)=0;Uv(5)=0;
solver.solve(Uv);
DENS_MAT Ue = from_voigt(Uv);
DENS_MAT FFe = R*Ue;
matrix_to_vector(i,FFe,Fe);
}
}
// =========== Analytical solutions ==========================
} // end namespace ATC
|