1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
#ifndef CBEAM_H
#define CBEAM_H
#include <iostream>
#include <cstdlib>
#include "CbPotential.h"
#include "LammpsInterface.h"
#include "MANYBODY/pair_eam.h"
namespace ATC
{
/**
* @class CbEam
* @brief Class for computing Cauchy-Born quantities for an Embeded-Atom Method material
* (A factor of one-half is already included to split the
* bond energy between atoms)
*/
class CbEam : public CbPotential
{
public:
//! Constructor
CbEam(void) : CbPotential(Interactions(PAIRWISE,EAM)) {
// get pointer to lammps' pair_eam object
lammps_eam = ATC::LammpsInterface::instance()->pair_eam();
nrho = &lammps_eam->nrho;
nr = &lammps_eam->nr;
nfrho = &lammps_eam->nfrho;
nrhor = &lammps_eam->nrhor;
nz2r = &lammps_eam->nz2r;
type2frho = lammps_eam->type2frho;
type2rhor = lammps_eam->type2rhor;
type2z2r = lammps_eam->type2z2r;
dr = &lammps_eam->dr;
rdr = &lammps_eam->rdr;
drho = &lammps_eam->drho;
rdrho = &lammps_eam->rdrho;
rhor_spline = &lammps_eam->rhor_spline;
frho_spline = &lammps_eam->frho_spline;
z2r_spline = &lammps_eam->z2r_spline;
cutmax = &lammps_eam->cutmax;
}
//! Returns the cutoff readius of the EAM potential functions rho and z2r.
double cutoff_radius() const { return *cutmax; }
//! Returns the EAM pair energy
double phi(const double &r) const
{
double p = r*(*rdr) + 1.0;
int m = static_cast<int> (p);
m = MIN(m,(*nr)-1);
p -= m;
p = MIN(p,1.0);
// for now, assume itype = jtype = 1
double *coeff = (*z2r_spline)[type2z2r[1][1]][m];
double z2 = ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
return z2/r;
}
//! Returns the first derivative of the pair energy.
double phi_r(const double &r) const
{
double p = r*(*rdr) + 1.0;
int m = static_cast<int> (p);
m = MIN(m,(*nr)-1);
p -= m;
p = MIN(p,1.0);
// for now, assume itype = jtype = 1
double *coeff = (*z2r_spline)[type2z2r[1][1]][m];
double z2 = ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
double z2p = (coeff[0]*p + coeff[1])*p + coeff[2];
return (1.0/r)*(z2p-z2/r);
}
//! Returns the second derivative of the pair energy.
double phi_rr(const double &r) const
{
double p = r*(*rdr) + 1.0;
int m = static_cast<int> (p);
m = MIN(m,(*nr)-1);
p -= m;
p = MIN(p,1.0);
// for now, assume itype = jtype = 1
double *coeff = (*z2r_spline)[type2z2r[1][1]][m];
double z2 = ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
double z2p = (coeff[0]*p + coeff[1])*p + coeff[2];
double z2pp = (*rdr)*(2.0*coeff[0]*p + coeff[1]);
return (1.0/r)*(z2pp-2.0*z2p/r+2.0*z2/(r*r));
}
//! Returns the third derivative of the pair energy.
double phi_rrr(const double &r) const
{
double p = r*(*rdr) + 1.0;
int m = static_cast<int> (p);
m = MIN(m,(*nr)-1);
p -= m;
p = MIN(p,1.0);
// for now, assume itype = jtype = 1
double *coeff = (*z2r_spline)[type2z2r[1][1]][m];
double z2 = ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
double z2p = (coeff[0]*p + coeff[1])*p + coeff[2];
double z2pp = (*rdr)*(2.0*coeff[0]*p + coeff[1]);
double z2ppp = (*rdr)*(*rdr)*2.0*coeff[0];
return (1.0/r)*(z2ppp-3.0*z2pp/r+6.0*z2p/(r*r)-6.0*z2/(r*r*r));
}
//! Returns the EAM atomic charge density.
double rho(const double &r) const
{
double p = r*(*rdr) + 1.0;
int m = static_cast<int> (p);
m = MIN(m,(*nr)-1);
p -= m;
p = MIN(p,1.0);
// for now, assume itype = jtype = 1
double *coeff = (*rhor_spline)[type2rhor[1][1]][m];
return (((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6]);
}
//! Returns the first derivative of the atomic charge density.
double rho_r(const double &r) const
{
double p = r*(*rdr) + 1.0;
int m = static_cast<int> (p);
m = MIN(m,(*nr)-1);
p -= m;
p = MIN(p,1.0);
// for now, assume itype = jtype = 1
double *coeff = (*rhor_spline)[type2rhor[1][1]][m];
return ((coeff[0]*p + coeff[1])*p + coeff[2]);
}
//! Returns the second derivative of the atomic charge density.
double rho_rr(const double &r) const
{
double p = r*(*rdr) + 1.0;
int m = static_cast<int> (p);
m = MIN(m,(*nr)-1);
p -= m;
p = MIN(p,1.0);
// for now, assume itype = jtype = 1
double *coeff = (*rhor_spline)[type2rhor[1][1]][m];
return ((*rdr)*(2.0*coeff[0]*p + coeff[1]));
}
//! Returns the third derivative of the atomic charge density.
double rho_rrr(const double &r) const
{
double p = r*(*rdr) + 1.0;
int m = static_cast<int> (p);
m = MIN(m,(*nr)-1);
p -= m;
p = MIN(p,1.0);
// for now, assume itype = jtype = 1
double *coeff = (*rhor_spline)[type2rhor[1][1]][m];
return ((*rdr)*(*rdr)*2.0*coeff[0]);
}
//! Returns the EAM embedding energy.
double F(const double &p) const
{
double q = p*(*rdrho) + 1.0;
int m = static_cast<int> (q);
m = MIN(m,(*nrho)-1);
q -= m;
q = MIN(q,1.0);
// for now, assume itype = 1
double *coeff = (*frho_spline)[type2frho[1]][m];
return (((coeff[3]*q + coeff[4])*q + coeff[5])*q + coeff[6]);
}
//! Returns the first derivative of the embedding energy.
double F_p(const double &p) const
{
double q = p*(*rdrho) + 1.0;
int m = static_cast<int> (q);
m = MIN(m,(*nrho)-1);
q -= m;
q = MIN(q,1.0);
// for now, assume itype = 1
double *coeff = (*frho_spline)[type2frho[1]][m];
return ((coeff[0]*q + coeff[1])*q + coeff[2]);
}
//! Returns the second derivative of the atomic charge density.
double F_pp(const double &p) const
{
double q = p*(*rdrho) + 1.0;
int m = static_cast<int> (q);
m = MIN(m,(*nrho)-1);
q -= m;
q = MIN(q,1.0);
// for now, assume itype = 1
double *coeff = (*frho_spline)[type2frho[1]][m];
return ((*rdrho)*(2.0*coeff[0]*q + coeff[1]));
}
//! Returns the third derivative of the atomic charge density.
double F_ppp(const double &p) const
{
double q = p*(*rdrho) + 1.0;
int m = static_cast<int> (q);
m = MIN(m,(*nrho)-1);
q -= m;
q = MIN(q,1.0);
// for now, assume itype = 1
double *coeff = (*frho_spline)[type2frho[1]][m];
return ((*rdrho)*(*rdrho)*2.0*coeff[0]);
}
int *nrho,*nr,*nfrho,*nrhor,*nz2r;
int *type2frho,**type2rhor,**type2z2r;
double *cutmax;
double *dr,*rdr,*drho,*rdrho;
double ****rhor_spline,****frho_spline,****z2r_spline;
LAMMPS_NS::PairEAM* lammps_eam;
};
}
#endif
|