File: DenseMatrix.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (437 lines) | stat: -rw-r--r-- 15,053 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#ifndef DENSEMATRIX_H
#define DENSEMATRIX_H

#include "Matrix.h"

#include <iostream>

namespace ATC_matrix {

  /**
   *  @class  DenseMatrix
   *  @brief  Class for storing data in a "dense" matrix form
   */

template <typename T>
class DenseMatrix : public Matrix<T>
{
public:
  DenseMatrix(INDEX rows=0, INDEX cols=0, bool z=1): _data(nullptr){ _create(rows, cols, z); }
  DenseMatrix(const DenseMatrix<T>& c) : Matrix<T>(), _data(nullptr){ _copy(c); }
  DenseMatrix(const SparseMatrix<T>& c): Matrix<T>(), _data(nullptr){ c.dense_copy(*this);}
  DenseMatrix(const Matrix<T>& c)      : Matrix<T>(), _data(nullptr){ _copy(c); }
//  const SparseMatrix<T> * p = sparse_cast(&c);
//  (p) ? p->dense_copy(*this) : _copy(c); }
  ~DenseMatrix()                                    { _delete();}

  void reset (INDEX rows, INDEX cols, bool zero=true);
  void reset (const DenseMatrix<T>& c)   {_delete(); _copy(c); };
  void reset (const SparseMatrix<T> & c) {_delete(); c.dense_copy(*this);};
  void reset (const Matrix<T>& c)        {_delete(); _copy(c); }
  void resize(INDEX rows, INDEX cols, bool copy=false);
  void copy (const T * ptr, INDEX rows, INDEX cols);
  /** returns transpose(this) * B */
  DenseMatrix<T> transMat(const DenseMatrix<T>& B) const;
  /** returns by element multiply A_ij = this_ij * B_ij */
  DenseMatrix<T> mult_by_element(const DenseMatrix<T>& B) const;
  /** returns by element multiply A_ij = this_ij / B_ij */
  DenseMatrix<T> div_by_element(const DenseMatrix<T>& B) const;

  /** overloaded virtual functions */
  //T& operator()(INDEX i, INDEX j)       { MICK(i,j) return DATA(i,j); }
  T& operator()(INDEX i, INDEX j)       { MICK(i,j) return DATA(i,j); }
  T  operator()(INDEX i, INDEX j) const { MICK(i,j) return DATA(i,j); }
  T  operator[](INDEX i)          const { VICK(i) return _data[i]; }
  T& operator[](INDEX i)                { VICK(i) return _data[i]; }
  INDEX nRows()                   const { return _nRows; }
  INDEX nCols()                   const { return _nCols; }
  T * ptr()                   const { return _data;  }
  void write_restart(FILE *f)     const;
  void from_file(std::string & name);
  void set_all_elements_to(const T &v);
  DiagonalMatrix<T> diag()    const;

  DenseMatrix<T>& operator=(const T &v);
  DenseMatrix<T>& operator=(const Matrix<T> &c);
  DenseMatrix<T>& operator=(const DenseMatrix<T> &c);
  DenseMatrix<T>& operator=(const SparseMatrix<T> &c);

  //* checks if all values are within the prescribed range
  virtual bool check_range(T min, T max) const;

protected:
  void _set_equal(const Matrix<T> &r);
  void _delete();
  void _create(INDEX rows, INDEX cols, bool zero=false);
  void _copy(const Matrix<T> &c);

  T *_data;
  INDEX _nRows, _nCols;
};

//! Computes the cofactor matrix of A.
template<typename T>
DenseMatrix<T> adjugate(const Matrix<T> &A, bool symmetric=false);

//! Returns a the tensor product of two vectors
template<typename T>
DenseMatrix<T> tensor_product(const Vector<T> &a, const Vector<T> &b);

//----------------------------------------------------------------------------
// Returns an identity matrix, defaults to 3x3.
//----------------------------------------------------------------------------
template<typename T>
DenseMatrix<T> eye(INDEX rows=3, INDEX cols=3)
{
  const double dij[] = {0.0, 1.0};
  DENS_MAT I(rows, cols, false);  // do not need to pre-zero
  for (INDEX j=0; j<cols; j++)
    for (INDEX i=0; i<rows; i++)
      I(i,j) = dij[i==j];
  return I;
}
//----------------------------------------------------------------------------
// resizes the matrix and optionally zeros it out (default - zero)
//----------------------------------------------------------------------------
template <typename T>
void DenseMatrix<T>::reset(INDEX rows, INDEX cols, bool zero)
{
  if (!this->is_size(rows, cols))
  {
     _delete();
     _create(rows, cols);
  }
  if (zero) this->zero();
}
//----------------------------------------------------------------------------
// resizes the matrix and optionally copies over what still fits
//----------------------------------------------------------------------------
template <typename T>
void DenseMatrix<T>::resize(INDEX rows, INDEX cols, bool copy)
{
  if (this->is_size(rows, cols)) return;  // if is correct size, done
  if (!copy)
  {
     _delete();
     _create(rows, cols);
     return;
  }
  DenseMatrix<T> temp(*this);
  _delete();
  _create(rows, cols);
  int szi = this->nRows();
  int szj = this->nCols();
  for (INDEX i = 0; i < szi; i++)
    for (INDEX j = 0; j < szj; j++)
      (*this)(i,j) = temp.in_range(i,j) ? temp(i,j) : T(0);
}
//----------------------------------------------------------------------------
// resizes the matrix and copies data
//----------------------------------------------------------------------------
template <typename T>
void DenseMatrix<T>::copy(const T * ptr, INDEX rows, INDEX cols)
{
  resize(rows, cols, false);
  memcpy(_data, ptr, this->size()*sizeof(T));
}
//----------------------------------------------------------------------------
// returns transpose(this) * B
//----------------------------------------------------------------------------
template <typename T>
DenseMatrix<T> DenseMatrix<T>::transMat(const DenseMatrix<T>& B)          const
{
  DenseMatrix C;
  MultAB(*this, B, C, true);
  return C;
}
//----------------------------------------------------------------------------
// returns this_ij * B_ij
//----------------------------------------------------------------------------
template <typename T>
DenseMatrix<T> DenseMatrix<T>::mult_by_element(const DenseMatrix<T>& B)   const
{
  DenseMatrix C;
  C.reset(_nRows,_nCols);
  if (B.nCols() == _nCols) {
    int szi = this->nRows();
    int szj = this->nCols();
    for (INDEX i = 0; i < szi; i++)
      for (INDEX j = 0; j < szj; j++)
        C(i,j) = (*this)(i,j)*B(i,j);
  }
  else if (B.nCols() == 1) {
    std::cout << "MULTIPLYING\n";
    int szi = this->nRows();
    int szj = this->nCols();
    for (INDEX i = 0; i < szi; i++)
      for (INDEX j = 0; j < szj; j++)
        C(i,j) = (*this)(i,j)*B(i,0);
  }
  else {
    SSCK(B, *this, "DenseMatrix::mult_by_element");
  }
  return C;
}
//----------------------------------------------------------------------------
// returns this_ij / B_ij
//----------------------------------------------------------------------------
template <typename T>
DenseMatrix<T> DenseMatrix<T>::div_by_element(const DenseMatrix<T>& B)   const
{
  DenseMatrix C;
  C.reset(_nRows,_nCols);

  if (B.nCols() == _nCols) {
    int szi = this->nRows();
    int szj = this->nCols();
    for (INDEX i = 0; i < szi; i++)
      for (INDEX j = 0; j < szj; j++)
        C(i,j) = (*this)(i,j)/B(i,j);
  }
  else if (B.nCols() == 1) {
    int szi = this->nRows();
    int szj = this->nCols();
    for (INDEX i = 0; i < szi; i++)
      for (INDEX j = 0; j < szj; j++)
        C(i,j) = (*this)(i,j)/B(i,0);
  }
  else {
    SSCK(B, *this, "DenseMatrix::div_by_element");
  }
  return C;
}
//----------------------------------------------------------------------------
// writes the matrix data to a file
//----------------------------------------------------------------------------
template <typename T>
void DenseMatrix<T>::write_restart(FILE *f)                               const
{
  fwrite(&_nRows, sizeof(INDEX),1,f);
  fwrite(&_nCols, sizeof(INDEX),1,f);
  if (this->size()) fwrite(_data, sizeof(T), this->size(), f);
}
//----------------------------------------------------------------------------
// reads matrix from text file (matrix needs to be sized)
//----------------------------------------------------------------------------
template <typename T>
void DenseMatrix<T>::from_file(std::string & name)
{
  GCHK(_nRows == 0,"from_file needs nRows > 0");
  GCHK(_nCols == 0,"from_file needs nCols > 0");
  std::ifstream in(name.c_str(),std::ifstream::in);
  const int lineSize = 256;
  char line[lineSize];
  if (! in.good()) gerror(name+" is not available");
  in.getline(line,lineSize); // header
  int szi = this->nRows();
  int szj = this->nCols();
  for (INDEX i = 0; i < szi; i++)
    for (INDEX j = 0; j < szj; j++)
      in >> (*this)(i,j);
}
//----------------------------------------------------------------------------
// sets all elements to a value (optimized)
//----------------------------------------------------------------------------
template <typename T>
inline void DenseMatrix<T>::set_all_elements_to(const T &v)
{
  int sz = this->size();
  for (INDEX i = 0; i < sz; i++) _data[i] = v;
}
//-----------------------------------------------------------------------------
// Return a diagonal matrix containing the diagonal entries of this matrix
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> DenseMatrix<T>::diag() const
{
  DiagonalMatrix<T> D(nRows(), true); // initialized to zero
  INDEX i;
  for (i=0; i<nRows(); i++)
  {
    D(i,i) = DATA(i,i);
  }
  return D;
}
//----------------------------------------------------------------------------
// clears allocated memory
//----------------------------------------------------------------------------
template <typename T>
void DenseMatrix<T>::_delete()
{
  _nRows = _nCols = 0;
  if (_data){
    delete [] _data;
    _data = nullptr;
  }
}
//----------------------------------------------------------------------------
// allocates memory for an rows by cols DenseMatrix
//----------------------------------------------------------------------------
template <typename T>
void DenseMatrix<T>::_create(INDEX rows, INDEX cols, bool zero)
{

  _nRows=rows;
  _nCols=cols;
  _data = (this->size() ? new T [_nCols*_nRows] : nullptr);
  if (zero) this->zero();
}
//----------------------------------------------------------------------------
// creates a deep memory copy from a general matrix
//----------------------------------------------------------------------------
template <typename T>
void DenseMatrix<T>::_copy(const Matrix<T> &c)
{
  if (!_data || this->size()!=c.size())
  {
    _delete();
    _create(c.nRows(), c.nCols());
  }
  else
  {
    _nRows = c.nRows();
    _nCols = c.nCols();
  }
  memcpy(_data, c.ptr(), c.size()*sizeof(T));
}
//----------------------------------------------------------------------------
// sets all elements to a constant
//----------------------------------------------------------------------------
template <typename T>
DenseMatrix<T>& DenseMatrix<T>::operator=(const T &v)
{
  this->set_all_elements_to(v);
  return *this;
}
//----------------------------------------------------------------------------
// copys c with a deep copy
//----------------------------------------------------------------------------
template <typename T>
DenseMatrix<T>& DenseMatrix<T>::operator=(const Matrix<T> &c)
{
  _copy(c);
  return *this;
}
//----------------------------------------------------------------------------
// copys c with a deep copy
//----------------------------------------------------------------------------
template <typename T>
DenseMatrix<T>& DenseMatrix<T>::operator=(const DenseMatrix<T> &c)
{
  _copy(c);
  return *this;
}
//-----------------------------------------------------------------------------
// copys c with a deep copy, including zeros
//-----------------------------------------------------------------------------
template <typename T>
DenseMatrix<T>& DenseMatrix<T>::operator=(const SparseMatrix<T> &c)
{
  _delete();
  _create(c.nRows(), c.nCols(), true);
  SparseMatrix<T>::compress(c);
  for (INDEX i=0; i<c.size(); i++)
  {
    TRIPLET<T> x = c.triplet(i);
    std::cout << "x.i: "<< x.i << "\nx.j: "<< x.j << "\nv.j: "<< x.v << std::endl << std::endl;
    (*this)(x.i, x.j) =  x.v;
  }
  return *this;
}
//----------------------------------------------------------------------------
// general matrix assignment (for densely packed matrices)
//----------------------------------------------------------------------------
template<typename T>
void DenseMatrix<T>::_set_equal(const Matrix<T> &r)
{
  this->resize(r.nRows(), r.nCols());
  const Matrix<T> *pr = &r;
  const DenseMatrix<T>   *pdd = dynamic_cast<const DenseMatrix<T>*> (pr);
  if (pdd) this->reset(*pdd);
  else
  {
    std::cout <<"Error in general dense matrix assignment\n";
    exit(1);
  }
}
//* Returns the transpose of the cofactor matrix of A.
//* see http://en.wikipedia.org/wiki/Adjugate_matrix
//* symmetric flag only affects cases N>3
template<typename T>
DenseMatrix<T> adjugate(const Matrix<T> &A, bool symmetric)
{
  if (!A.is_square()) gerror("adjugate can only be computed for square matrices.");
  DenseMatrix<T> C(A.nRows(), A.nRows());
  switch (A.nRows()) {
    case 1:
      gerror("adjugate must be computed for matrixes of size greater than 1");
    case 2:
      C(0,0) = A(1,1);  C(0,1) =-A(0,1);
      C(1,0) =-A(1,0);  C(1,1) = A(0,0);
      break;
    case 3:   // 3x3 case was tested vs matlab
      C(0,0) = A(1,1)*A(2,2)-A(1,2)*A(2,1);
      C(1,0) =-A(1,0)*A(2,2)+A(1,2)*A(2,0);   // i+j is odd (reverse sign)
      C(2,0) = A(1,0)*A(2,1)-A(1,1)*A(2,0);
      C(0,1) =-A(0,1)*A(2,2)+A(0,2)*A(2,1);   // i+j is odd
      C(1,1) = A(0,0)*A(2,2)-A(0,2)*A(2,0);
      C(2,1) =-A(0,0)*A(2,1)+A(0,1)*A(2,0);   // i+j is odd
      C(0,2) = A(0,1)*A(1,2)-A(0,2)*A(1,1);
      C(1,2) =-A(0,0)*A(1,2)+A(0,2)*A(1,0);   // i+j is odd
      C(2,2) = A(0,0)*A(1,1)-A(0,1)*A(1,0);
      break;
    default:

      // this feature is neither tested nor optimal - use at your own risk!!!
      DenseMatrix<T> m(A.nRows()-1, A.nRows()-1);
      double sign[] = {1.0, -1.0};
      for (INDEX j=0; j<A.nCols(); j++) {
        for (INDEX i=0; i<A.nRows(); i++) {
          for (INDEX mj=0; mj<m.nCols(); mj++) {
            for (INDEX mi=0; mi<m.nRows(); mi++) {
              m(mi, mj) = A(mi+(mi>=i), mj+(mj>=j));  // skip row i and col j
            }
          }
          if (!symmetric) C(j,i)=det(m)*sign[(i+j)&1];
          if (symmetric && i>=j) C(i,j)=C(j,i)=det(m)*sign[(i+j)&1];
        }
      }
  }
  return C;
}

// Returns a the tensor product of two vectors
template<typename T>
DenseMatrix<T> tensor_product(const Vector<T> &a, const Vector<T> &b)
{
  DenseMatrix<T> ab(a.size(), b.size(),false);
  for (INDEX j=0; j<b.size(); j++)
    for (INDEX i=0; i<a.size(); i++)
      ab(i,j) = a[i]*b[j];
  return ab;
}

//* Returns a DenseMatrix with random values (like matlab rand(m,n)
template<typename T>
DenseMatrix<T> rand(INDEX rows, INDEX cols, int seed=1234)
{
  srand(seed);
  const double rand_max_inv = 1.0 / double(RAND_MAX);
  DenseMatrix<T> R(rows, cols, false);
  for (INDEX i=0; i<R.size(); i++) R[i]=double(::rand())*rand_max_inv;
  return R;
}

//-----------------------------------------------------------------------------
//* returns true if no value is outside of the range
template<typename T>
inline bool DenseMatrix<T>::check_range(T min, T max) const
{
  for (INDEX i = 0; i < this->size(); i++)
    if ( (_data[i] > max) || (_data[i] < min) ) return false;
  return true;
}

} // end namespace
#endif