File: AtomicRegulator.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (990 lines) | stat: -rw-r--r-- 37,858 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
// ATC Headers
#include "AtomicRegulator.h"
#include "ATC_Error.h"
#include "ATC_Coupling.h"
#include "PrescribedDataManager.h"
#include "TimeIntegrator.h"
#include "LinearSolver.h"

using std::map;
using std::string;
using std::set;
using std::pair;

namespace ATC {


  // only one regulator method at time, i.e. fixed & flux, thermo & elastic
  // regulator manages lambda variables, creates new ones when requested with dimensions and zero ics (map of tag to lambda)
  // regulator keeps track of which lambda are being used, unused lambdas deleted (map of tag to bool), all tags set to unused on start of initialization
  // method requests needed lambda from regulator
  // method sets up all needed linear solvers, null linear solver does nothing
  // regulator adds nodes to fixed or fluxed lists it owns, based on localization and type
  // method gets lists of fixed nodes and fluxed nodes
  // method lumps fluxed lambdas and truncates fixed lambdas based on single localized bool in regulator
  // inherited methods should be fixed, fluxed, combined

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class AtomicRegulator
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  AtomicRegulator::AtomicRegulator(ATC_Coupling * atc,
                                   const string & regulatorPrefix) :
    atc_(atc),
    howOften_(1),
    needReset_(true),
    maxIterations_(myMaxIterations),
    tolerance_(myTolerance),
    regulatorTarget_(NONE),
    couplingMode_(UNCOUPLED),
    nNodes_(0),
    nsd_(atc_->nsd()),
    nLocal_(0),
    useLocalizedLambda_(false),
    useLumpedLambda_(false),
    timeFilter_(nullptr),
    regulatorMethod_(nullptr),
    boundaryIntegrationType_(NO_QUADRATURE),
    regulatorPrefix_(regulatorPrefix)
  {
    applyInDirection_.resize(atc_->nsd(),true);
  }

  //--------------------------------------------------------
  //  Destructor
  //--------------------------------------------------------
  AtomicRegulator::~AtomicRegulator()
  {
    delete_method();
    set_all_data_to_unused();
    delete_unused_data();
  }

  //--------------------------------------------------------
  //  delete_method:
  //    deletes the method
  //--------------------------------------------------------
  void AtomicRegulator::delete_method()
  {
    if (regulatorMethod_)
      delete regulatorMethod_;
  }

  //--------------------------------------------------------
  //  delete_unused_data:
  //    deletes all data that is currently not in use
  //--------------------------------------------------------
  void AtomicRegulator::delete_unused_data()
  {
    map<string, pair<bool,DENS_MAN * > >::iterator it;
    for (it = regulatorData_.begin(); it != regulatorData_.end(); it++) {
      if (((it->second).first)) {
        delete (it->second).second;
        regulatorData_.erase(it);
      }
    }
  }

  //--------------------------------------------------------
  //  get_regulator_data:
  //    gets a pointer to the requested data, is crated if
  //    if doesn't exist
  //--------------------------------------------------------
  DENS_MAN * AtomicRegulator::regulator_data(const string tag, int nCols)
  {
    DENS_MAN * data(nullptr);
    map<string, pair<bool,DENS_MAN * > >::iterator it = regulatorData_.find(tag);
    if (it == regulatorData_.end()) {
      data = new DENS_MAN(nNodes_,nCols);
      regulatorData_.insert(pair<string, pair<bool,DENS_MAN * > >(tag,pair<bool,DENS_MAN * >(false,data)));
    }
    else {
      data = (it->second).second;
      if ((data->nRows() != nNodes_) || (data->nCols() != nCols)) {
        data->reset(nNodes_,nCols);
      }
      (it->second).first = false;
    }
    return data;
  }

  //--------------------------------------------------------
  //  get_regulator_data:
  //    gets a pointer to the requested data, or nullptr if
  //    if doesn't exist
  //--------------------------------------------------------
  const DENS_MAN * AtomicRegulator::regulator_data(const string tag) const
  {
    map<string, pair<bool,DENS_MAN * > >::const_iterator it = regulatorData_.find(tag);
    if (it == regulatorData_.end()) {
      return nullptr;
    }
    else {
      return const_cast<DENS_MAN * >((it->second).second);
    }
  }

  //--------------------------------------------------------
  //  set_all_data_to_unused:
  //    sets bool such that all data is unused
  //--------------------------------------------------------
  void AtomicRegulator::set_all_data_to_unused()
  {
    map<string, pair<bool,DENS_MAN * > >::iterator it;
    for (it = regulatorData_.begin(); it != regulatorData_.end(); it++) {
      (it->second).first = true;
    }
  }

  //--------------------------------------------------------
  //  set_all_data_to_used:
  //    sets bool such that all data is used
  //--------------------------------------------------------
  void AtomicRegulator::set_all_data_to_used()
  {
    map<string, pair<bool,DENS_MAN * > >::iterator it;
    for (it = regulatorData_.begin(); it != regulatorData_.end(); it++) {
      (it->second).first = false;
    }
  }

  //--------------------------------------------------------
  //  modify:
  //    parses and adjusts controller state based on
  //    user input, in the style of LAMMPS user input
  //--------------------------------------------------------
  bool AtomicRegulator::modify(int /* narg */, char **arg)
  {
    bool foundMatch = false;

        // set parameters for numerical matrix solutions
    /*! \page man_control fix_modify AtC control
      \section syntax
      fix_modify AtC control <physics_type> <solution_parameter> <value>\n
        - physics_type (string) = thermal | momentum\n
        - solution_parameter (string) = max_iterations | tolerance\n

      fix_modify AtC transfer <physics_type> control max_iterations <max_iterations>\n
        - max_iterations (int) = maximum number of iterations that will be used by iterative matrix solvers\n

      fix_modify AtC transfer <physics_type> control tolerance <tolerance> \n
        - tolerance (float) = relative tolerance to which matrix equations will be solved\n

      \section examples
      <TT> fix_modify AtC control thermal max_iterations 10 </TT> \n
      <TT> fix_modify AtC control momentum tolerance 1.e-5 </TT> \n
      \section description
      Sets the numerical parameters for the matrix solvers used in the specified control algorithm.  Many solution approaches require iterative solvers, and these methods enable users to provide the maximum number of iterations and the relative tolerance.
      \section restrictions
      only for be used with specific controllers :
      thermal, momentum \n
      They are ignored if a lumped solution is requested
      \section related
      \section default
      max_iterations is the number of rows in the matrix\n
      tolerance is 1.e-10
    */
    int argIndex = 0;
    if (strcmp(arg[argIndex],"max_iterations")==0) {
      argIndex++;
      maxIterations_ = atoi(arg[argIndex]);
      if (maxIterations_ < 1) {
        throw ATC_Error("Bad maximum iteration count");
      }
      needReset_ = true;
      foundMatch = true;
    }
    else if (strcmp(arg[argIndex],"tolerance")==0) {
      argIndex++;
      tolerance_ = atof(arg[argIndex]);
      if (tolerance_ < 0.) {
        throw ATC_Error("Bad tolerance value");
      }
      needReset_ = true;
      foundMatch = true;
    }

    /*! \page man_localized_lambda fix_modify AtC control localized_lambda
      \section syntax
      fix_modify AtC control localized_lambda <on|off>
      \section examples
       <TT> fix_modify atc control localized_lambda on </TT> \n
      \section description
      Turns on localization algorithms for control algorithms to restrict the influence of FE coupling or boundary conditions to a region near the boundary of the MD region.  Control algorithms will not affect atoms in elements not possessing faces on the boundary of the region.  Flux-based control is localized via row-sum lumping while quantity control is done by solving a truncated matrix equation.
      \section restrictions
      \section related
      \section default
      Default is off.
    */
    else if (strcmp(arg[argIndex],"localized_lambda")==0) {
      argIndex++;
      if (strcmp(arg[argIndex],"on")==0) {
        useLocalizedLambda_ = true;
        foundMatch = true;
      }
      else if (strcmp(arg[argIndex],"off")==0) {
        useLocalizedLambda_ = false;
        foundMatch = true;
      }
    }



    /*! \page man_lumped_lambda_solve fix_modify AtC control lumped_lambda_solve
      \section syntax
      fix_modify AtC control lumped_lambda_solve <on|off>
      \section examples
       <TT> fix_modify atc control lumped_lambda_solve on </TT> \n
      \section description
      Command to use or not use lumped matrix for lambda solve
      \section restrictions
      \section related
      \section default
    */
    else if (strcmp(arg[argIndex],"lumped_lambda_solve")==0) {
      argIndex++;
      if (strcmp(arg[argIndex],"on")==0) {
        useLumpedLambda_ = true;
        foundMatch = true;
      }
      else if (strcmp(arg[argIndex],"off")==0) {
        useLumpedLambda_ = false;
        foundMatch = true;
      }
    }

    /*! \page man_mask_direction fix_modify AtC control mask_direction
      \section syntax
      fix_modify AtC control mask_direction <direction> <on|off>
      \section examples
       <TT> fix_modify atc control mask_direction 0 on </TT> \n
      \section description
      Command to mask out certain dimensions from the atomic regulator
      \section restrictions
      \section related
      \section default
    */
    else if (strcmp(arg[argIndex],"mask_direction")==0) {
      argIndex++;
      int dir = atoi(arg[argIndex]);
      argIndex++;
      if (strcmp(arg[argIndex],"on")==0) {
        applyInDirection_[dir] = false;
        foundMatch = true;
      }
      else if (strcmp(arg[argIndex],"off")==0) {
        applyInDirection_[dir] = true;
        foundMatch = true;
      }
    }

    return foundMatch;
  }

  //--------------------------------------------------------
  //  reset_nlocal:
  //    resizes lambda force if necessary
  //--------------------------------------------------------
  void AtomicRegulator::reset_nlocal()
  {
    nLocal_ = atc_->nlocal();
    if (regulatorMethod_)
      regulatorMethod_->reset_nlocal();
  }
  //--------------------------------------------------------
  //  reset_atom_materials:
  //    resets the localized atom to material map
  //--------------------------------------------------------
  void AtomicRegulator::reset_atom_materials(const Array<int> & elementToMaterialMap,
                                             const MatrixDependencyManager<DenseMatrix, int> * atomElement)
  {
    if (regulatorMethod_)
      regulatorMethod_->reset_atom_materials(elementToMaterialMap,
                                             atomElement);
  }
  //--------------------------------------------------------
  //  reset_method:
  //    sets up methods, if necessary
  //--------------------------------------------------------
  void AtomicRegulator::reset_method()
  {
    // set up defaults for anything that didn't get set
    if (!regulatorMethod_)
      regulatorMethod_ = new RegulatorMethod(this);
    if (!timeFilter_)
      timeFilter_ = (atc_->time_filter_manager())->construct();
  }
  //--------------------------------------------------------
  //  md_fixed_nodes:
  //    determines if any fixed nodes overlap the MD region
  //--------------------------------------------------------
  bool AtomicRegulator::md_fixed_nodes(FieldName fieldName) const
  {
    FixedNodes fixedNodes(atc_,fieldName);
    const set<int> & myNodes(fixedNodes.quantity());
    if (myNodes.size() == 0) {
      return false;
    }
    else {
      return true;
    }
  }
  //--------------------------------------------------------
  //  md_flux_nodes:
  //    determines if any nodes with fluxes overlap the MD region
  //--------------------------------------------------------
  bool AtomicRegulator::md_flux_nodes(FieldName fieldName) const
  {
    FluxNodes fluxNodes(atc_,fieldName);
    const set<int> & myNodes(fluxNodes.quantity());
    if (myNodes.size() == 0) {
      return false;
    }
    else {
      return true;
    }
  }
  //--------------------------------------------------------
  //  construct_methods:
  //    sets up methods before a run
  //--------------------------------------------------------
  void AtomicRegulator::construct_methods()
  {
    // get base-line data that was set in stages 1 & 2 of ATC_Method::initialize
    // computational geometry
    nNodes_ = atc_->num_nodes();

    // make sure consistent boundary integration is being used
    atc_->set_boundary_integration_type(boundaryIntegrationType_);
  }

  //--------------------------------------------------------
  //  construct_transfers:
  //    pass through to appropriate transfer constuctors
  //--------------------------------------------------------
  void AtomicRegulator::construct_transfers()
  {
    regulatorMethod_->construct_transfers();
  }

  //--------------------------------------------------------
  //  initialize:
  //    sets up methods before a run
  //--------------------------------------------------------
  void AtomicRegulator::initialize()
  {
    regulatorMethod_->initialize();
    needReset_ = false;
  }

  //--------------------------------------------------------
  //  output:
  //    pass through to appropriate output methods
  //--------------------------------------------------------
  void AtomicRegulator::output(OUTPUT_LIST & outputData) const
  {
    regulatorMethod_->output(outputData);
  }

  //--------------------------------------------------------
  //  finish:
  //    pass through to appropriate end-of-run methods
  //--------------------------------------------------------
  void AtomicRegulator::finish()
  {
    regulatorMethod_->finish();
    set_all_data_to_unused();
  }

  //--------------------------------------------------------
  //  apply_pre_predictor:
  //    applies the controller in the pre-predictor
  //    phase of the time integrator
  //--------------------------------------------------------
  void AtomicRegulator::apply_pre_predictor(double dt, int timeStep)
  {
    if (timeStep % howOften_==0) // apply full integration scheme, including filter
      regulatorMethod_->apply_pre_predictor(dt);
  }

  //--------------------------------------------------------
  //  apply_mid_predictor:
  //    applies the controller in the mid-predictor
  //    phase of the time integrator
  //--------------------------------------------------------
  void AtomicRegulator::apply_mid_predictor(double dt, int timeStep)
  {
    if (timeStep % howOften_==0) // apply full integration scheme, including filter
      regulatorMethod_->apply_mid_predictor(dt);
  }

  //--------------------------------------------------------
  //  apply_post_predictor:
  //    applies the controller in the post-predictor
  //    phase of the time integrator
  //--------------------------------------------------------
  void AtomicRegulator::apply_post_predictor(double dt, int timeStep)
  {
    if (timeStep % howOften_==0) // apply full integration scheme, including filter
      regulatorMethod_->apply_post_predictor(dt);
  }

  //--------------------------------------------------------
  //  apply_pre_corrector:
  //    applies the controller in the pre-corrector phase
  //    of the time integrator
  //--------------------------------------------------------
  void AtomicRegulator::apply_pre_corrector(double dt, int timeStep)
  {
    if (timeStep % howOften_==0) // apply full integration scheme, including filter
      regulatorMethod_->apply_pre_corrector(dt);
  }

  //--------------------------------------------------------
  //  apply_post_corrector:
  //    applies the controller in the post-corrector phase
  //    of the time integrator
  //--------------------------------------------------------
  void AtomicRegulator::apply_post_corrector(double dt, int timeStep)
  {
    if (timeStep % howOften_==0) // apply full integration scheme, including filter
      regulatorMethod_->apply_post_corrector(dt);
  }

  //--------------------------------------------------------
  //  pre_exchange
  //--------------------------------------------------------
  void AtomicRegulator::pre_exchange()
  {
    regulatorMethod_->pre_exchange();
  }

  //--------------------------------------------------------
  //  pre_force
  //--------------------------------------------------------
  void AtomicRegulator::pre_force()
  {
    regulatorMethod_->post_exchange();
  }

  //--------------------------------------------------
  // pack_fields
  //   bundle all allocated field matrices into a list
  //   for output needs
  //--------------------------------------------------
  void AtomicRegulator::pack_fields(RESTART_LIST & data)
  {
    map<string, pair<bool,DENS_MAN * > >::iterator it;
    for (it = regulatorData_.begin(); it != regulatorData_.end(); it++) {
      data[(it->first)] = &(((it->second).second)->set_quantity());
    }
  }

  //--------------------------------------------------------
  //  compute_boundary_flux:
  //    computes the boundary flux to be consistent with
  //    the controller
  //--------------------------------------------------------
  void AtomicRegulator::compute_boundary_flux(FIELDS & fields)
  {
    regulatorMethod_->compute_boundary_flux(fields);
  }

  //--------------------------------------------------------
  //  add_to_rhs:
  //    adds any controller contributions to the FE rhs
  //--------------------------------------------------------
  void AtomicRegulator::add_to_rhs(FIELDS & rhs)
  {
    regulatorMethod_->add_to_rhs(rhs);
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class RegulatorMethod
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  RegulatorMethod::RegulatorMethod(AtomicRegulator * atomicRegulator,
                                   const string & regulatorPrefix) :
    atomicRegulator_(atomicRegulator),
    atc_(atomicRegulator_->atc_transfer()),
    boundaryFlux_(atc_->boundary_fluxes()),
    fieldMask_(NUM_FIELDS,NUM_FLUX),
    nNodes_(atomicRegulator_->num_nodes()),
    regulatorPrefix_(atomicRegulator->regulator_prefix()+regulatorPrefix),
    shpFcnDerivs_(nullptr)
  {
    fieldMask_ = false;
  }

  //--------------------------------------------------------
  //  compute_boundary_flux
  //    default computation of boundary flux based on
  //    finite
  //--------------------------------------------------------
  void RegulatorMethod::compute_boundary_flux(FIELDS & fields)
  {
    atc_->compute_boundary_flux(fieldMask_,
                                fields,
                                boundaryFlux_,
                                atomMaterialGroups_,
                                shpFcnDerivs_);
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class RegulatorShapeFunction
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  RegulatorShapeFunction::RegulatorShapeFunction(AtomicRegulator * atomicRegulator,
                                                 const string & regulatorPrefix) :
    RegulatorMethod(atomicRegulator,regulatorPrefix),
    lambda_(nullptr),
    atomLambdas_(nullptr),
    shapeFunctionMatrix_(nullptr),
    linearSolverType_(AtomicRegulator::NO_SOLVE),
    maxIterations_(atomicRegulator->max_iterations()),
    tolerance_(atomicRegulator->tolerance()),
    matrixSolver_(nullptr),
    regulatedNodes_(nullptr),
    applicationNodes_(nullptr),
    boundaryNodes_(nullptr),
    shpFcn_(nullptr),
    atomicWeights_(nullptr),
    elementMask_(nullptr),
    lambdaAtomMap_(nullptr),
    weights_(nullptr),
    nsd_(atomicRegulator_->nsd()),
    nLocal_(atomicRegulator_->nlocal())
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  Destructor
  //--------------------------------------------------------
  RegulatorShapeFunction::~RegulatorShapeFunction()
  {
    if (matrixSolver_)
      delete matrixSolver_;
  }

  //--------------------------------------------------------
  //  create_node_maps
  //  - creates the node mappings between all nodes and the
  //    subset which are regulated
  //--------------------------------------------------------
  void RegulatorShapeFunction::create_node_maps()
  {
    this->construct_regulated_nodes();

    InterscaleManager & interscaleManager(atc_->interscale_manager());
    nodeToOverlapMap_ = static_cast<NodeToSubset * >(interscaleManager.dense_matrix_int(regulatorPrefix_+"NodeToOverlapMap"));
    if (!nodeToOverlapMap_) {
      nodeToOverlapMap_ = new NodeToSubset(atc_,regulatedNodes_);
      interscaleManager.add_dense_matrix_int(nodeToOverlapMap_,
                                             regulatorPrefix_+"NodeToOverlapMap");
    }
    overlapToNodeMap_ = static_cast<SubsetToNode * >(interscaleManager.dense_matrix_int(regulatorPrefix_+"OverlapToNodeMap"));
    if (!overlapToNodeMap_) {
      overlapToNodeMap_ = new SubsetToNode(nodeToOverlapMap_);
      interscaleManager.add_dense_matrix_int(overlapToNodeMap_,
                                             regulatorPrefix_+"OverlapToNodeMap");
    }

  }

  //--------------------------------------------------------
  //  construct_transfers
  //  - create all the needed transfer operators, in this
  //    case weights for the lambda matrix
  //--------------------------------------------------------
  void RegulatorShapeFunction::construct_transfers()
  {
    this->set_weights(); // construct specific weighting matrix transfer

    // specialized quantities for boundary flux integration if the lambda atom map exists
    if (lambdaAtomMap_ && (atomicRegulator_->boundary_integration_type() == FE_INTERPOLATION)) {
      InterscaleManager & interscaleManager(atc_->interscale_manager());

      // atomic weights
      PerAtomDiagonalMatrix<double> * atomWeights(interscaleManager.per_atom_diagonal_matrix("AtomVolume"));
      atomicWeights_ = new MappedDiagonalMatrix(atc_,
                                                atomWeights,
                                                lambdaAtomMap_);
      interscaleManager.add_diagonal_matrix(atomicWeights_,
                                            regulatorPrefix_+"RegulatorAtomWeights");

      // shape function
      shpFcn_ = new RowMappedSparseMatrix(atc_,
                                          interscaleManager.per_atom_sparse_matrix("Interpolant"),
                                          lambdaAtomMap_);
      interscaleManager.add_sparse_matrix(shpFcn_,
                                          regulatorPrefix_+"RegulatorShapeFunction");

      // shape function derivatives
      VectorDependencyManager<SPAR_MAT * > * interpolantGradient = interscaleManager.vector_sparse_matrix("InterpolantGradient");
      if (!interpolantGradient) {
        interpolantGradient = new PerAtomShapeFunctionGradient(atc_);
        interscaleManager.add_vector_sparse_matrix(interpolantGradient,
                                                   "InterpolantGradient");
      }
      shpFcnDerivs_ = new RowMappedSparseMatrixVector(atc_,
                                                      interpolantGradient,
                                                      lambdaAtomMap_);
      interscaleManager.add_vector_sparse_matrix(shpFcnDerivs_,
                                                 regulatorPrefix_+"RegulatorShapeFunctionGradient");
    }
  }

  //--------------------------------------------------------
  //  initialize
  //  - pre-run work, in this cases constructs the linear
  //    solver
  //--------------------------------------------------------
  void RegulatorShapeFunction::initialize()
  {
    if (!shapeFunctionMatrix_) {
      throw ATC_Error("RegulatorShapeFunction::initialize - shapeFunctionMatrix_ must be created before the initialize phase");
    }
    if (matrixSolver_)
      delete matrixSolver_;

    if (linearSolverType_ == AtomicRegulator::RSL_SOLVE) {
      matrixSolver_ = new LambdaMatrixSolverLumped(matrixTemplate_,
                                                   shapeFunctionMatrix_,
                                                   maxIterations_,
                                                   tolerance_,
                                                   applicationNodes_,
                                                   nodeToOverlapMap_);
    }
    else if (linearSolverType_ == AtomicRegulator::CG_SOLVE) {
      matrixSolver_ = new LambdaMatrixSolverCg(matrixTemplate_,
                                               shapeFunctionMatrix_,
                                               maxIterations_,
                                               tolerance_);
    }
    else {
      throw ATC_Error("RegulatorShapeFunction::initialize - unsupported solver type");
    }

    compute_sparsity();
  }

  //--------------------------------------------------------
  //  compute_sparsity
  //  - creates sparsity template
  //--------------------------------------------------------
  void RegulatorShapeFunction::compute_sparsity(void)
  {

    // first get local pattern from N N^T
    int nNodeOverlap = nodeToOverlapMap_->size();
    DENS_MAT tmpLocal(nNodeOverlap,nNodeOverlap);
    DENS_MAT tmp(nNodeOverlap,nNodeOverlap);
    const SPAR_MAT & myShapeFunctionMatrix(shapeFunctionMatrix_->quantity());
    if (myShapeFunctionMatrix.nRows() > 0) {
      tmpLocal = myShapeFunctionMatrix.transMat(myShapeFunctionMatrix);
    }

    // second accumulate total pattern across processors
    LammpsInterface::instance()->allsum(tmpLocal.ptr(), tmp.ptr(), tmp.size());
    // third extract non-zero entries & construct sparse template
    SPAR_MAT & myMatrixTemplate(matrixTemplate_.set_quantity());
    myMatrixTemplate.reset(nNodeOverlap,nNodeOverlap);
    for (int i = 0; i < nNodeOverlap; i++) {
      for (int j = 0; j < nNodeOverlap; j++) {
        if (abs(tmp(i,j))>0) {
          myMatrixTemplate.add(i,j,0.);
        }
      }
    }
    myMatrixTemplate.compress();
  }

  //--------------------------------------------------------
  //  solve_for_lambda
  //    solves matrix equation for lambda using given rhs
  //--------------------------------------------------------
  void RegulatorShapeFunction::solve_for_lambda(const DENS_MAT & rhs,
                                                DENS_MAT & lambda)
  {

    // assemble N^T W N with appropriate weighting matrix

    DIAG_MAT weights;
    if (shapeFunctionMatrix_->nRows() > 0) {
      weights.reset(weights_->quantity());
    }
    matrixSolver_->assemble_matrix(weights);

    // solve on overlap nodes
    int nNodeOverlap = nodeToOverlapMap_->size();
    DENS_MAT rhsOverlap(nNodeOverlap,rhs.nCols());
    map_unique_to_overlap(rhs, rhsOverlap);
    DENS_MAT lambdaOverlap(nNodeOverlap,lambda.nCols());

    for (int i = 0; i < rhs.nCols(); i++) {
      CLON_VEC tempLambda(lambdaOverlap,CLONE_COL,i);
      if (atomicRegulator_->apply_in_direction(i)) {
        CLON_VEC tempRHS(rhsOverlap,CLONE_COL,i);
        matrixSolver_->execute(tempRHS,tempLambda);
      }
      else {
        tempLambda = 0.;
      }
    }

    // map solution back to all nodes
    map_overlap_to_unique(lambdaOverlap,lambda);
  }

  //--------------------------------------------------------
  //  reset_nlocal:
  //    resets data dependent on local atom count
  //--------------------------------------------------------
  void RegulatorShapeFunction::reset_nlocal()
  {
    RegulatorMethod::reset_nlocal();
    nLocal_ = atomicRegulator_->nlocal();



    //compute_sparsity();
  }

  //--------------------------------------------------------
  //  reset_atom_materials:
  //    resets the localized atom to material map
  //--------------------------------------------------------
  void RegulatorShapeFunction::reset_atom_materials(const Array<int> & elementToMaterialMap,
                                                    const MatrixDependencyManager<DenseMatrix, int> * atomElement)
  {
    // specialized quantities for boundary flux integration if the lambda atom map exists
    if (lambdaAtomMap_ && (atomicRegulator_->boundary_integration_type() == FE_INTERPOLATION)) {
      int nMaterials = (atc_->physics_model())->nMaterials();
      atomMaterialGroups_.reset(nMaterials);
      const INT_ARRAY & atomToElementMap(atomElement->quantity());
      const INT_ARRAY & map(lambdaAtomMap_->quantity());
      int idx;
      for (int i = 0; i < nLocal_; i++) {
        idx = map(i,0);
        if (idx > -1) {
          atomMaterialGroups_(elementToMaterialMap(atomToElementMap(i,0))).insert(idx);
        }
      }
    }
  }

  //--------------------------------------------------------
  //  map_unique_to_overlap:
  //    maps unique node data to overlap node data
  //--------------------------------------------------------
  void RegulatorShapeFunction::map_unique_to_overlap(const MATRIX & uniqueData,
                                                     MATRIX & overlapData)
  {
    const INT_ARRAY & nodeToOverlapMap(nodeToOverlapMap_->quantity());
    for (int i = 0; i < nNodes_; i++) {
      if (nodeToOverlapMap(i,0) > -1) {
        for (int j = 0; j < uniqueData.nCols(); j++) {
          overlapData(nodeToOverlapMap(i,0),j) = uniqueData(i,j);
        }
      }
    }
  }

  //--------------------------------------------------------
  //  map_overlap_to_unique:
  //    maps overlap node data to unique node data
  //--------------------------------------------------------
  void RegulatorShapeFunction::map_overlap_to_unique(const MATRIX & overlapData,
                                                     MATRIX & uniqueData)
  {
    const INT_ARRAY & overlapToNodeMap(overlapToNodeMap_->quantity());
    uniqueData.resize(nNodes_,overlapData.nCols());
    for (int i = 0; i < overlapToNodeMap.size(); i++) {
      for (int j = 0; j < overlapData.nCols(); j++) {
        uniqueData(overlapToNodeMap(i,0),j) = overlapData(i,j);
      }
    }
  }
  //--------------------------------------------------------
  //  construct_regulated_nodes:
  //    constructs the set of nodes being regulated
  //--------------------------------------------------------
  void RegulatorShapeFunction::construct_regulated_nodes()
  {
    InterscaleManager & interscaleManager(atc_->interscale_manager());
    regulatedNodes_ = interscaleManager.set_int("RegulatedNodes");

    if (!regulatedNodes_) {
      if (!(atomicRegulator_->use_localized_lambda())) {
        regulatedNodes_ = new RegulatedNodes(atc_);
      }
      else {
        regulatedNodes_ = new AllRegulatedNodes(atc_);
      }
      interscaleManager.add_set_int(regulatedNodes_,
                                    regulatorPrefix_+"RegulatedNodes");
    }

    // application and regulated are same, unless specified
    applicationNodes_ = regulatedNodes_;
    // boundary and regulated nodes are same, unless specified
    boundaryNodes_ = regulatedNodes_;

    // special set of boundary elements
    if (atomicRegulator_->use_localized_lambda()) {
      elementMask_ = interscaleManager.dense_matrix_bool(regulatorPrefix_+"BoundaryElementMask");
      if (!elementMask_) {
        elementMask_ = new ElementMaskNodeSet(atc_,boundaryNodes_);
        interscaleManager.add_dense_matrix_bool(elementMask_,
                                                regulatorPrefix_+"BoundaryElementMask");
      }
    }
  }

  //--------------------------------------------------------
  //  compute_boundary_flux
  //    default computation of boundary flux based on
  //    finite
  //--------------------------------------------------------
  void RegulatorShapeFunction::compute_boundary_flux(FIELDS & fields)
  {
    atc_->compute_boundary_flux(fieldMask_,
                                fields,
                                boundaryFlux_,
                                atomMaterialGroups_,
                                shpFcnDerivs_,
                                shpFcn_,
                                atomicWeights_,
                                elementMask_,
                                boundaryNodes_);
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class LambdaMatrixSolver
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //         Grab references to necessary data
  //--------------------------------------------------------
  LambdaMatrixSolver::LambdaMatrixSolver(SPAR_MAN & matrixTemplate, SPAR_MAN * shapeFunctionMatrix, int maxIterations, double tolerance) :
    matrixTemplate_(matrixTemplate),
    shapeFunctionMatrix_(shapeFunctionMatrix),
    maxIterations_(maxIterations),
    tolerance_(tolerance)
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  assemble_matrix
  //        Assemble the matrix using the shape function
  //        matrices and weights.  This improves efficiency
  //        when multiple solves or iterations are required.
  //--------------------------------------------------------
  void LambdaMatrixSolver::assemble_matrix(DIAG_MAT & weights)
  {
    // form matrix : sum_a N_Ia * W_a * N_Ja

    SPAR_MAT lambdaMatrixLocal(matrixTemplate_.quantity());
    if (weights.nRows()>0)
      lambdaMatrixLocal.weighted_least_squares(shapeFunctionMatrix_->quantity(),weights);

    // swap contributions
    lambdaMatrix_ = matrixTemplate_.quantity();
    LammpsInterface::instance()->allsum(lambdaMatrixLocal.ptr(),
                                        lambdaMatrix_.ptr(), lambdaMatrix_.size());
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class LambdaMatrixSolverLumped
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //         Grab references to necessary data
  //--------------------------------------------------------
  LambdaMatrixSolverLumped::LambdaMatrixSolverLumped(SPAR_MAN & matrixTemplate, SPAR_MAN * shapeFunctionMatrix, int maxIterations, double tolerance, const SetDependencyManager<int> * applicationNodes, const NodeToSubset * nodeToOverlapMap) :
    LambdaMatrixSolver(matrixTemplate,shapeFunctionMatrix,maxIterations,tolerance),
    applicationNodes_(applicationNodes),
    nodeToOverlapMap_(nodeToOverlapMap)
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  assemble_matrix
  //        Assemble the matrix using the shape function
  //        matrices and weights.  This improves efficiency
  //        when multiple solves or iterations are required.
  //--------------------------------------------------------
  void LambdaMatrixSolverLumped::assemble_matrix(DIAG_MAT & weights)
  {
    LambdaMatrixSolver::assemble_matrix(weights);

    lumpedMatrix_ = lambdaMatrix_.row_sum_lump();
  }

  void LambdaMatrixSolverLumped::execute(VECTOR & rhs, VECTOR & lambda)
  {

    // solve lumped equation
    const set<int> & applicationNodes(applicationNodes_->quantity());
    const INT_ARRAY & nodeToOverlapMap(nodeToOverlapMap_->quantity());
    lambda = 0.;
    set<int>::const_iterator iset;
    for (iset = applicationNodes.begin(); iset != applicationNodes.end(); iset++) {
      int node = nodeToOverlapMap(*iset,0);
      lambda(node) = rhs(node)/lumpedMatrix_(node,node);
    }
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class LambdaMatrixSolverCg
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //         Grab references to necessary data
  //--------------------------------------------------------
  LambdaMatrixSolverCg::LambdaMatrixSolverCg(SPAR_MAN & matrixTemplate, SPAR_MAN * shapeFunctionMatrix, int maxIterations, double tolerance) :
    LambdaMatrixSolver(matrixTemplate,shapeFunctionMatrix,maxIterations,tolerance)
  {
    // do nothing
  }

  void LambdaMatrixSolverCg::execute(VECTOR & rhs, VECTOR & lambda)
  {
    if (lambdaMatrix_.size()<1)
      throw ATC_Error("solver given zero size matrix in LambdaMatrixSolverCg::execute()");


    LinearSolver solver(lambdaMatrix_, ATC::LinearSolver::ITERATIVE_SOLVE_SYMMETRIC, true);
    int myMaxIt = maxIterations_ > 0 ? maxIterations_ : 2*lambdaMatrix_.nRows();
    solver.set_max_iterations(myMaxIt);
    solver.set_tolerance(tolerance_);
    solver.solve(lambda,rhs);
  }
};