1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
#include "ChargeRegulator.h"
#include "PoissonSolver.h"
#include "LammpsInterface.h"
#include "ATC_Coupling.h"
#include "ATC_Error.h"
#include "Function.h"
#include "PrescribedDataManager.h"
#include <sstream>
#include <string>
#include <vector>
#include <utility>
#include <set>
using ATC_Utility::to_string;
using std::stringstream;
using std::map;
using std::vector;
using std::set;
using std::pair;
using std::string;
namespace ATC {
//========================================================
// Class ChargeRegulator
//========================================================
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ChargeRegulator::ChargeRegulator(ATC_Coupling * atc) :
AtomicRegulator(atc)
{
// do nothing
}
//--------------------------------------------------------
// Destructor
//--------------------------------------------------------
ChargeRegulator::~ChargeRegulator()
{
map<string,ChargeRegulatorMethod *>::iterator it;
for (it = regulators_.begin(); it != regulators_.end(); it++) {
if (it->second) delete it->second;
}
}
//--------------------------------------------------------
// modify:
// parses and adjusts charge regulator state based on
// user input, in the style of LAMMPS user input
//--------------------------------------------------------
bool ChargeRegulator::modify(int /* narg */, char ** /* arg */)
{
bool foundMatch = false;
return foundMatch;
}
//--------------------------------------------------------
// construct methods
//--------------------------------------------------------
void ChargeRegulator::construct_methods()
{
AtomicRegulator::construct_methods();
if (atc_->reset_methods()) {
// eliminate existing methods
delete_method();
// consruct new ones
map<string, ChargeRegulatorParameters>::iterator itr;
for (itr = parameters_.begin();
itr != parameters_.end(); itr++) {
string tag = itr->first;
if (regulators_.find(tag) != regulators_.end()) delete regulators_[tag];
ChargeRegulatorParameters & p = itr->second;
LammpsInterface * lammpsInterface = LammpsInterface::instance();
p.groupBit = lammpsInterface->group_bit(tag);
if (! p.groupBit)
throw ATC_Error("ChargeRegulator::initialize group not found");
switch (p.method) {
case NONE: {
regulators_[tag] = new ChargeRegulatorMethod(this,p);
break;
}
case FEEDBACK: {
regulators_[tag] = new ChargeRegulatorMethodFeedback(this,p);
break;
}
case IMAGE_CHARGE: {
regulators_[tag] = new ChargeRegulatorMethodImageCharge(this,p);
break;
}
case EFFECTIVE_CHARGE: {
regulators_[tag] = new ChargeRegulatorMethodEffectiveCharge(this,p);
break;
}
default:
throw ATC_Error("ChargeRegulator::construct_method unknown charge regulator type");
}
}
}
}
//--------------------------------------------------------
// initialize:
//--------------------------------------------------------
void ChargeRegulator::initialize()
{
map<string, ChargeRegulatorMethod *>::iterator itr;
for (itr = regulators_.begin();
itr != regulators_.end(); itr++) { itr->second->initialize(); }
atc_->set_boundary_integration_type(boundaryIntegrationType_);
AtomicRegulator::reset_nlocal();
AtomicRegulator::delete_unused_data();
needReset_ = false;
}
//--------------------------------------------------------
// apply pre force
//--------------------------------------------------------
void ChargeRegulator::apply_pre_force(double dt)
{
map<string, ChargeRegulatorMethod *>::iterator itr;
for (itr = regulators_.begin();
itr != regulators_.end(); itr++) { itr->second->apply_pre_force(dt);}
}
//--------------------------------------------------------
// apply post force
//--------------------------------------------------------
void ChargeRegulator::apply_post_force(double dt)
{
map<string, ChargeRegulatorMethod *>::iterator itr;
for (itr = regulators_.begin();
itr != regulators_.end(); itr++) { itr->second->apply_post_force(dt);}
}
//--------------------------------------------------------
// output
//--------------------------------------------------------
void ChargeRegulator::output(OUTPUT_LIST & outputData) const
{
map<string, ChargeRegulatorMethod *>::const_iterator itr;
for (itr = regulators_.begin();
itr != regulators_.end(); itr++) { itr->second->output(outputData);}
}
//========================================================
// Class ChargeRegulatorMethod
//========================================================
//--------------------------------------------------------
// Constructor
// Grab references to ATC and ChargeRegulator
//--------------------------------------------------------
ChargeRegulatorMethod::ChargeRegulatorMethod
(ChargeRegulator *chargeRegulator,
ChargeRegulator::ChargeRegulatorParameters & p)
: RegulatorShapeFunction(chargeRegulator),
chargeRegulator_(chargeRegulator),
lammpsInterface_(LammpsInterface::instance()),
rC_(0), rCsq_(0),
targetValue_(nullptr),
targetPhi_(p.value),
surface_(p.faceset),
atomGroupBit_(p.groupBit),
boundary_(false),
depth_(p.depth),
surfaceType_(p.surfaceType),
permittivity_(p.permittivity),
initialized_(false)
{
const FE_Mesh * feMesh = atc_->fe_engine()->fe_mesh();
feMesh->faceset_to_nodeset(surface_,nodes_);
// assume flat get normal and primary coord
PAIR face = *(surface_.begin());
normal_.reset(nsd_);
feMesh->face_normal(face,0,normal_);
DENS_MAT faceCoords;
feMesh->face_coordinates(face,faceCoords);
point_.reset(nsd_);
for (int i=0; i < nsd_; i++) { point_(i) = faceCoords(i,0); }
#ifdef ATC_VERBOSE
stringstream ss; ss << "point: (" << point_(0) << "," << point_(1) << "," << point_(2) << ") normal: (" << normal_(0) << "," << normal_(1) << "," << normal_(2) << ") depth: " << depth_;
lammpsInterface_->print_msg_once(ss.str());
#endif
sum_.reset(nsd_);
}
//--------------------------------------------------------
// Initialize
//--------------------------------------------------------
// nomenclature might be a bit backwark: control --> nodes that exert the control, & influence --> atoms that feel the influence
void ChargeRegulatorMethod::initialize(void)
{
interscaleManager_ = &(atc_->interscale_manager());
poissonSolver_ =chargeRegulator_->poisson_solver();
if (! poissonSolver_) throw ATC_Error("need a poisson solver to initialize charge regulator");
// atomic vectors
// nodal information
nNodes_ = atc_->num_nodes();
// constants
rC_ = lammpsInterface_->pair_cutoff();
rCsq_ = rC_*rC_;
qV2e_ = lammpsInterface_->qv2e();
qqrd2e_ = lammpsInterface_->qqrd2e();
// note derived method set initialized to true
}
int ChargeRegulatorMethod::nlocal() { return atc_->nlocal(); }
void ChargeRegulatorMethod::set_greens_functions(void)
{
// set up Green's function per node
for (int i = 0; i < nNodes_; i++) {
set<int> localNodes;
for (int j = 0; j < nNodes_; j++)
localNodes.insert(j);
// call Poisson solver to get Green's function for node i
DENS_VEC globalGreensFunction;
poissonSolver_->greens_function(i,globalGreensFunction);
// store green's functions as sparse vectors only on local nodes
set<int>::const_iterator thisNode;
SparseVector<double> sparseGreensFunction(nNodes_);
for (thisNode = localNodes.begin(); thisNode != localNodes.end(); thisNode++)
sparseGreensFunction(*thisNode) = globalGreensFunction(*thisNode);
greensFunctions_.push_back(sparseGreensFunction);
}
}
//--------------------------------------------------------
// output
//--------------------------------------------------------
void ChargeRegulatorMethod::output(OUTPUT_LIST & /* outputData */)
{
//vector<double> localSum(sum_.size());
//lammpsInteface_->allsum(localSum.pointer,sum_.pointer,sum_.size());
DENS_VEC localSum(sum_.size());
lammpsInterface_->allsum(localSum.ptr(),sum_.ptr(),sum_.size());
for (int i = 0; i < sum_.size(); i++) {
string name = "charge_regulator_influence_"+to_string(i);
// atc_->fe_engine()->add_global(name,sum_[i]);
}
}
//========================================================
// Class ChargeRegulatorMethodFeedback
//========================================================
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ChargeRegulatorMethodFeedback::ChargeRegulatorMethodFeedback
(ChargeRegulator *chargeRegulator,
ChargeRegulator::ChargeRegulatorParameters & p)
: ChargeRegulatorMethod (chargeRegulator, p),
controlNodes_(nodes_),
influenceGroupBit_(p.groupBit)
{
nControlNodes_ = controlNodes_.size();
sum_.resize(1);
}
//--------------------------------------------------------
// Initialize
//--------------------------------------------------------
void ChargeRegulatorMethodFeedback::initialize(void)
{
ChargeRegulatorMethod::initialize();
if (surfaceType_ != ChargeRegulator::CONDUCTOR)
throw ATC_Error("currently charge feedback can only mimic a conductor");
set_influence();
set_influence_matrix();
initialized_ = true;
}
//--------------------------------------------------------
// Initialize
//--------------------------------------------------------
void ChargeRegulatorMethodFeedback::construct_transfers(void)
{
ChargeRegulatorMethod::construct_transfers();
InterscaleManager & interscaleManager((atomicRegulator_->atc_transfer())->interscale_manager());
PerAtomSparseMatrix<double> * atomShapeFunctions = interscaleManager.per_atom_sparse_matrix("InterpolantGhost");
if (!atomShapeFunctions) {
atomShapeFunctions = new PerAtomShapeFunction(atomicRegulator_->atc_transfer(),
interscaleManager.per_atom_quantity("AtomicGhostCoarseGrainingPositions"),
interscaleManager.per_atom_int_quantity("AtomGhostElement"),
GHOST);
interscaleManager.add_per_atom_sparse_matrix(atomShapeFunctions,"InterpolantGhost");
}
}
//--------------------------------------------------------
// find measurement atoms and nodes
//--------------------------------------------------------
void ChargeRegulatorMethodFeedback::set_influence(void)
{
// get nodes that overlap influence atoms & compact list of influence atoms
boundary_ =
atc_->nodal_influence(influenceGroupBit_,influenceNodes_,influenceAtoms_);
nInfluenceAtoms_ = influenceAtoms_.size(); // local
nInfluenceNodes_ = influenceNodes_.size(); // global
stringstream ss; ss << "control nodes: " << nControlNodes_ << " influence nodes: " << nInfluenceNodes_ << " local influence atoms: " << nInfluenceAtoms_ ;
lammpsInterface_->print_msg(ss.str());
if (nInfluenceNodes_ == 0) throw ATC_Error("no influence nodes");
const Array<int> & map = (boundary_) ? atc_->ghost_to_atom_map() : atc_->internal_to_atom_map();
for (set<int>::const_iterator itr = influenceAtoms_.begin(); itr != influenceAtoms_.end(); itr++) {
influenceAtomsIds_.insert(map(*itr));
}
}
//--------------------------------------------------------
// constuct a Green's submatrix
//--------------------------------------------------------
void ChargeRegulatorMethodFeedback::set_influence_matrix(void)
{
// construct control-influence matrix bar{G}^-1: ds{p} = G{p,m}^-1 dphi{m}
//
if (nInfluenceNodes_ < nControlNodes_) throw ATC_Error(" least square not implemented ");
if (nInfluenceNodes_ > nControlNodes_) throw ATC_Error(" solve not possible ");
DENS_MAT G(nInfluenceNodes_,nControlNodes_);
DENS_VEC G_I;
set<int>::const_iterator itr,itr2,itr3;
const Array<int> & nmap = atc_->fe_engine()->fe_mesh()->global_to_unique_map();
int i = 0;
for (itr = influenceNodes_.begin(); itr != influenceNodes_.end(); itr++) {
poissonSolver_->greens_function(*itr, G_I);
int j = 0;
for (itr2 = controlNodes_.begin(); itr2 != controlNodes_.end(); itr2++) {
int jnode = nmap(*itr2);
G(i,j++) = G_I(jnode);
}
i++;
}
invG_ = inv(G);
// construct the prolong-restrict projector N N^T for influence nodes only
InterscaleManager & interscaleManager(atc_->interscale_manager());
const SPAR_MAT & N_Ia = (boundary_) ?
(interscaleManager.per_atom_sparse_matrix("InterpolantGhost"))->quantity():
(interscaleManager.per_atom_sparse_matrix("Interpolant"))->quantity();
NT_.reset(nInfluenceAtoms_,nInfluenceNodes_);
DENS_MAT NNT(nInfluenceNodes_,nInfluenceNodes_);
int k = 0;
for (itr3 = influenceAtoms_.begin(); itr3 != influenceAtoms_.end(); itr3++) {
int katom = *itr3;
int i = 0;
for (itr = influenceNodes_.begin(); itr != influenceNodes_.end(); itr++) {
int Inode = *itr;
int j = 0;
NT_(k,i) = N_Ia(katom,Inode);
for (itr2 = influenceNodes_.begin(); itr2 != influenceNodes_.end(); itr2++) {
int Jnode = *itr2;
NNT(i,j++) += N_Ia(katom,Inode)*N_Ia(katom,Jnode);
}
i++;
}
k++;
}
// swap contributions across processors
DENS_MAT localNNT = NNT;
int count = NNT.nRows()*NNT.nCols();
lammpsInterface_->allsum(localNNT.ptr(),NNT.ptr(),count);
invNNT_ = inv(NNT);
// total influence matrix
if (nInfluenceAtoms_ > 0) { NTinvNNTinvG_ = NT_*invNNT_*invG_; }
}
//--------------------------------------------------------
// change potential/charge pre-force calculation
//--------------------------------------------------------
void ChargeRegulatorMethodFeedback::apply_pre_force(double /* dt */)
{
sum_ = 0;
if (nInfluenceAtoms_ == 0) return; // nothing to do
apply_feedback_charges();
}
//--------------------------------------------------------
// apply feedback charges to atoms
//--------------------------------------------------------
void ChargeRegulatorMethodFeedback::apply_feedback_charges()
{
double * q = lammpsInterface_->atom_charge();
// calculate error in potential on the control nodes
const DENS_MAT & phiField = (atc_->field(ELECTRIC_POTENTIAL)).quantity();
DENS_MAT dphi(nControlNodes_,1);
int i = 0;
set<int>::const_iterator itr;
for (itr = controlNodes_.begin(); itr != controlNodes_.end(); itr++) {
dphi(i++,0) = targetPhi_ - phiField(*itr,0);
}
// construct the atomic charges consistent with the correction
DENS_MAT dq = NTinvNNTinvG_*dphi;
i = 0;
for (itr = influenceAtomsIds_.begin(); itr != influenceAtomsIds_.end(); itr++) {
sum_(0) += dq(i,0);
q[*itr] += dq(i++,0);
}
(interscaleManager_->fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE))->force_reset();
(interscaleManager_->fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE, GHOST))->force_reset();
}
//========================================================
// Class ChargeRegulatorMethodImageCharge
//========================================================
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ChargeRegulatorMethodImageCharge::ChargeRegulatorMethodImageCharge
(ChargeRegulator *chargeRegulator,
ChargeRegulator::ChargeRegulatorParameters & p)
: ChargeRegulatorMethod (chargeRegulator, p),
imageNodes_(nodes_)
{
}
//--------------------------------------------------------
// Initialize
//--------------------------------------------------------
void ChargeRegulatorMethodImageCharge::initialize(void)
{
ChargeRegulatorMethod::initialize();
if (surfaceType_ != ChargeRegulator::DIELECTRIC) throw ATC_Error("currently image charge can only mimic a dielectric");
double eps1 = permittivity_;// dielectric
double eps2 = lammpsInterface_->dielectric();// ambient
permittivityRatio_ = (eps2-eps1)/(eps2+eps1);
#ifdef ATC_VERBOSE
stringstream ss; ss << "permittivity ratio: " << permittivityRatio_;
lammpsInterface_->print_msg_once(ss.str());
#endif
set_greens_functions();
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
initialized_ = true;
}
//--------------------------------------------------------
// change potential/charge post-force calculation
//--------------------------------------------------------
void ChargeRegulatorMethodImageCharge::apply_post_force(double /* dt */)
{
sum_ = 0;
apply_local_forces();
//correct_forces();
}
//--------------------------------------------------------
// apply local coulomb forces
// -- due to image charges
//--------------------------------------------------------
void ChargeRegulatorMethodImageCharge::apply_local_forces()
{
int inum = lammpsInterface_->neighbor_list_inum();
int * ilist = lammpsInterface_->neighbor_list_ilist();
int * numneigh = lammpsInterface_->neighbor_list_numneigh();
int ** firstneigh = lammpsInterface_->neighbor_list_firstneigh();
const int *mask = lammpsInterface_->atom_mask();
///..............................................
double ** x = lammpsInterface_->xatom();
double ** f = lammpsInterface_->fatom();
double * q = lammpsInterface_->atom_charge();
// loop over neighbor list
for (int ii = 0; ii < inum; ii++) {
int i = ilist[ii];
double qi = q[i];
if ((mask[i] & atomGroupBit_) && qi != 0.) {
double* fi = f[i];
DENS_VEC xi(x[i],nsd_);
// distance to surface
double dn = reflect(xi);
// all ions near the interface/wall
// (a) self image
if (dn < rC_) { // close enough to wall to have explicit image charges
double factor_coul = 1;
double dx = 2.*dn; // distance to image charge
double fn = factor_coul*qi*qi*permittivityRatio_/dx;
fi[0] += fn*normal_[0];
fi[1] += fn*normal_[1];
fi[2] += fn*normal_[2];
sum_ += fn*normal_;
// (b) neighbor images
int * jlist = firstneigh[i];
int jnum = numneigh[i];
for (int jj = 0; jj < jnum; jj++) {
int j = jlist[jj];
// this changes j
double factor_coul = lammpsInterface_->coulomb_factor(j);
double qj = q[j];
if (qj != 0.) { // all charged neighbors
DENS_VEC xj(x[j],nsd_);
dn = reflect(xj);
DENS_VEC dx = xi-xj;
double r2 = dx.norm_sq();
// neighbor image j' inside cutoff from i
if (r2 < rCsq_) {
double fm = factor_coul*qi*qj*permittivityRatio_/r2;
fi[0] += fm*dx(0);
fi[1] += fm*dx(1);
fi[2] += fm*dx(2);
sum_ += fm*dx;
}
}
}
} // end i < rC if
}
}
// update managed data
(interscaleManager_->fundamental_atom_quantity(LammpsInterface::ATOM_FORCE))->force_reset();
}
//--------------------------------------------------------
// correct charge densities
// - to reflect image charges
//--------------------------------------------------------
void ChargeRegulatorMethodImageCharge::correct_charge_densities()
{
}
//--------------------------------------------------------
// correct_forces
// - due to image charge density used in short-range solution
//--------------------------------------------------------
void ChargeRegulatorMethodImageCharge::correct_forces()
{
}
//========================================================
// Class ChargeRegulatorMethodEffectiveCharge
//========================================================
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ChargeRegulatorMethodEffectiveCharge::ChargeRegulatorMethodEffectiveCharge(
ChargeRegulator *chargeRegulator,
ChargeRegulator::ChargeRegulatorParameters & p)
: ChargeRegulatorMethod (chargeRegulator, p),
chargeDensity_(p.value),
useSlab_(false)
{
}
//--------------------------------------------------------
// add_charged_surface
//--------------------------------------------------------
void ChargeRegulatorMethodEffectiveCharge::initialize( )
{
ChargeRegulatorMethod::initialize();
boundary_ = atc_->is_ghost_group(atomGroupBit_);
// set face sources to all point at unit function for use in integration
SURFACE_SOURCE faceSources;
map<PAIR, Array<XT_Function*> > & fs(faceSources[ELECTRIC_POTENTIAL]);
XT_Function * f = XT_Function_Mgr::instance()->constant_function(1.);
set< PAIR >::const_iterator fsItr;
for (fsItr = surface_.begin(); fsItr != surface_.end(); fsItr++) {
Array < XT_Function * > & dof = fs[*fsItr];
dof.reset(1);
dof(0) = f;
}
// computed integrals of nodal shape functions on face
FIELDS nodalFaceWeights;
Array<bool> fieldMask(NUM_FIELDS); fieldMask(ELECTRIC_POTENTIAL) = true;
(atc_->fe_engine())->compute_fluxes(fieldMask,0.,faceSources,nodalFaceWeights);
const DENS_MAT & w = (nodalFaceWeights[ELECTRIC_POTENTIAL].quantity());
// Get coordinates of each node in face set
for (set<int>::const_iterator n =nodes_.begin(); n != nodes_.end(); n++) {
DENS_VEC x = atc_->fe_engine()->fe_mesh()->nodal_coordinates(*n);
// compute effective charge at each node I
// multiply charge density by integral of N_I over face
double v = w(*n,0)*chargeDensity_;
pair<DENS_VEC,double> p(x,v);
nodeXFMap_[*n] = p;
}
// set up data structure holding charged faceset information
FIELDS sources;
double k = lammpsInterface_->coulomb_constant();
string fname = "radial_power";
double xtArgs[8];
xtArgs[0] = 0; xtArgs[1] = 0; xtArgs[2] = 0;
xtArgs[3] = 1; xtArgs[4] = 1; xtArgs[5] = 1;
xtArgs[6] = k*chargeDensity_;
xtArgs[7] = -1.;
const DENS_MAT & s(sources[ELECTRIC_POTENTIAL].quantity());
NODE_TO_XF_MAP::iterator XFitr;
for (XFitr = nodeXFMap_.begin(); XFitr != nodeXFMap_.end(); XFitr++) {
// evaluate voltage at each node I
// set up X_T function for integration: k*chargeDensity_/||x_I - x_s||
// integral is approximated in two parts:
// 1) near part with all faces within r < rcrit evaluated as 2 * pi * rcrit * k sigma A/A0, A is area of this region and A0 = pi * rcrit^2, so 2 k sigma A / rcrit
// 2) far part evaluated using Gaussian quadrature on faceset
DENS_VEC x((XFitr->second).first);
xtArgs[0] = x(0); xtArgs[1] = x(1); xtArgs[2] = x(2);
f = XT_Function_Mgr::instance()->function(fname,8,xtArgs);
for (fsItr = surface_.begin(); fsItr != surface_.end(); fsItr++) {
fs[*fsItr] = f;
}
// perform integration to get quantities at nodes on facesets
// V_J' = int_S N_J k*sigma/|x_I - x_s| dS
(atc_->fe_engine())->compute_fluxes(fieldMask,0.,faceSources,sources);
// sum over all nodes in faceset to get total potential:
// V_I = sum_J VJ'
int node = XFitr->first;
nodalChargePotential_[node] = s(node,0);
double totalPotential = 0.;
for (set<int>::const_iterator n =nodes_.begin(); n != nodes_.end(); n++) {
totalPotential += s(*n,0); }
// assign an XT function per each node and
// then call the prescribed data manager and fix each node individually.
f = XT_Function_Mgr::instance()->constant_function(totalPotential);
(atc_->prescribed_data_manager())->fix_field(node,ELECTRIC_POTENTIAL,0,f);
}
initialized_ = true;
}
//--------------------------------------------------------
// add effective forces post LAMMPS force call
//--------------------------------------------------------
void ChargeRegulatorMethodEffectiveCharge::apply_post_force(double /* dt */)
{
apply_local_forces();
}
//--------------------------------------------------------
// apply_charged_surfaces
//--------------------------------------------------------
void ChargeRegulatorMethodEffectiveCharge::apply_local_forces()
{
double * q = lammpsInterface_->atom_charge();
_atomElectricalForce_.resize(nlocal(),nsd_);
double penalty = poissonSolver_->penalty_coefficient();
if (penalty <= 0.0) throw ATC_Error("ExtrinsicModelElectrostatic::apply_charged_surfaces expecting non zero penalty");
double dx[3];
const DENS_MAT & xa((interscaleManager_->per_atom_quantity("AtomicCoarseGrainingPositions"))->quantity());
// WORKSPACE - most are static
SparseVector<double> dv(nNodes_);
vector<SparseVector<double> > derivativeVectors;
derivativeVectors.reserve(nsd_);
const SPAR_MAT_VEC & shapeFunctionDerivatives((interscaleManager_->vector_sparse_matrix("InterpolateGradient"))->quantity());
DenseVector<INDEX> nodeIndices;
DENS_VEC nodeValues;
NODE_TO_XF_MAP::const_iterator inode;
for (inode = nodeXFMap_.begin(); inode != nodeXFMap_.end(); inode++) {
int node = inode->first;
DENS_VEC xI = (inode->second).first;
double qI = (inode->second).second;
double phiI = nodalChargePotential_[node];
for (int i = 0; i < nlocal(); i++) {
int atom = (atc_->internal_to_atom_map())(i);
double qa = q[atom];
if (qa != 0) {
double dxSq = 0.;
for (int j = 0; j < nsd_; j++) {
dx[j] = xa(i,j) - xI(j);
dxSq += dx[j]*dx[j];
}
if (dxSq < rCsq_) {
// first apply pairwise coulombic interaction
if (!useSlab_) {
double coulForce = qqrd2e_*qI*qa/(dxSq*sqrtf(dxSq));
for (int j = 0; j < nsd_; j++) {
_atomElectricalForce_(i,j) += dx[j]*coulForce; }
}
// second correct for FE potential induced by BCs
// determine shape function derivatives at atomic location
// and construct sparse vectors to store derivative data
for (int j = 0; j < nsd_; j++) {
shapeFunctionDerivatives[j]->row(i,nodeValues,nodeIndices);
derivativeVectors.push_back(dv);
for (int k = 0; k < nodeIndices.size(); k++) {
derivativeVectors[j](nodeIndices(k)) = nodeValues(k); }
}
// compute greens function from charge quadrature
SparseVector<double> shortFePotential(nNodes_);
shortFePotential.add_scaled(greensFunctions_[node],penalty*phiI);
// compute electric field induced by charge
DENS_VEC efield(nsd_);
for (int j = 0; j < nsd_; j++) {
efield(j) = -.1*dot(derivativeVectors[j],shortFePotential); }
// apply correction in atomic forces
double c = qV2e_*qa;
for (int j = 0; j < nsd_; j++) {
if ((!useSlab_) || (j==nsd_)) {
_atomElectricalForce_(i,j) -= c*efield(j);
}
}
}
}
}
}
}
}; // end namespace
|