File: DislocationExtractor.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (434 lines) | stat: -rw-r--r-- 16,465 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
///////////////////////////////////////////////////////////////////////////////
//
//  Copyright 2010, Alexander Stukowski
//  All rights reserved. See README.txt for more information.
//
///////////////////////////////////////////////////////////////////////////////

#ifndef __DXA_DISLOCATION_EXTRACTOR_H
#define __DXA_DISLOCATION_EXTRACTOR_H

// Include the LAMMPS headers that we need.
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "domain.h"
#include "update.h"
#include "neigh_list.h"
using namespace LAMMPS_NS;

// This is must be defined when we build the LAMMPS module (and not the DXA standalone tool).
#define DXA_LAMMPS_MODULE

// Enables additional sanity checks.
#define DEBUG_DISLOCATIONS

// In LAMMPS, we always use double precision floating-point numbers.
#define USE_DOUBLE_PRECISION_FP

#include "../src/dxa/DXATracing.h"
#include "../src/util/FILEStream.h"

/**
 *
 */
class DXADislocationExtractor : private DXATracing, Pointers
{
public:

  /// Constructor.
  ///
  /// Expects a pointer to the global LAMMPS object.
  ///
  /// Exact mode flag:
  ///
  /// Enables serial processing, i.e. the master processor performs the complete analysis.
  /// This allows for proper handling of periodic boundary conditions.
  DXADislocationExtractor(LAMMPS* lmp, bool _exactMode = false) : DXATracing(msgLoggerStream, verboseLoggerStream), Pointers(lmp)
  {
    exactMode = _exactMode;

    // Connect internal logging streams to global LAMMPS streams.
    if(comm->me == 0) {
      msgLoggerStream.rdbuf()->setFiles(screen, logfile);
      verboseLoggerStream.rdbuf()->setFiles(screen, logfile);
    }
    this->processor = comm->me;
  }

  /// Extracts all dislocations from the current simulation state.
  ///
  /// First copies atoms from LAMMPS array to internal memory.
  /// Also adopts the nearest neighbor lists from LAMMPS.
  ///
  /// Parameters:
  ///
  ///      neighborList   A full neighbor list provided by LAMMPS, which contains neighbors of ghost atoms.
  ///      cnaCutoff      Cutoff radius to be used for the common neighbor analysis.
  ///
  void extractDislocations(NeighList* neighborList, double cnaCutoff, int lineSmoothingLevel = DEFAULT_LINE_SMOOTHING_LEVEL, int lineCoarseningLevel = DEFAULT_LINE_COARSENING_LEVEL)
  {
    // Check parameters.
    if(cnaCutoff <= 0.0) lammps->error->all(FLERR,"Common neighbor analysis cutoff radius must be positive.");

    // Release any memory allocated during last call.
    cleanup();

    // Setup simulation cell.
    if(exactMode) {
      pbc[0] = domain->periodicity[0] != 0;
      pbc[1] = domain->periodicity[1] != 0;
      pbc[2] = domain->periodicity[2] != 0;
    }
    else {
      pbc[0] = pbc[1] = pbc[2] = false;
    }
    simulationCell(0,0) = domain->h[0];
    simulationCell(1,1) = domain->h[1];
    simulationCell(2,2) = domain->h[2];
    simulationCell(1,2) = domain->h[3];
    simulationCell(0,2) = domain->h[4];
    simulationCell(0,1) = domain->h[5];
    simulationCell(1,0) = simulationCell(2,0) = simulationCell(2,1) = 0;
    simulationCellOrigin.X = domain->boxlo[0];
    simulationCellOrigin.Y = domain->boxlo[1];
    simulationCellOrigin.Z = domain->boxlo[2];
    setCNACutoff(cnaCutoff);
    setupSimulationCell(cnaCutoff);
    timestep = update->ntimestep;

    // Transfer LAMMPS atoms to internal array.
    if(exactMode)
      transferAllLAMMPSAtoms();
    else
      transferLocalLAMMPSAtoms(neighborList);

    if(exactMode == false || processor == 0) {

      // Perform common neighbor analysis to identify crystalline atoms.
      performCNA();

      // Order the neighbor lists of crystalline atoms.
      orderCrystallineAtoms();

      // Cluster crystalline atoms.
      clusterAtoms();

#ifdef PROCESSED_ATOMS
      // Enable this code block to get the processed atoms.
      {
        ostringstream ss;
        ss << "proc_" << comm->me << ".atoms.dump";
        ofstream stream(ss.str().c_str());
        writeAtomsDumpFile(stream);
      }
#endif

      // Create the nodes of the interface mesh.
      createInterfaceMeshNodes();

      // Create the facets of the interface mesh.
      createInterfaceMeshFacets();

#ifdef DEBUG_DISLOCATIONS
      // Check the generated mesh.
      validateInterfaceMesh();
#endif

      // Generate and advance Burgers circuits on the interface mesh.
      traceDislocationSegments();

      // Smooth dislocation lines.
      smoothDislocationSegments(lineSmoothingLevel, lineCoarseningLevel);
    }

    if(exactMode) {
      // Wrap segments at simulation cell boundaries.
      wrapDislocationSegments();
      // Distribute extracted dislocation segments to back all processors.
      broadcastDislocations();
    }

    // Clip dislocation lines at processor domain.
    Point3 subOrigin;
    Matrix3 subCell;
        if(domain->triclinic) {
      subOrigin = simulationCellOrigin + simulationCell * Vector3(domain->sublo_lamda);
      subCell.setColumn(0, simulationCell.column(0) * (domain->subhi_lamda[0] - domain->sublo_lamda[0]));
      subCell.setColumn(1, simulationCell.column(1) * (domain->subhi_lamda[1] - domain->sublo_lamda[1]));
      subCell.setColumn(2, simulationCell.column(2) * (domain->subhi_lamda[2] - domain->sublo_lamda[2]));
        } else {
      subOrigin = Point3(domain->sublo);
      subCell.setColumn(0, Vector3(domain->subhi[0] - domain->sublo[0], 0, 0));
      subCell.setColumn(1, Vector3(0, domain->subhi[1] - domain->sublo[1], 0));
      subCell.setColumn(2, Vector3(0, 0, domain->subhi[2] - domain->sublo[2]));
        }
    clipDislocationLines(subOrigin, subCell);

#ifdef OUTPUT_SEGMENTS
    // Enable this code block to see the extracted dislocation segments on each processor.
    {
      ostringstream ss;
      ss << "proc_" << comm->me << ".dislocations.vtk";
      ofstream stream(ss.str().c_str());
      writeDislocationsVTKFile(stream);
    }
#endif
  }

  /// Returns the list of extracted dislocation segments.
  const vector<DislocationSegment*>& getSegments() const { return this->segments; }

protected:

  /// Copies local atoms and neighbor lists from LAMMPS to internal array.
  void transferLocalLAMMPSAtoms(NeighList* neighborList)
  {
    // Allocate internal atoms array.
    int numTotalAtoms = atom->nlocal + atom->nghost;
    inputAtoms.resize(numTotalAtoms);
    numLocalInputAtoms = numTotalAtoms;

    // Transfer local and ghost atoms to internal array.
    for(int i = 0; i < numTotalAtoms; i++) {
      InputAtom& a = inputAtoms[i];
      a.tag = i + 1;
      a.pos.X = atom->x[i][0];
      a.pos.Y = atom->x[i][1];
      a.pos.Z = atom->x[i][2];
      a.flags = 0;
      a.cluster = nullptr;
      a.numNeighbors = 0;
      a.setFlag(ATOM_IS_LOCAL_ATOM);
    }

    // Adopt nearest neighbor lists from LAMMPS.
    if(neighborList->ghostflag) {
      DISLOCATIONS_ASSERT(neighborList->inum + neighborList->gnum == numTotalAtoms);
      int tt = 0;
      for(int ii = 0; ii < numTotalAtoms; ii++) {
        int i = neighborList->ilist[ii];
        DISLOCATIONS_ASSERT(i < numTotalAtoms);
        InputAtom& ai = inputAtoms[i];
        int* jlist = neighborList->firstneigh[i];
        int jnum = neighborList->numneigh[i];
        if(ii >= neighborList->inum)
          tt += jnum;
        for(int jj = 0; jj < jnum; jj++) {
          int j = jlist[jj];
          j &= NEIGHMASK;
          DISLOCATIONS_ASSERT(j >= 0 && j < numTotalAtoms);
          if(j < i) continue;
          InputAtom& aj = inputAtoms[j];
          if(DistanceSquared(aj.pos, ai.pos) >= cnaCutoff * cnaCutoff) continue;
          if(ai.numNeighbors == MAX_ATOM_NEIGHBORS)
            raiseError("Maximum number of nearest neighbors exceeded. Atom %i has more than %i nearest neighbors (built-in maximum number).", ai.tag, MAX_ATOM_NEIGHBORS);
          ai.addNeighbor(&aj);
          if(aj.numNeighbors == MAX_ATOM_NEIGHBORS)
            raiseError("Maximum number of nearest neighbors exceeded. Atom %i has more than %i nearest neighbors (built-in maximum number).", aj.tag, MAX_ATOM_NEIGHBORS);
          aj.addNeighbor(&ai);
        }
      }
    }
    else {
      for(int ii = 0; ii < neighborList->inum; ii++) {
        int i = neighborList->ilist[ii];
        InputAtom& ai = inputAtoms[i];
        int* jlist = neighborList->firstneigh[i];
        int jnum = neighborList->numneigh[i];
        for(int jj = 0; jj < jnum; jj++) {
          int j = jlist[jj];
          j &= NEIGHMASK;
          DISLOCATIONS_ASSERT(j >= 0 && j < numTotalAtoms);
          if(j < i) continue;
          InputAtom& aj = inputAtoms[j];
          if(DistanceSquared(aj.pos, ai.pos) < cnaCutoff * cnaCutoff) {
            if(ai.numNeighbors == MAX_ATOM_NEIGHBORS)
              raiseError("Maximum number of nearest neighbors exceeded. Atom %i has more than %i nearest neighbors (built-in maximum number).", ai.tag, MAX_ATOM_NEIGHBORS);
            ai.addNeighbor(&aj);
            if(aj.numNeighbors == MAX_ATOM_NEIGHBORS)
              raiseError("Maximum number of nearest neighbors exceeded. Atom %i has more than %i nearest neighbors (built-in maximum number).", aj.tag, MAX_ATOM_NEIGHBORS);
            aj.addNeighbor(&ai);
          }
          if(j >= atom->nlocal) {
            for(int kk = 0; kk < jnum; kk++) {
              int k = jlist[kk];
              k &= NEIGHMASK;
              DISLOCATIONS_ASSERT(k < (int)inputAtoms.size());
              if(k == j) continue;
              if(k < atom->nlocal) continue;
              InputAtom& ak = inputAtoms[k];
              if(DistanceSquared(aj.pos, ak.pos) >= cnaCutoff * cnaCutoff) continue;
              if(aj.hasNeighbor(&ak)) continue;
              if(aj.numNeighbors == MAX_ATOM_NEIGHBORS)
                raiseError("Maximum number of nearest neighbors exceeded. Atom %i has more than %i nearest neighbors (built-in maximum number).", aj.tag, MAX_ATOM_NEIGHBORS);
              aj.addNeighbor(&ak);
            }
          }
        }
      }
    }
  }

  /// Copies atoms from LAMMPS to internal array and gathers all atoms on the master processor.
  void transferAllLAMMPSAtoms()
  {
    // Determine maximum number of local atoms a single processor has.
    int nlocalatoms_max;
    MPI_Reduce(&atom->nlocal, &nlocalatoms_max, 1, MPI_INT, MPI_MAX, 0, world);

      if(processor == 0) {
      // Allocate internal atoms array.
      inputAtoms.resize(atom->natoms);
      numLocalInputAtoms = atom->natoms;
      vector<InputAtom>::iterator currentAtom = inputAtoms.begin();

      // Copy local atoms of master processor into internal array.
      for(int i = 0; i < atom->nlocal; i++, ++currentAtom) {
        currentAtom->tag = currentAtom - inputAtoms.begin() + 1;
        currentAtom->pos.X = atom->x[i][0];
        currentAtom->pos.Y = atom->x[i][1];
        currentAtom->pos.Z = atom->x[i][2];
        currentAtom->flags = 0;
        currentAtom->cluster = nullptr;
        currentAtom->numNeighbors = 0;
        currentAtom->setFlag(ATOM_IS_LOCAL_ATOM);
      }

      if(comm->nprocs > 1) {
        // Allocate receive buffer.
        vector<double> buffer(nlocalatoms_max * 3);

        // Receive atoms from other processors.
        for(int iproc = 1; iproc < comm->nprocs; iproc++) {
          MPI_Status status;
          MPI_Recv(buffer.empty() ? nullptr : &buffer.front(), nlocalatoms_max * 3, MPI_DOUBLE, iproc, 0, world, &status);
          int ndoubles;
          MPI_Get_count(&status, MPI_DOUBLE, &ndoubles);
          int nReceived = ndoubles / 3;

          vector<double>::const_iterator data = buffer.begin();
          for(int i = 0; i < nReceived; i++, ++currentAtom) {
            currentAtom->tag = currentAtom - inputAtoms.begin() + 1;
            currentAtom->pos.X = *data++;
            currentAtom->pos.Y = *data++;
            currentAtom->pos.Z = *data++;
            currentAtom->flags = 0;
            currentAtom->cluster = nullptr;
            currentAtom->numNeighbors = 0;
            currentAtom->setFlag(ATOM_IS_LOCAL_ATOM);
          }
        }
      }
        DISLOCATIONS_ASSERT(currentAtom == inputAtoms.end());
    }
    else {
      // Allocate and fill send buffer.
      vector<double> buffer(atom->nlocal * 3);
      vector<double>::iterator data = buffer.begin();
      for(int i = 0; i < atom->nlocal; i++) {
        *data++ = atom->x[i][0];
        *data++ = atom->x[i][1];
        *data++ = atom->x[i][2];
      }
      // Send local atom coordinates to master proc.
      MPI_Send(buffer.empty() ? nullptr : &buffer.front(), buffer.size(), MPI_DOUBLE, 0, 0, world);
    }

      // Make sure all input atoms are wrapped at periodic boundary conditions.
      wrapInputAtoms(nullptr_VECTOR);

      // Build nearest neighbor lists.
      buildNearestNeighborLists();
  }

  /// This structure is used to communicate dislocation segments between processors.
  struct DislocationSegmentComm {
    LatticeVector burgersVector;
    Vector3 burgersVectorWorld;
    int numPoints;
  };

  /// After the master processor has extracted all dislocation segments, this function broadcasts the dislocations
  /// back to all other processor.
  void broadcastDislocations()
  {
    if(comm->nprocs == 1) return;  // Nothing to do in serial mode.

    // Broadcast number of segments.
    int numSegments = segments.size();
    MPI_Bcast(&numSegments, 1, MPI_INT, 0, world);

    // Allocate send/receive buffer for dislocation segments.
    vector<DislocationSegmentComm> segmentBuffer(numSegments);

    // The total number of line points (sum of all segments).
    int numLinePoints = 0;

    if(processor == 0) {
      // Fill segment send buffer.
      vector<DislocationSegmentComm>::iterator sendItem = segmentBuffer.begin();
      for(vector<DislocationSegment*>::const_iterator segment = segments.begin(); segment != segments.end(); ++segment, ++sendItem) {
        sendItem->burgersVector = (*segment)->burgersVector;
        sendItem->burgersVectorWorld = (*segment)->burgersVectorWorld;
        sendItem->numPoints = (*segment)->line.size();
        numLinePoints += (*segment)->line.size();
      }
    }
    // Broadcast segments.
    MPI_Bcast(segmentBuffer.empty() ? nullptr : &segmentBuffer.front(), segmentBuffer.size() * sizeof(segmentBuffer[0]), MPI_CHAR, 0, world);

    if(processor != 0) {
      // Extract segments from receive buffer.
      segments.reserve(segmentBuffer.size());
      for(vector<DislocationSegmentComm>::const_iterator receiveItem = segmentBuffer.begin(); receiveItem != segmentBuffer.end(); ++receiveItem) {
        DislocationSegment* newSegment = segmentPool.construct(receiveItem->burgersVector, receiveItem->burgersVectorWorld);
        newSegment->index = segments.size() + 1;
        segments.push_back(newSegment);
        numLinePoints += receiveItem->numPoints;
      }
    }

    // Allocate send/receive buffer for dislocation points.
    vector<Point3> pointBuffer(numLinePoints);

    if(processor == 0) {
      // Fill point send buffer.
      vector<Point3>::iterator sendItem = pointBuffer.begin();
      for(vector<DislocationSegment*>::const_iterator segment = segments.begin(); segment != segments.end(); ++segment) {
        for(deque<Point3>::const_iterator p = (*segment)->line.begin(); p != (*segment)->line.end(); ++p, ++sendItem)
          *sendItem = *p;
      }
      DISLOCATIONS_ASSERT(sendItem == pointBuffer.end());
    }
    // Broadcast segments.
    MPI_Bcast(pointBuffer.empty() ? nullptr : &pointBuffer.front(), pointBuffer.size() * sizeof(pointBuffer[0]), MPI_CHAR, 0, world);

    if(processor != 0) {
      // Extract points from receive buffer.
      vector<DislocationSegment*>::const_iterator segment = segments.begin();
      vector<Point3>::const_iterator p = pointBuffer.begin();
      for(vector<DislocationSegmentComm>::const_iterator receiveItem = segmentBuffer.begin(); receiveItem != segmentBuffer.end(); ++receiveItem, ++segment) {
        (*segment)->line.assign(p, p + receiveItem->numPoints);
        p += receiveItem->numPoints;
      }
      DISLOCATIONS_ASSERT(p == pointBuffer.end());
    }
  }

protected:

  /// Pointer to the main LAMMPS object.
  LAMMPS* lammps;

  /// Enables serial processing, which provides exact handling of periodic boundary conditions.
  bool exactMode;

  /// The output stream to which log messages are sent.
  stdio_osyncstream msgLoggerStream;

  /// The output stream to which verbose log messages are sent.
  stdio_osyncstream verboseLoggerStream;;
};

#endif // __DXA_DISLOCATION_EXTRACTOR_H