1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|
#include "CauchyBorn.h"
#include "VoigtOperations.h"
#include "CBLattice.h"
#include "CbPotential.h"
using voigt3::to_voigt;
namespace ATC {
//============================================================================
// Computes the electron density for EAM potentials
//============================================================================
double cb_electron_density(const StressArgs &args )
{
double e_density = 0.0;
for (INDEX a=0; a<args.vac.size(); a++) {
PairParam pair(args.vac.R(a), args.vac.bond_length(a));
e_density += args.potential->rho(pair.d);
}
return e_density;
}
//============================================================================
// Computes the stress at a quadrature point
//============================================================================
void cb_stress(const StressArgs &args, StressAtIP &s, double *F)
{
const double &T = args.temperature;
const bool finite_temp = T > 0.0;
DENS_MAT D; // dynamical matrix (finite temp)
DENS_MAT_VEC dDdF; // derivative of dynamical matrix (finite temp)
double e_density(0.),embed(0.),embed_p(0.),embed_pp(0.),embed_ppp(0.);
DENS_VEC l0;
DENS_MAT L0;
DENS_MAT_VEC M0;
// If temperature is nonzero then allocate space for
// dynamical matrix and its derivative with respect to F.
if (finite_temp) {
D.reset(3,3);
dDdF.assign(6, DENS_MAT(3,3));
M0.assign(3, DENS_MAT(3,3));
L0.reset(3,3);
l0.reset(3);
}
if (F) *F = 0.0;
// if using EAM potential, calculate embedding function and derivatives
if (args.potential->terms.embedding) {
for (INDEX a=0; a<args.vac.size(); a++) {
PairParam pair(args.vac.R(a), args.vac.bond_length(a));
e_density += args.potential->rho(pair.d);
pair.r = args.vac.r(a);
pair.rho_r = args.potential->rho_r(pair.d);
pair.rho_rr = args.potential->rho_rr(pair.d);
if (finite_temp) {
l0 += pair.r*pair.di*pair.rho_r;
DENS_MAT rR = tensor_product(pair.r, pair.R);
L0.add_scaled(rR, pair.di*pair.rho_r);
DENS_MAT rr = tensor_product(pair.r, pair.r);
rr *= pair.di*pair.di*(pair.rho_rr - pair.di*pair.rho_r);
diagonal(rr) += pair.di*pair.rho_r;
for (int i = 0; i < 3; i++) {
for (int k = 0; k < 3; k++) {
for (int L = 0; L < 3; L++) {
M0[i](k,L) += rr(i,k)*args.vac.R(a)(L);
}
}
}
}
}
embed = args.potential->F(e_density); // "F" in usual EAM symbology
embed_p = args.potential->F_p(e_density);
embed_pp = args.potential->F_pp(e_density);
embed_ppp = args.potential->F_ppp(e_density);
if (F) *F += embed;
if (finite_temp) {
const DENS_MAT ll = tensor_product(l0, l0);
D.add_scaled(ll, embed_pp);
const DENS_VEC llvec = to_voigt(ll);
for (int v = 0; v < 6; v++) {
dDdF[v].add_scaled(L0, embed_ppp*llvec(v));
}
dDdF[0].add_scaled(M0[0], 2*embed_pp*l0(0));
dDdF[1].add_scaled(M0[1], 2*embed_pp*l0(1));
dDdF[2].add_scaled(M0[2], 2*embed_pp*l0(2));
dDdF[3].add_scaled(M0[1], embed_pp*l0(2));
dDdF[3].add_scaled(M0[2], embed_pp*l0(1));
dDdF[4].add_scaled(M0[0], embed_pp*l0(2));
dDdF[4].add_scaled(M0[2], embed_pp*l0(0));
dDdF[5].add_scaled(M0[0], embed_pp*l0(1));
dDdF[5].add_scaled(M0[1], embed_pp*l0(0));
}
}
// Loop on all cluster atoms (origin atom not included).
for (INDEX a=0; a<args.vac.size(); a++) {
PairParam pair(args.vac.R(a), args.vac.bond_length(a));
if (args.potential->terms.pairwise) {
if (F) *F += 0.5*args.potential->phi(pair.d);
pair.phi_r = args.potential->phi_r(pair.d);
pairwise_stress(pair, s);
}
if (args.potential->terms.embedding) {
pair.F_p = embed_p;
pair.rho_r = args.potential->rho_r(pair.d);
embedding_stress(pair, s);
}
if (finite_temp) { // Compute finite T terms.
pair.r = args.vac.r(a);
if (args.potential->terms.pairwise) {
pair.phi_rr = args.potential->phi_rr(pair.d);
pair.phi_rrr = args.potential->phi_rrr(pair.d);
pairwise_thermal(pair, D, &dDdF);
}
if (args.potential->terms.embedding) {
pair.rho_rr = args.potential->rho_rr(pair.d);
pair.rho_rrr = args.potential->rho_rrr(pair.d);
pair.F_pp = embed_pp;
pair.F_ppp = embed_ppp;
embedding_thermal(pair,D,L0,&dDdF);
}
}
// if has three-body terms ... TODO compute three-body terms
}
// Finish finite temperature Cauchy-Born.
if (finite_temp) {
const DENS_MAT &F = args.vac.deformation_gradient();
thermal_end(dDdF, D, F, T, args.boltzmann_constant, s);
}
}
//===========================================================================
// Computes the elastic energy (free or potential if T=0).
//===========================================================================
double cb_energy(const StressArgs &args)
{
const double &T = args.temperature;
bool finite_temp = (T > 0.0);
//const bool finite_temp = T > 0.0;
DENS_MAT D; // dynamical matrix (finite temp)
double e_density,embed,embed_p(0.),embed_pp(0.),embed_ppp(0.);
DENS_VEC l0;
DENS_MAT L0;
DENS_MAT_VEC M0;
// If temperature is nonzero then allocate space for dynamical matrix.
if (finite_temp) {
D.reset(3,3);
l0.reset(3);
}
double F = 0.0;
// Do pairwise terms, loop on all cluster atoms (origin atom not included).
// if using EAM potential, calculate embedding function and derivatives
if (args.potential->terms.embedding) {
e_density = 0.0;
for (INDEX a=0; a<args.vac.size(); a++) {
PairParam pair(args.vac.R(a), args.vac.bond_length(a));
e_density += args.potential->rho(pair.d);
pair.r = args.vac.r(a);
if (finite_temp) {
l0 += pair.r*pair.di*pair.rho_r;
}
}
embed = args.potential->F(e_density);
embed_p = args.potential->F_p(e_density);
embed_pp = args.potential->F_pp(e_density);
embed_ppp = args.potential->F_ppp(e_density);
F += embed;
if (finite_temp) {
const DENS_MAT ll = tensor_product(l0, l0);
D.add_scaled(ll, embed_pp);
}
}
for (INDEX a=0; a<args.vac.size(); a++) {
PairParam pair(args.vac.R(a), args.vac.bond_length(a));
if (args.potential->terms.pairwise) {
F += 0.5*args.potential->phi(pair.d);
}
if (finite_temp) { // Compute finite T terms.
pair.r = args.vac.r(a);
if (args.potential->terms.pairwise) {
pair.phi_r = args.potential->phi_r(pair.d);
pair.phi_rr = args.potential->phi_rr(pair.d);
pair.phi_rrr = args.potential->phi_rrr(pair.d);
pairwise_thermal(pair, D);
}
if (args.potential->terms.embedding) {
pair.rho_r = args.potential->rho_r(pair.d);
pair.rho_rr = args.potential->rho_rr(pair.d);
pair.rho_rrr = args.potential->rho_rrr(pair.d);
pair.F_p = embed_p;
pair.F_pp = embed_pp;
pair.F_ppp = embed_ppp;
embedding_thermal(pair,D,L0);
}
}
// if has three-body terms ... TODO compute three-body terms
}
// Finish finite temperature Cauchy-Born.
const double kB = args.boltzmann_constant;
const double hbar = args.planck_constant;
if (finite_temp) {
F += kB*T*log(pow(hbar/(kB*T),3.0)*sqrt(det(D)));
}
//if (finite_temp) F += 0.5*args.boltzmann_constant*T*log(det(D));
return F;
}
//===========================================================================
// Computes the entropic energy TS (minus c_v T)
//===========================================================================
double cb_entropic_energy(const StressArgs &args)
{
const double &T = args.temperature;
DENS_MAT D(3,3); // dynamical matrix (finite temp)
double e_density,embed_p(0.),embed_pp(0.),embed_ppp(0.);
DENS_VEC l0(3);
DENS_MAT L0;
DENS_MAT_VEC M0;
// if using EAM potential, calculate embedding function and derivatives
if (args.potential->terms.embedding) {
e_density = 0.0;
for (INDEX a=0; a<args.vac.size(); a++) {
PairParam pair(args.vac.R(a), args.vac.bond_length(a));
e_density += args.potential->rho(pair.d);
pair.r = args.vac.r(a);
l0 += pair.r*pair.di*pair.rho_r;
//DENS_MAT rR = tensor_product(pair.r, pair.R);
//L0.add_scaled(rR, pair.di*args.potential->rho_r(pair.d));
}
//embed = args.potential->F(e_density);
embed_p = args.potential->F_p(e_density);
embed_pp = args.potential->F_pp(e_density);
embed_ppp = args.potential->F_ppp(e_density);
const DENS_MAT ll = tensor_product(l0, l0);
D.add_scaled(ll, embed_pp);
}
// Compute the dynamical matrix
// Loop on all cluster atoms (origin atom not included).
for (INDEX a=0; a<args.vac.size(); a++) {
// Compute pairwise terms needed for pairwise_stress.
PairParam pair(args.vac.R(a), args.vac.bond_length(a));
pair.r = args.vac.r(a);
if (args.potential->terms.pairwise) {
pair.phi_r = args.potential->phi_r(pair.d);
pair.phi_rr = args.potential->phi_rr(pair.d);
pair.phi_rrr = args.potential->phi_rrr(pair.d);
pairwise_thermal(pair, D);
}
if (args.potential->terms.embedding) {
pair.rho_r = args.potential->rho_r(pair.d);
pair.rho_rr = args.potential->rho_rr(pair.d);
pair.rho_rrr = args.potential->rho_rrr(pair.d);
pair.F_p = embed_p;
pair.F_pp = embed_pp;
pair.F_ppp = embed_ppp;
embedding_thermal(pair,D,L0);
}
}
// Finish finite temperature Cauchy-Born.
const double kB = args.boltzmann_constant;
const double hbar = args.planck_constant;;
double F = kB*T*log(pow(hbar/(kB*T),3.0)*sqrt(det(D)));
return F;
}
//===========================================================================
// Computes the stress contribution given the pairwise parameters.
//===========================================================================
inline void pairwise_stress(const PairParam &p, StressAtIP &s)
{
for (INDEX i=0; i<p.R.size(); i++)
for (INDEX j=i; j<p.R.size(); j++)
s(i,j) += 0.5*p.di * p.phi_r * p.R(i) * p.R(j);
}
//===========================================================================
// Computes the stress contribution given the embedding parameters.
//===========================================================================
inline void embedding_stress(const PairParam &p, StressAtIP &s)
{
for (INDEX i=0; i<p.R.size(); i++)
for (INDEX j=i; j<p.R.size(); j++)
s(i,j) += p.di * p.F_p * p.rho_r * p.R(i) * p.R(j);
}
//===========================================================================
// Computes the pairwise thermal components for the stress
//===========================================================================
void pairwise_thermal(const PairParam &p, DENS_MAT &D, DENS_MAT_VEC *dDdF)
{
const double di2 = p.di*p.di;
const double g = p.di*p.phi_r;
const double g_d = p.di*p.phi_rr - p.di*g; // units (energy / length^3)
const double f = di2 * (p.phi_rr - g); // units (energy / length^4)
const double f_d = di2*(p.phi_rrr-g_d) - 2.0*p.di*f;
// compute needed tensor products of r and R
const DENS_MAT rr = tensor_product(p.r, p.r);
// compute the dynamical matrix
D.add_scaled(rr, f);
diagonal(D) += g;
if (!dDdF) return; // skip derivative
const double gp_r = g_d*p.di;
const double fp_r = f_d*p.di;
const double fr[] = {f*p.r(0), f*p.r(1), f*p.r(2)};
const DENS_MAT rR = tensor_product(p.r, p.R);
DENS_MAT_VEC &dD = *dDdF;
// compute first term in A.13
dD[0].add_scaled(rR, fp_r*rr(0,0) + gp_r);
dD[1].add_scaled(rR, fp_r*rr(1,1) + gp_r);
dD[2].add_scaled(rR, fp_r*rr(2,2) + gp_r);
dD[3].add_scaled(rR, fp_r*rr(1,2));
dD[4].add_scaled(rR, fp_r*rr(0,2));
dD[5].add_scaled(rR, fp_r*rr(0,1));
// compute second term in A.13
for (INDEX L=0; L<p.R.size(); L++) {
dD[0](0,L) += p.R[L] * 2.0*fr[0];
dD[1](1,L) += p.R[L] * 2.0*fr[1];
dD[2](2,L) += p.R[L] * 2.0*fr[2];
dD[3](1,L) += p.R[L] * fr[2];
dD[3](2,L) += p.R[L] * fr[1];
dD[4](0,L) += p.R[L] * fr[2];
dD[4](2,L) += p.R[L] * fr[0];
dD[5](0,L) += p.R[L] * fr[1];
dD[5](1,L) += p.R[L] * fr[0];
}
}
//===========================================================================
// Computes the embedding thermal components for the stress
//===========================================================================
void embedding_thermal(const PairParam &p, DENS_MAT &D, DENS_MAT &L0, DENS_MAT_VEC *dDdF)
{
const double di = p.di;
const double di2 = p.di*p.di;
const double di3 = p.di*p.di*p.di;
const double x = p.F_pp*p.rho_r*p.rho_r + 2*p.F_p*p.rho_rr;
const double z = di*(2*p.F_p*p.rho_r);
const double y = di2*(x-z);
// compute needed tensor products of r and R
const DENS_MAT rr = tensor_product(p.r, p.r);
// compute the dynamical matrix
D.add_scaled(rr, y);
diagonal(D) += z;
if (!dDdF) return; // skip derivative
DENS_MAT_VEC &dD = *dDdF;
const DENS_MAT rR = tensor_product(p.r, p.R);
double rho_term1 = p.rho_rr - di*p.rho_r;
double rho_term2 = p.rho_r*rho_term1;
double rho_term3 = p.rho_rrr - 3*di*p.rho_rr + 3*di2*p.rho_r;
const double a = di2*2*p.F_p*rho_term1;
const double b = di2*(p.F_ppp*p.rho_r*p.rho_r + 2*p.F_pp*rho_term1);
const double c = di3*(2*p.F_pp*rho_term2 + 2*p.F_p*rho_term3);
const double w = di2*p.F_pp*p.rho_r*p.rho_r;
//first add terms that multiply rR
dD[0].add_scaled(rR, a + c*rr(0,0));
dD[1].add_scaled(rR, a + c*rr(1,1));
dD[2].add_scaled(rR, a + c*rr(2,2));
dD[3].add_scaled(rR, c*rr(1,2));
dD[4].add_scaled(rR, c*rr(0,2));
dD[5].add_scaled(rR, c*rr(0,1));
//add terms that multiply L0
dD[0].add_scaled(L0, di*2*p.F_pp*p.rho_r + b*rr(0,0));
dD[1].add_scaled(L0, di*2*p.F_pp*p.rho_r + b*rr(1,1));
dD[2].add_scaled(L0, di*2*p.F_pp*p.rho_r + b*rr(2,2));
dD[3].add_scaled(L0, b*rr(1,2));
dD[4].add_scaled(L0, b*rr(0,2));
dD[5].add_scaled(L0, b*rr(0,1));
//add remaining term
const double aw = a + w;
const double awr[] = {aw*p.r(0), aw*p.r(1), aw*p.r(2)};
for (INDEX L=0; L<p.R.size(); L++) {
dD[0](0,L) += 2*awr[0]*p.R[L];
dD[1](1,L) += 2*awr[1]*p.R[L];
dD[2](2,L) += 2*awr[2]*p.R[L];
dD[3](2,L) += awr[1]*p.R[L];
dD[3](1,L) += awr[2]*p.R[L];
dD[4](2,L) += awr[0]*p.R[L];
dD[4](0,L) += awr[2]*p.R[L];
dD[5](1,L) += awr[0]*p.R[L];
dD[5](0,L) += awr[1]*p.R[L];
}
}
//===========================================================================
// Last stage of the pairwise finite-T Cauchy-Born stress computation.
//===========================================================================
inline void thermal_end(const DENS_MAT_VEC &DF, // dynamical matrix derivative
const DENS_MAT &D, // dynamical matrix
const DENS_MAT &F, // deformation gradient
const double &T, // temperature
const double &kb, // boltzmann constant
StressAtIP &s, // output stress (-)
double* F_w) // output free energy (optional)
{
DENS_MAT c = adjugate(D), dd(3,3);
dd.add_scaled(DF[0], c(0,0));
dd.add_scaled(DF[1], c(1,1));
dd.add_scaled(DF[2], c(2,2));
dd.add_scaled(DF[3], c(1,2) + c(2,1));
dd.add_scaled(DF[4], c(0,2) + c(2,0));
dd.add_scaled(DF[5], c(0,1) + c(1,0));
const double detD = det(D);
const double factor = 0.5*kb*T/detD;
// converts from PK1 to PK2
dd = inv(F)*dd;
for (INDEX i=0; i<3; i++)
for (INDEX j=i; j<3; j++)
s(i,j) += factor * dd(i,j);
// If f_W is not nullptr then append thermal contribution.
if (F_w) *F_w += 0.5*kb*T*log(detD);
}
//============================================================================
// Returns the stretch tensor and its derivative with respect to C (R C-G).
//============================================================================
void stretch_tensor_derivative(const DENS_VEC &C, DENS_VEC &U, DENS_MAT &dU)
{
// Compute the invariants of C
const DENS_VEC C2(voigt3::dsymm(C,C));
const double Ic = voigt3::tr(C);
const double IIc = 0.5*(Ic*Ic - voigt3::tr(C2));
const double IIIc = voigt3::det(C);
const DENS_VEC I = voigt3::eye(3);
// Compute the derivatives of the invarants of C
DENS_VEC dIc ( I );
DENS_VEC dIIc ( Ic*dIc - C );
DENS_VEC dIIIc ( voigt3::inv(C) * IIIc );
for (INDEX i=3; i<6; i++) {
dIIc(i) *= 2.0;
dIIIc(i) *= 2.0;
}
// Check if C is an isotropic tensor (simple case)
const double k = Ic*Ic - 3.0*IIc;
const DENS_VEC dk (2.0*Ic*dIc - 3.0*dIIc);
if (k < 1e-8) {
const double lambda = sqrt((1.0/3.0)*Ic);
const double dlambda = 0.5/(3.0*lambda);
U = I*lambda;
dU = tensor_product(dIc*dlambda, dIc); // may not be correct
return;
}
// Find the largest eigenvalue of C
const double L = Ic*(Ic*Ic - 4.5*IIc) + 13.5*IIIc;
DENS_VEC dL( (3.0*Ic*Ic-4.5*IIc)*dIc );
dL.add_scaled(dIIc, -4.5*Ic);
dL.add_scaled(dIIIc, 13.5);
const double kpow = pow(k,-1.5);
const double dkpow = -1.5*kpow/k;
const double phi = acos(L*kpow); // phi - good
// temporary factors for dphi
const double d1 = -1.0/sqrt(1.0-L*L*kpow*kpow);
const double d2 = d1*kpow;
const double d3 = d1*L*dkpow;
const DENS_VEC dphi (d2*dL + d3*dk);
const double sqrt_k=sqrt(k), cos_p3i=cos((1.0/3.0)*phi);
const double lam2 = (1.0/3.0)*(Ic + 2.0*sqrt_k*cos_p3i);
DENS_VEC dlam2 = (1.0/3.0)*dIc;
dlam2.add_scaled(dk, (1.0/3.0)*cos_p3i/sqrt_k);
dlam2.add_scaled(dphi, (-2.0/9.0)*sqrt_k*sin((1.0/3.0)*phi));
const double lambda = sqrt(lam2);
const DENS_VEC dlambda = (0.5/lambda)*dlam2;
// Compute the invariants of U
const double IIIu = sqrt(IIIc);
const DENS_VEC dIIIu (0.5/IIIu*dIIIc);
const double Iu = lambda + sqrt(-lam2 + Ic + 2.0*IIIu/lambda);
const double invrt = 1.0/(Iu-lambda);
DENS_VEC dIu(dlambda); dIu *= 1.0 + invrt*(-lambda - IIIu/lam2);
dIu.add_scaled(dIc, 0.5*invrt);
dIu.add_scaled(dIIIu, invrt/lambda);
const double IIu = 0.5*(Iu*Iu - Ic);
const DENS_VEC dIIu ( Iu*dIu - 0.5*dIc );
// Compute U and its derivatives
const double fct = 1.0/(Iu*IIu-IIIu);
DENS_VEC dfct = dIu; dfct *= IIu;
dfct.add_scaled(dIIu, Iu);
dfct -= dIIIu;
dfct *= -fct*fct;
U = voigt3::eye(3, Iu*IIIu);
U.add_scaled(C, Iu*Iu-IIu);
U -= C2;
DENS_MAT da = tensor_product(I, dIu); da *= IIIu;
da.add_scaled(tensor_product(I, dIIIu), Iu);
da += tensor_product(C, 2.0*Iu*dIu-dIIu);
da.add_scaled(eye<double>(6,6),Iu*Iu-IIu);
da -= voigt3::derivative_of_square(C);
dU = tensor_product(U, dfct);
dU.add_scaled(da, fct);
U *= fct;
}
//============================================================================
// Computes the dynamical matrix (TESTING FUNCTION)
//============================================================================
DENS_MAT compute_dynamical_matrix(const StressArgs &args)
{
DENS_MAT D(3,3);
for (INDEX a=0; a<args.vac.size(); a++) {
PairParam pair(args.vac.R(a), args.vac.r(a).norm());
pair.phi_r = args.potential->phi_r(pair.d);
pair.r = args.vac.r(a);
pair.phi_rr = args.potential->phi_rr(pair.d);
pair.phi_rrr = args.potential->phi_rrr(pair.d);
pairwise_thermal(pair, D);
}
return D;
}
//============================================================================
// Computes the determinant of the dynamical matrix (TESTING FUNCTION)
//============================================================================
double compute_detD(const StressArgs &args)
{
return det(compute_dynamical_matrix(args));
}
//============================================================================
// Computes the derivative of the dynamical matrix (TESTING FUNCTION)
//============================================================================
DENS_MAT_VEC compute_dynamical_derivative(StressArgs &args)
{
const double EPS = 1.0e-6;
DENS_MAT_VEC dDdF(6, DENS_MAT(3,3));
for (INDEX i=0; i<3; i++) {
for (INDEX j=0; j<3; j++) {
// store original F
const double Fij = args.vac.F_(i,j);
args.vac.F_(i,j) = Fij + EPS;
DENS_MAT Da = compute_dynamical_matrix(args);
args.vac.F_(i,j) = Fij - EPS;
DENS_MAT Db = compute_dynamical_matrix(args);
args.vac.F_(i,j) = Fij;
dDdF[0](i,j) = (Da(0,0)-Db(0,0))*(0.5/EPS);
dDdF[1](i,j) = (Da(1,1)-Db(1,1))*(0.5/EPS);
dDdF[2](i,j) = (Da(2,2)-Db(2,2))*(0.5/EPS);
dDdF[3](i,j) = (Da(1,2)-Db(1,2))*(0.5/EPS);
dDdF[4](i,j) = (Da(0,2)-Db(0,2))*(0.5/EPS);
dDdF[5](i,j) = (Da(0,1)-Db(0,1))*(0.5/EPS);
}
}
return dDdF;
}
}
|