File: CBLattice.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (204 lines) | stat: -rw-r--r-- 7,731 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include "CBLattice.h"
#include "CbPotential.h"

#include <fstream>

namespace ATC {
  // removes any overlapping atoms (avoid calling because it scales n^2.)
  INDEX AtomCluster::remove_overlap()
  {
    INDEX removed_count = 0;
    std::vector<double>::iterator r(cur_bond_len_.begin());
    std::vector<DENS_VEC>::iterator R(ref_coords_.begin()), Rp;
    const double TOL = 1.0e-6 * R->dot(*R);

    for (; R!=ref_coords_.end(); R++, r++) {
      for (Rp=R+1; Rp!=ref_coords_.end(); Rp++) {
        if (sum_difference_squared(*Rp, *R) < TOL) {
          ref_coords_.erase(R--);
          cur_bond_len_.erase(r--);
          ++removed_count;
          break;
        }
      }
    }
    return removed_count;
  }
  //=========================================================================
  // writes cluster to 3 column data format
  //=========================================================================
  void AtomCluster::write_to_dat(std::string path, bool current_config)
  {
    const int npts = int(ref_coords_.size());
    if (path.substr(path.size()-5,4) != ".dat") path += ".dat";
    std::fstream fid(path.c_str(), std::ios::out);

    for (int i=0; i<npts; i++) {
      DENS_VEC x (current_config ? r(i):R(i));
      for (INDEX j=0; j<x.size(); j++) fid << x(j) << " ";
      fid << " " << x.norm() << "\n";
    }
  }
  //=========================================================================
  // writes cluster to vtk format, (in either reference or current config)
  //=========================================================================
  void AtomCluster::write_to_vtk(std::string path, bool current_config)
  {
    const int npts = int(ref_coords_.size());
    if (path.substr(path.size()-5,4) != ".vtk") path += ".vtk";
    std::fstream fid(path.c_str(), std::ios::out);

    // write header
    fid << "# vtk DataFile Version 2.0\nWritten from FE-LAMMPS\n";
    fid << "ASCII\nDATASET UNSTRUCTURED_GRID\n";
    fid << "POINTS " << npts << " float\n";

    for (int i=0; i<npts; i++) {
      DENS_VEC x (current_config ? r(i):R(i));
      for (INDEX j=0; j<x.size(); j++) fid << x(j) << " ";
      fid << ((i+1)%3==0 ? "\n" : " ");
    }
    fid << "\nCELLS "<<npts<<" "<<2*npts<<"\n";
    for (int i=0; i<npts; i++) fid << "1" << " " << i << "\n";

    fid << "CELL_TYPES " << npts << "\n";
    for (int i=0; i<npts; i++) fid << "1" << "\n";
  }
  //===========================================================================
  // constructor
  // @param N 3x3 DenseMatrix with each column as a base vector
  // @param B 3xn DenseMatrix with each column being a basis vector
  // @param R vector of 3D bond Vectors to representative atom in ref config
  // @param r vector of bond lengths to representative atom in current config
  // @param RC cutoff radius of bond potential
  //===========================================================================
  CBLattice::CBLattice(const MATRIX &N, const MATRIX &B)
    : n_(N), b_(B), N_(N), B_(B)
  {
    //  builds the default queue
    for (int a=-1; a<2; a++)
      for (int b=-1; b<2; b++)
        for (int c=-1; c<2; c++)
           if ( a!=0 || b!=0 || c!=0) queue0_.push(hash(a,b,c));
  }
  //=============================================================================
  // writes out default lattice parameters
  //=============================================================================
  std::ostream & operator<<(std::ostream& o, const CBLattice& lattice)
  {
    o<<"cutoff radius = "<<sqrt(lattice.RC2_)<<"\n";
    lattice.N_.print("Reference base vectors");
    lattice.B_.print("Reference basis vectors");
    return o;
  }
  //===========================================================================
  // Constructs the virtual atom cluster of neighbors within cutoff
  // @param F the deformation gradient tensor
  //===========================================================================
  void CBLattice::atom_cluster(const MATRIX &F, double cutoff, AtomCluster &v)
  {
    RC2_ = cutoff*cutoff;
    // compute new base and basis vectors
    v.clear();
    v.F_ = F;
    n_ = F*N_;
    b_ = F*B_;
    // add basis from the center cell (not including representative atom)
    for (int i=1; i<B_.nCols(); i++) {
     v.cur_bond_len_.push_back(b_.col_norm(i));
     v.ref_coords_.push_back(column(B_,i));
    }
    _FindAtomsInCutoff(v);
  }
  //=============================================================================
  // Computes forces on central atom, with atom I displaced by u.
  //=============================================================================
  DENS_VEC AtomCluster::perturbed_force(const CbPotential *p, int I, DENS_VEC *u) const
  {
    DENS_VEC f(3);
    for (INDEX i=0; i<size(); i++) {
      DENS_VEC ri = r(i);
      if (u && i+1==I) ri += *u;
      if (u && I==0)   ri -= *u;
      const double d = ri.norm();
      f.add_scaled(ri, -p->phi_r(d)/d);
    }
    return f;
  }
  //=============================================================================
  // Computes the force constant matrix between atoms I and 0.
  //=============================================================================
  DENS_MAT AtomCluster::force_constants(INDEX I, const CbPotential *p) const
  {
    DENS_MAT D(3,3);
    for (INDEX i=0; i<3; i++) {
      DENS_VEC du(3);
      du(i) = 1.0e-6;  // take central difference
      row(D,i)  = perturbed_force(p, I, &du);
      du(i)     = -du(i);
      row(D,i) -= perturbed_force(p, I, &du);
    }
    D *= 0.5e6;
    return D;
  }
  //=============================================================================
  // performs an iterative search for all neighbors within cutoff
  //=============================================================================
  void CBLattice::_FindAtomsInCutoff(AtomCluster &v)
  {
    static const int dir[2] = {-1, 1};
    int a, b, c, abc;
    std::stack<int> queue(queue0_);
    std::set<int> done;
    // search in each direction
    while (!queue.empty()) {
       abc = queue.top();
       queue.pop();
       if (done.find(abc) == done.end()) { // value not in set
         unhash(abc,a,b,c);             // convert abc to a,b,c
         if (_CheckUnitCell(a, b, c, v)) {
           done.insert(abc);
           // add direct 'outward' neighbors to queue
           queue.push(hash(a+dir[a>0], b, c));
           queue.push(hash(a, b+dir[b>0], c));
           queue.push(hash(a, b, c+dir[c>0]));
         }
       }
    }
  }
  //===========================================================================
  // Computes \f$r^2 = \Vert a n_1 + b n_2 +c n_3 + b_d \Vert^2 \f$
  // and adds atom (a,b,c,d) if \f$r^2 < r_{cutoff}^2 \f$
  // @param a cell x-index
  // @param b cell y-index
  // @param c cell z-index
  //===========================================================================
  bool CBLattice::_CheckUnitCell(char a, char b, char c, AtomCluster &v)
  {
    const int nsd = n_.nRows();  // number of spatial dimensions
    const double A=double(a), B=double(b), C=double(c);
    bool found=false;
    DENS_VEC r0(nsd,false), R0(nsd,false), Rd(nsd,false);  // don't initialize

    for (int i=0; i<nsd; i++) { // precompute locations of cell
      R0(i) = A*N_(0,i) + B*N_(1,i) + C*N_(2,i); // reference
    }
    r0 = v.F_*R0; // deformed
    for (int d=0; d<b_.nCols(); d++) {
      double ri = r0(0) + b_(0,d);
      double r2 = ri*ri;
      for (int i=1; i<nsd; i++) {
        ri = r0(i) + b_(i,d);
        r2 += ri*ri;
      }

      if (r2 <= RC2_) {
        v.ref_coords_.push_back(R0);
        v.ref_coords_.back() += column(B_,d);  // position is R0 + B_[d]
        v.cur_bond_len_.push_back(sqrt(r2));
        found = true;
      }
    }
    return found;
  }
}  // end ATC