1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
// ATC headers
#include "ATC_TransferKernel.h"
#include "ATC_Error.h"
#include "FE_Engine.h"
#include "KernelFunction.h"
#include "LammpsInterface.h"
#include "Quadrature.h"
#include "PerPairQuantity.h"
#include "Stress.h"
#ifdef HAS_DXA
#include "DislocationExtractor.h"
#endif
// Other Headers
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <fstream>
#include <exception>
using namespace std;
namespace ATC {
using ATC_Utility::to_string;
ATC_TransferKernel::ATC_TransferKernel(string groupName,
double **& perAtomArray,
LAMMPS_NS::Fix * thisFix,
string matParamFile)
: ATC_Transfer(groupName,perAtomArray,thisFix,matParamFile)
{
kernelBased_ = true;
}
//-------------------------------------------------------------------
ATC_TransferKernel::~ATC_TransferKernel()
{
}
//-------------------------------------------------------------------
bool ATC_TransferKernel::modify(int narg, char **arg)
{
bool match = false;
/*! \page man_hardy_kernel fix_modify AtC kernel
\section syntax
fix_modify AtC kernel <type> <parameters>
- type (keyword) = step, cell, cubic_bar, cubic_cylinder, cubic_sphere,
quartic_bar, quartic_cylinder, quartic_sphere \n
- parameters :\n
step = radius (double) \n
cell = hx, hy, hz (double) or h (double) \n
cubic_bar = half-width (double) \n
cubic_cylinder = radius (double) \n
cubic_sphere = radius (double) \n
quartic_bar = half-width (double) \n
quartic_cylinder = radius (double) \n
quartic_sphere = radius (double) \n
\section examples
<TT> fix_modify AtC kernel cell 1.0 1.0 1.0 </TT> \n
<TT> fix_modify AtC kernel quartic_sphere 10.0 </TT>
\section description
\section restrictions
Must be used with the hardy AtC fix \n
For bar kernel types, half-width oriented along x-direction \n
For cylinder kernel types, cylindrical axis is assumed to be in z-direction \n
( see \ref man_fix_atc )
\section related
\section default
No default
*/
// no match, call base class parser
if (!match) {
match = ATC_Transfer::modify(narg, arg);
}
return match;
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_kernel_matrix_molecule(void) // KKM add
{
int nLocalMol = smallMoleculeSet_->local_molecule_count();
if (nLocal_>0) {
SPAR_MAT & N(kernelAccumulantMol_.set_quantity());
N.reset(nLocalMol,nNodes_);
SPAR_MAT & dN(kernelAccumulantMolGrad_.set_quantity());
dN.reset(nLocalMol,nNodes_);
DENS_VEC derivKer(nsd_);
DENS_VEC xI(nsd_),xm(nsd_),xmI(nsd_);
const DENS_MAT & centroidMolMatrix(moleculeCentroid_->quantity());
ATC::LammpsInterface::instance()->stream_msg_once("computing kernel matrix molecule ",true,false);
int heartbeatFreq = (nNodes_ <= 10 ? 1 : (int) nNodes_ / 10);
for (int i = 0; i < nNodes_; i++) {
if (i % heartbeatFreq == 0 ) {
ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
}
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
for (int j = 0; j < nLocalMol; j++) {
for (int k = 0; k < nsd_; k++) {
xm(k) = centroidMolMatrix(j,k);
}
xmI = xm - xI;
lammpsInterface_->periodicity_correction(xmI.ptr());
double val = kernelFunction_->value(xmI);
if (val > 0) N.add(j,i,val);
kernelFunction_->derivative(xmI,derivKer);
double val_grad = derivKer(2);
if (val_grad!= 0) dN.add(j,i,val_grad);
}
}
// reset kernelShpFunctions with the weights of molecules on processors
DENS_VEC fractions(N.nRows());
DENS_VEC fractions_deriv(dN.nRows());
for (int i = 0; i < nLocalMol; i++) {
fractions(i) = smallMoleculeSet_->local_fraction(i);
}
N.row_scale(fractions);
N.compress();
dN.row_scale(fractions);
dN.compress();
if (lammpsInterface_->rank_zero()) {
ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
}
}
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_projection(const DENS_MAT & atomData,
DENS_MAT & nodeData)
{
DENS_MAT workNodeArray(nNodes_, atomData.nCols());
workNodeArray.zero();
nodeData.reset(workNodeArray.nRows(),workNodeArray.nCols());
nodeData.zero();
if (nLocal_>0) {
set_xPointer();
DENS_VEC xI(nsd_),xa(nsd_),xaI(nsd_);
double val;
for (int i = 0; i < nNodes_; i++) {
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
for (int j = 0; j < nLocal_; j++) {
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
val = kernelFunction_->value(xaI);
if (val > 0) {
for (int k=0; k < atomData.nCols(); k++) {
workNodeArray(i,k) += val*atomData(j,k);
}
}
}
}
}
// accumulate across processors
int count = workNodeArray.nRows()*workNodeArray.nCols();
lammpsInterface_->allsum(workNodeArray.ptr(),nodeData.ptr(),count);
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_bond_matrix()
{
atomicBondMatrix_=bondMatrix_->quantity();
}
//-------------------------------------------------------------------
// on-the-fly calculation of stress
void ATC_TransferKernel::compute_potential_stress(DENS_MAT& stress)
{
set_xPointer();
stress.zero();
// neighbor lists
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
double ** xatom = lammpsInterface_->xatom();
double lam1,lam2;
double bond_value;
// process differently for mesh vs translation-invariant kernels
ATC::LammpsInterface::instance()->stream_msg_once("computing potential stress: ",true,false);
int heartbeatFreq = (nNodes_ <= 10 ? 1 : (int) nNodes_ / 10);
// "normal" kernel functions
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
for (int i = 0; i < nNodes_; i++) {
if (i % heartbeatFreq == 0 ) {
ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
}
// point
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
int inode = i;
for (int j = 0; j < nLocal_; j++) {
// second (neighbor) atom location
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
// difference vector
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
for (int k = 0; k < numneigh[lammps_j]; ++k) {
int lammps_k = firstneigh[lammps_j][k];
// first atom location
xb.copy(xPointer_[lammps_k],3);
// difference vector
xba = xb - xa;
xbI = xba + xaI;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
// compute virial
if (lam1 < lam2) {
bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
fforce *= 0.5; // dbl count
if (atomToElementMapType_ == LAGRANGIAN) {
double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
stress(inode,0) +=-delx*fforce*delX*bond_value;
stress(inode,1) +=-delx*fforce*delY*bond_value;
stress(inode,2) +=-delx*fforce*delZ*bond_value;
stress(inode,3) +=-dely*fforce*delX*bond_value;
stress(inode,4) +=-dely*fforce*delY*bond_value;
stress(inode,5) +=-dely*fforce*delZ*bond_value;
stress(inode,6) +=-delz*fforce*delX*bond_value;
stress(inode,7) +=-delz*fforce*delY*bond_value;
stress(inode,8) +=-delz*fforce*delZ*bond_value;
}
else { //EULERIAN
stress(inode,0) +=-delx*delx*fforce*bond_value;
stress(inode,1) +=-dely*dely*fforce*bond_value;
stress(inode,2) +=-delz*delz*fforce*bond_value;
stress(inode,3) +=-delx*dely*fforce*bond_value;
stress(inode,4) +=-delx*delz*fforce*bond_value;
stress(inode,5) +=-dely*delz*fforce*bond_value;
}
}
}
}
}
ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
}
//-------------------------------------------------------------------
// on-the-fly calculation of the heat flux
void ATC_TransferKernel::compute_potential_heatflux(DENS_MAT& flux)
{
set_xPointer();
flux.zero();
// neighbor lists
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
double ** xatom = lammpsInterface_->xatom();
double ** vatom = lammpsInterface_->vatom();
double lam1,lam2;
double bond_value;
// process differently for mesh vs translation-invariant kernels
// "normal" kernel functions
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
for (int i = 0; i < nNodes_; i++) {
int inode = i;
// point
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
for (int j = 0; j < nLocal_; j++) {
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
// difference vector
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
for (int k = 0; k < numneigh[lammps_j]; ++k) {
int lammps_k = firstneigh[lammps_j][k];
// first atom location
xb.copy(xPointer_[lammps_k],3);
// difference vector
xba = xb - xa;
xbI = xba + xaI;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
// compute virial
if (lam1 < lam2) {
bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
fforce *= 0.5; // dbl count
double * v = vatom[lammps_j];
fforce *= (delx*v[0] + dely*v[1] + delz*v[2]);
if (atomToElementMapType_ == LAGRANGIAN) {
double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
flux(inode,0) +=fforce*delX*bond_value;
flux(inode,1) +=fforce*delY*bond_value;
flux(inode,2) +=fforce*delZ*bond_value;
}
else { // EULERIAN
flux(inode,0) +=fforce*delx*bond_value;
flux(inode,1) +=fforce*dely*bond_value;
flux(inode,2) +=fforce*delz*bond_value;
}
}
}
}
}
}
//-------------------------------------------------------------------
// calculation of the dislocation density tensor
void ATC_TransferKernel::compute_dislocation_density(DENS_MAT & A)
{
A.reset(nNodes_,9);
#ifdef HAS_DXA
double cnaCutoff = lammpsInterface_->near_neighbor_cutoff();
// Extract dislocation lines within the processor's domain.
DXADislocationExtractor extractor(lammpsInterface_->lammps_pointer(),dxaExactMode_);
extractor.extractDislocations(lammpsInterface_->neighbor_list(), cnaCutoff);
// Calculate scalar dislocation density and density tensor.
double dislocationDensity = 0.0;
double dislocationDensityTensor[9] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
const std::vector<DislocationSegment*>& segments = extractor.getSegments();
int localNumberLines = (int) segments.size();
int totalNumberLines;
lammpsInterface_->int_allsum(&localNumberLines,&totalNumberLines,1);
if (totalNumberLines == 0) {
ATC::LammpsInterface::instance()->print_msg_once("no dislocation lines found");
return;
}
// for output
int nPt = 0, nSeg = 0;
for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
DislocationSegment* segment = segments[segmentIndex];
const std::deque<Point3>& line = segment->line;
nPt += line.size();
nSeg += line.size()-1;
}
DENS_MAT segCoor(3,nPt);
Array2D<int> segConn(2,nSeg);
DENS_MAT segBurg(nPt,3);
DENS_MAT local_A(nNodes_,9);
local_A.zero();
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
int iPt = 0, iSeg= 0;
for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
DislocationSegment* segment = segments[segmentIndex];
const std::deque<Point3>& line = segment->line;
Vector3 burgers = segment->burgersVectorWorld;
Point3 x1, x2;
for(std::deque<Point3>::const_iterator p1 = line.begin(), p2 = line.begin() + 1; p2 < line.end(); ++p1, ++p2) {
x1 = (*p1);
x2 = (*p2);
Vector3 delta = x2 - x1;
// totals
dislocationDensity += Length(delta);
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++) {
dislocationDensityTensor[3*j+i] += delta[i] * burgers[j];
}
}
// nodal partition
for(int k = 0; k < 3; k++) {
xa(k) = x1[k];
xb(k) = x2[k];
xba(k) = delta[k];
}
for (int I = 0; I < nNodes_; I++) {
xI = (feEngine_->fe_mesh())->nodal_coordinates(I);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
xbI = xba + xaI;
double lam1=0,lam2=0;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
if (lam1 < lam2) {
double bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
local_A(I,0) += xba(0)*burgers[0]*bond_value;
local_A(I,1) += xba(0)*burgers[1]*bond_value;
local_A(I,2) += xba(0)*burgers[2]*bond_value;
local_A(I,3) += xba(1)*burgers[0]*bond_value;
local_A(I,4) += xba(1)*burgers[1]*bond_value;
local_A(I,5) += xba(1)*burgers[2]*bond_value;
local_A(I,6) += xba(2)*burgers[0]*bond_value;
local_A(I,7) += xba(2)*burgers[1]*bond_value;
local_A(I,8) += xba(2)*burgers[2]*bond_value;
}
}
segCoor(0,iPt) = x1[0];
segCoor(1,iPt) = x1[1];
segCoor(2,iPt) = x1[2];
segBurg(iPt,0) = burgers[0];
segBurg(iPt,1) = burgers[1];
segBurg(iPt,2) = burgers[2];
segConn(0,iSeg) = iPt;
segConn(1,iSeg) = iPt+1;
iPt++;
iSeg++;
}
segCoor(0,iPt) = x2[0];
segCoor(1,iPt) = x2[1];
segCoor(2,iPt) = x2[2];
segBurg(iPt,0) = burgers[0];
segBurg(iPt,1) = burgers[1];
segBurg(iPt,2) = burgers[2];
iPt++;
}
int count = nNodes_*9;
lammpsInterface_->allsum(local_A.ptr(),A.ptr(),count);
double totalDislocationDensity;
lammpsInterface_->allsum(&dislocationDensity,&totalDislocationDensity,1);
double totalDislocationDensityTensor[9];
lammpsInterface_->allsum(dislocationDensityTensor,totalDislocationDensityTensor,9);
int totalNumberSegments;
lammpsInterface_->int_allsum(&nSeg,&totalNumberSegments,1);
// output
double volume = lammpsInterface_->domain_volume();
stringstream ss;
ss << "total dislocation line length = " << totalDislocationDensity;
ss << " lines = " << totalNumberLines << " segments = " << totalNumberSegments;
ss << "\n ";
ss << "total dislocation density tensor = \n";
for(int i = 0; i < 3; i++) {
ss << " ";
for(int j = 0; j < 3; j++) {
totalDislocationDensityTensor[3*j+i] /= volume;
ss << totalDislocationDensityTensor[3*j+i] << " ";
}
ss << "\n";
}
ATC::LammpsInterface::instance()->print_msg_once(ss.str());
if (nSeg > 0) {
set<int> otypes;
otypes.insert(VTK);
otypes.insert(FULL_GNUPLOT);
string name = "dislocation_segments_step=" ;
name += to_string(output_index());
OutputManager segOutput(name,otypes);
segOutput.write_geometry(&segCoor,&segConn);
OUTPUT_LIST segOut;
segOut["burgers_vector"] = &segBurg;
segOutput.write_data(0,&segOut);
}
#else
throw ATC_Error("unimplemented function compute_dislocation_density (DXA support not included");
#endif
}
} // end namespace ATC
|