File: ATC_TransferKernel.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (485 lines) | stat: -rw-r--r-- 17,977 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// ATC headers
#include "ATC_TransferKernel.h"
#include "ATC_Error.h"
#include "FE_Engine.h"
#include "KernelFunction.h"
#include "LammpsInterface.h"
#include "Quadrature.h"
#include "PerPairQuantity.h"
#include "Stress.h"
#ifdef HAS_DXA
#include "DislocationExtractor.h"
#endif

// Other Headers
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <fstream>
#include <exception>

using namespace std;

namespace ATC {

using ATC_Utility::to_string;

  ATC_TransferKernel::ATC_TransferKernel(string groupName,
                                         double **& perAtomArray,
                                         LAMMPS_NS::Fix * thisFix,
                                         string matParamFile)
    : ATC_Transfer(groupName,perAtomArray,thisFix,matParamFile)
  {
    kernelBased_ = true;
  }

  //-------------------------------------------------------------------
  ATC_TransferKernel::~ATC_TransferKernel()
  {
  }

  //-------------------------------------------------------------------
  bool ATC_TransferKernel::modify(int narg, char **arg)
  {
    bool match = false;

    /*! \page man_hardy_kernel fix_modify AtC kernel
      \section syntax
      fix_modify AtC kernel <type> <parameters>
      - type (keyword) = step, cell, cubic_bar, cubic_cylinder, cubic_sphere,
                         quartic_bar, quartic_cylinder, quartic_sphere \n
      - parameters :\n
      step = radius (double) \n
      cell = hx, hy, hz (double) or h (double) \n
      cubic_bar = half-width (double) \n
      cubic_cylinder = radius (double) \n
      cubic_sphere = radius (double) \n
      quartic_bar = half-width (double) \n
      quartic_cylinder = radius (double) \n
      quartic_sphere = radius (double) \n
      \section examples
      <TT> fix_modify AtC kernel cell 1.0 1.0 1.0 </TT> \n
      <TT> fix_modify AtC kernel quartic_sphere 10.0 </TT>
      \section description

      \section restrictions
      Must be used with the hardy AtC fix \n
      For bar kernel types, half-width oriented along x-direction \n
      For cylinder kernel types, cylindrical axis is assumed to be in z-direction \n
      ( see \ref man_fix_atc )
      \section related
      \section default
      No default
    */

    // no match, call base class parser
    if (!match) {
      match = ATC_Transfer::modify(narg, arg);
    }

    return match;

  }

  //-------------------------------------------------------------------
  void ATC_TransferKernel::compute_kernel_matrix_molecule(void) // KKM add
  {
    int nLocalMol = smallMoleculeSet_->local_molecule_count();
    if (nLocal_>0) {
      SPAR_MAT & N(kernelAccumulantMol_.set_quantity());
      N.reset(nLocalMol,nNodes_);
      SPAR_MAT & dN(kernelAccumulantMolGrad_.set_quantity());
      dN.reset(nLocalMol,nNodes_);
      DENS_VEC derivKer(nsd_);
      DENS_VEC xI(nsd_),xm(nsd_),xmI(nsd_);
      const DENS_MAT & centroidMolMatrix(moleculeCentroid_->quantity());
      ATC::LammpsInterface::instance()->stream_msg_once("computing kernel matrix molecule ",true,false);
      int heartbeatFreq = (nNodes_ <= 10 ? 1 : (int) nNodes_ / 10);
      for (int i = 0; i < nNodes_; i++) {
        if (i % heartbeatFreq == 0 ) {
          ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
        }
        xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
        for (int j = 0; j < nLocalMol; j++) {
          for (int k = 0; k < nsd_; k++) {
            xm(k) = centroidMolMatrix(j,k);
          }
          xmI = xm - xI;
          lammpsInterface_->periodicity_correction(xmI.ptr());
          double val = kernelFunction_->value(xmI);
          if (val > 0) N.add(j,i,val);
          kernelFunction_->derivative(xmI,derivKer);
          double val_grad = derivKer(2);
          if (val_grad!= 0) dN.add(j,i,val_grad);
        }
      }
      // reset kernelShpFunctions with the weights of molecules on processors
      DENS_VEC fractions(N.nRows());
      DENS_VEC fractions_deriv(dN.nRows());
      for (int i = 0; i < nLocalMol; i++) {
        fractions(i) = smallMoleculeSet_->local_fraction(i);
      }
        N.row_scale(fractions);
        N.compress();
        dN.row_scale(fractions);
        dN.compress();
      if (lammpsInterface_->rank_zero()) {
        ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
      }
    }
  }

  //-------------------------------------------------------------------
  void ATC_TransferKernel::compute_projection(const DENS_MAT & atomData,
                                              DENS_MAT & nodeData)
  {
    DENS_MAT workNodeArray(nNodes_, atomData.nCols());
    workNodeArray.zero();
    nodeData.reset(workNodeArray.nRows(),workNodeArray.nCols());
    nodeData.zero();

    if (nLocal_>0) {
      set_xPointer();
      DENS_VEC xI(nsd_),xa(nsd_),xaI(nsd_);
      double val;
      for (int i = 0; i < nNodes_; i++) {
        xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
        for (int j = 0; j < nLocal_; j++) {
          int lammps_j = internalToAtom_(j);
          xa.copy(xPointer_[lammps_j],3);
          xaI = xa - xI;
          lammpsInterface_->periodicity_correction(xaI.ptr());
          val = kernelFunction_->value(xaI);
          if (val > 0) {
            for (int k=0; k < atomData.nCols(); k++) {
              workNodeArray(i,k) += val*atomData(j,k);
            }
          }
        }
      }
    }

    // accumulate across processors
    int count = workNodeArray.nRows()*workNodeArray.nCols();
    lammpsInterface_->allsum(workNodeArray.ptr(),nodeData.ptr(),count);
  }


  //-------------------------------------------------------------------
  void ATC_TransferKernel::compute_bond_matrix()
  {
    atomicBondMatrix_=bondMatrix_->quantity();
  }

  //-------------------------------------------------------------------
  // on-the-fly calculation of stress
  void ATC_TransferKernel::compute_potential_stress(DENS_MAT& stress)
  {
    set_xPointer();
    stress.zero();
    // neighbor lists
    int *numneigh = lammpsInterface_->neighbor_list_numneigh();
    int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
    double ** xatom    = lammpsInterface_->xatom();
    double lam1,lam2;
    double bond_value;
    // process differently for mesh vs translation-invariant kernels
    ATC::LammpsInterface::instance()->stream_msg_once("computing potential stress: ",true,false);
    int heartbeatFreq = (nNodes_ <= 10 ? 1 : (int) nNodes_ / 10);
    // "normal" kernel functions
    DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
    double kernel_inv_vol = kernelFunction_->inv_vol();
    for (int i = 0; i < nNodes_; i++) {
      if (i % heartbeatFreq == 0 ) {
        ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
        }
      //  point
      xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
      if (!kernelFunction_->node_contributes(xI)) {
        continue;
      }
      int inode = i;
      for (int j = 0; j < nLocal_; j++) {
        // second (neighbor) atom location
        int lammps_j = internalToAtom_(j);
        xa.copy(xPointer_[lammps_j],3);
        // difference vector
        xaI = xa - xI;
        lammpsInterface_->periodicity_correction(xaI.ptr());
        for (int k = 0; k < numneigh[lammps_j]; ++k) {
          int lammps_k = firstneigh[lammps_j][k];
          // first atom location
          xb.copy(xPointer_[lammps_k],3);
          // difference vector
          xba = xb - xa;
          xbI = xba + xaI;
          kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
          // compute virial
          if (lam1 < lam2) {
            bond_value
              = kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
            double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
            double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
            double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
            double rsq = delx*delx + dely*dely + delz*delz;
            double fforce = 0;
            lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
            fforce *= 0.5; // dbl count
            if (atomToElementMapType_ == LAGRANGIAN) {
              double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
              double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
              double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
              stress(inode,0) +=-delx*fforce*delX*bond_value;
              stress(inode,1) +=-delx*fforce*delY*bond_value;
              stress(inode,2) +=-delx*fforce*delZ*bond_value;
              stress(inode,3) +=-dely*fforce*delX*bond_value;
              stress(inode,4) +=-dely*fforce*delY*bond_value;
              stress(inode,5) +=-dely*fforce*delZ*bond_value;
              stress(inode,6) +=-delz*fforce*delX*bond_value;
              stress(inode,7) +=-delz*fforce*delY*bond_value;
              stress(inode,8) +=-delz*fforce*delZ*bond_value;
            }
            else { //EULERIAN
              stress(inode,0) +=-delx*delx*fforce*bond_value;
              stress(inode,1) +=-dely*dely*fforce*bond_value;
              stress(inode,2) +=-delz*delz*fforce*bond_value;
              stress(inode,3) +=-delx*dely*fforce*bond_value;
              stress(inode,4) +=-delx*delz*fforce*bond_value;
              stress(inode,5) +=-dely*delz*fforce*bond_value;
            }
          }
        }
      }
    }
    ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
  }

  //-------------------------------------------------------------------
  // on-the-fly calculation of the heat flux
  void ATC_TransferKernel::compute_potential_heatflux(DENS_MAT& flux)
  {
    set_xPointer();
    flux.zero();
    // neighbor lists
    int *numneigh = lammpsInterface_->neighbor_list_numneigh();
    int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
    double ** xatom    = lammpsInterface_->xatom();
    double ** vatom    = lammpsInterface_->vatom();

    double lam1,lam2;
    double bond_value;
    // process differently for mesh vs translation-invariant kernels
    // "normal" kernel functions
    DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
    double kernel_inv_vol = kernelFunction_->inv_vol();
    for (int i = 0; i < nNodes_; i++) {
      int inode = i;
      //  point
      xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
      if (!kernelFunction_->node_contributes(xI)) {
        continue;
      }
      for (int j = 0; j < nLocal_; j++) {
        int lammps_j = internalToAtom_(j);
        xa.copy(xPointer_[lammps_j],3);
        // difference vector
        xaI = xa - xI;
        lammpsInterface_->periodicity_correction(xaI.ptr());
        for (int k = 0; k < numneigh[lammps_j]; ++k) {
          int lammps_k = firstneigh[lammps_j][k];
          // first atom location
          xb.copy(xPointer_[lammps_k],3);
          // difference vector
          xba = xb - xa;
          xbI = xba + xaI;
          kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
          // compute virial
          if (lam1 < lam2) {
            bond_value
              = kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
            double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
            double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
            double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
            double rsq = delx*delx + dely*dely + delz*delz;
            double fforce = 0;
            lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
            fforce *= 0.5; // dbl count
            double * v = vatom[lammps_j];
            fforce *= (delx*v[0] + dely*v[1] + delz*v[2]);
            if (atomToElementMapType_ == LAGRANGIAN) {
              double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
              double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
              double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
              flux(inode,0) +=fforce*delX*bond_value;
              flux(inode,1) +=fforce*delY*bond_value;
              flux(inode,2) +=fforce*delZ*bond_value;
            }
            else { // EULERIAN
              flux(inode,0) +=fforce*delx*bond_value;
              flux(inode,1) +=fforce*dely*bond_value;
              flux(inode,2) +=fforce*delz*bond_value;
            }
          }
        }
      }
    }
  }

  //-------------------------------------------------------------------
  // calculation of the dislocation density tensor
  void ATC_TransferKernel::compute_dislocation_density(DENS_MAT & A)
  {
   A.reset(nNodes_,9);
#ifdef HAS_DXA
   double cnaCutoff = lammpsInterface_->near_neighbor_cutoff();
   // Extract dislocation lines within the processor's domain.
   DXADislocationExtractor extractor(lammpsInterface_->lammps_pointer(),dxaExactMode_);
   extractor.extractDislocations(lammpsInterface_->neighbor_list(), cnaCutoff);

   // Calculate scalar dislocation density and density tensor.
   double dislocationDensity = 0.0;
   double dislocationDensityTensor[9] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};


   const std::vector<DislocationSegment*>& segments = extractor.getSegments();
   int localNumberLines = (int) segments.size();
   int totalNumberLines;
   lammpsInterface_->int_allsum(&localNumberLines,&totalNumberLines,1);
   if (totalNumberLines == 0) {
     ATC::LammpsInterface::instance()->print_msg_once("no dislocation lines found");
     return;
   }

   // for output
   int nPt = 0, nSeg = 0;
   for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
     DislocationSegment* segment = segments[segmentIndex];
     const std::deque<Point3>& line = segment->line;
     nPt  += line.size();
     nSeg += line.size()-1;
   }

   DENS_MAT segCoor(3,nPt);
   Array2D<int> segConn(2,nSeg);
   DENS_MAT segBurg(nPt,3);


   DENS_MAT local_A(nNodes_,9);
   local_A.zero();
   DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
   double kernel_inv_vol = kernelFunction_->inv_vol();
   int iPt = 0, iSeg= 0;
   for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {

     DislocationSegment* segment = segments[segmentIndex];
     const std::deque<Point3>& line = segment->line;

     Vector3 burgers = segment->burgersVectorWorld;
     Point3 x1, x2;
     for(std::deque<Point3>::const_iterator p1 = line.begin(), p2 = line.begin() + 1; p2 < line.end(); ++p1, ++p2) {
       x1 = (*p1);
       x2 = (*p2);
       Vector3 delta = x2 - x1;
       // totals
       dislocationDensity += Length(delta);
       for(int i = 0; i < 3; i++) {
         for(int j = 0; j < 3; j++) {
           dislocationDensityTensor[3*j+i] += delta[i] * burgers[j];
         }
       }
       // nodal partition
       for(int k = 0; k < 3; k++) {
         xa(k) = x1[k];
         xb(k) = x2[k];
         xba(k) = delta[k];
       }
       for (int I = 0; I < nNodes_; I++) {
         xI = (feEngine_->fe_mesh())->nodal_coordinates(I);
         if (!kernelFunction_->node_contributes(xI)) {
           continue;
         }
         xaI = xa - xI;
         lammpsInterface_->periodicity_correction(xaI.ptr());
         xbI = xba + xaI;
         double lam1=0,lam2=0;
         kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
         if (lam1 < lam2) {
           double bond_value
             = kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
           local_A(I,0) += xba(0)*burgers[0]*bond_value;
           local_A(I,1) += xba(0)*burgers[1]*bond_value;
           local_A(I,2) += xba(0)*burgers[2]*bond_value;
           local_A(I,3) += xba(1)*burgers[0]*bond_value;
           local_A(I,4) += xba(1)*burgers[1]*bond_value;
           local_A(I,5) += xba(1)*burgers[2]*bond_value;
           local_A(I,6) += xba(2)*burgers[0]*bond_value;
           local_A(I,7) += xba(2)*burgers[1]*bond_value;
           local_A(I,8) += xba(2)*burgers[2]*bond_value;
         }
       }
       segCoor(0,iPt) = x1[0];
       segCoor(1,iPt) = x1[1];
       segCoor(2,iPt) = x1[2];
       segBurg(iPt,0) = burgers[0];
       segBurg(iPt,1) = burgers[1];
       segBurg(iPt,2) = burgers[2];
       segConn(0,iSeg) = iPt;
       segConn(1,iSeg) = iPt+1;
       iPt++;
       iSeg++;
     }
     segCoor(0,iPt) = x2[0];
     segCoor(1,iPt) = x2[1];
     segCoor(2,iPt) = x2[2];
     segBurg(iPt,0) = burgers[0];
     segBurg(iPt,1) = burgers[1];
     segBurg(iPt,2) = burgers[2];
     iPt++;
   }

   int count = nNodes_*9;
   lammpsInterface_->allsum(local_A.ptr(),A.ptr(),count);

   double totalDislocationDensity;
   lammpsInterface_->allsum(&dislocationDensity,&totalDislocationDensity,1);
   double totalDislocationDensityTensor[9];
   lammpsInterface_->allsum(dislocationDensityTensor,totalDislocationDensityTensor,9);
   int totalNumberSegments;
   lammpsInterface_->int_allsum(&nSeg,&totalNumberSegments,1);

   // output
   double volume = lammpsInterface_->domain_volume();
   stringstream ss;
   ss << "total dislocation line length = " << totalDislocationDensity;
   ss << " lines = " << totalNumberLines << " segments = " << totalNumberSegments;
   ss << "\n      ";
   ss << "total dislocation density tensor = \n";
   for(int i = 0; i < 3; i++) {
     ss << "   ";
     for(int j = 0; j < 3; j++) {
       totalDislocationDensityTensor[3*j+i] /= volume;
       ss << totalDislocationDensityTensor[3*j+i] << " ";
     }
     ss << "\n";
   }
   ATC::LammpsInterface::instance()->print_msg_once(ss.str());
   if (nSeg > 0) {
     set<int> otypes;
     otypes.insert(VTK);
     otypes.insert(FULL_GNUPLOT);
     string name = "dislocation_segments_step=" ;
     name += to_string(output_index());
     OutputManager segOutput(name,otypes);
     segOutput.write_geometry(&segCoor,&segConn);
     OUTPUT_LIST segOut;
     segOut["burgers_vector"] = &segBurg;
     segOutput.write_data(0,&segOut);
   }
#else
  throw ATC_Error("unimplemented function compute_dislocation_density (DXA support not included");
#endif
  }

} // end namespace ATC