File: ElasticTimeIntegrator.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (843 lines) | stat: -rw-r--r-- 34,460 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
// ATC transfer headers
#include "ElasticTimeIntegrator.h"
#include "ATC_Coupling.h"
#include "TimeFilter.h"
#include "ATC_Error.h"
#include "PerAtomQuantityLibrary.h"

namespace ATC {

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class MomentumTimeIntegrator
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  MomentumTimeIntegrator::MomentumTimeIntegrator(ATC_Coupling * atc,
                                                 TimeIntegrationType timeIntegrationType) :
    TimeIntegrator(atc, timeIntegrationType)
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  modify
  //    parses inputs and modifies state of the integrator
  //--------------------------------------------------------
  bool MomentumTimeIntegrator::modify(int /* narg */, char **arg)
  {
    bool foundMatch = false;
    int argIndex = 0;
    // time integration scheme
    /*! \page man_momentum_time_integration fix_modify AtC time_integration (momentum)
      \section syntax
      fix_modify AtC time_integration <descriptor> \n
      - descriptor (string) = time integration type  \n

      various time integration methods for the finite elements\n
      \section description
      verlet - atomic velocity update with 2nd order Verlet, nodal temperature update with 2nd order Verlet, kinetostats based on controlling force \n
      fractional_step - atomic velocity update with 2nd order Verlet, mixed nodal momentum update, 2nd order Verlet for continuum and exact 2nd order Verlet for atomic contributions, kinetostats based on controlling discrete momentum changes\n
      gear - atomic velocity update with 2nd order Verlet, nodal temperature update with 3rd or 4th order Gear, kinetostats based on controlling power \n
      \section examples
      <TT> fix_modify atc time_integration verlet </TT> \n
      <TT> fix_modify atc time_integration fractional_step </TT> \n
      \section description
      \section related
      see \ref man_fix_atc
      \section default
      none
    */
    if (strcmp(arg[argIndex],"verlet")==0) {
      timeIntegrationType_ = VERLET;
      needReset_ = true;
      foundMatch = true;
    }
    else if (strcmp(arg[argIndex],"fractional_step")==0) {
      timeIntegrationType_ = FRACTIONAL_STEP;
      needReset_ = true;
      foundMatch = true;
    }
    else if (strcmp(arg[argIndex],"gear")==0) {
      timeIntegrationType_ = GEAR;
      needReset_ = true;
      foundMatch = true;
    }
    return foundMatch;
  }

  //--------------------------------------------------------
  //  construct_methods
  //    creates algorithm objects
  //--------------------------------------------------------
  void MomentumTimeIntegrator::construct_methods()
  {
    if (atc_->reset_methods()) {
      if (timeIntegrationMethod_)
        delete timeIntegrationMethod_;

      if (timeFilterManager_->need_reset()) {
        switch (timeIntegrationType_) {
          case VERLET:
            timeFilter_ = timeFilterManager_->construct(TimeFilterManager::IMPLICIT);
            atc_->set_mass_mat_time_filter(MOMENTUM,TimeFilterManager::IMPLICIT);
            break;
          case FRACTIONAL_STEP:
          case GEAR:
            timeFilter_ = timeFilterManager_->construct(TimeFilterManager::EXPLICIT_IMPLICIT);
            atc_->set_mass_mat_time_filter(MOMENTUM,TimeFilterManager::EXPLICIT_IMPLICIT);
            break;
          default:
            throw ATC_Error("Unknown time integration type in ThermalTimeIntegrator::Initialize()");
        }
      }

      if (timeFilterManager_->filter_dynamics()) {
        switch (timeIntegrationType_) {
          case VERLET: {
            timeIntegrationMethod_ = new ElasticTimeIntegratorVerletFiltered(this);
            break;
          }
        default:
          throw ATC_Error("Unknown time integration type in MomentumTimeIntegrator::Initialize()");
        }
      }
      else {
        switch (timeIntegrationType_) {
          case VERLET: {
            timeIntegrationMethod_ = new ElasticTimeIntegratorVerlet(this);
            break;
          }
          case FRACTIONAL_STEP: {
            timeIntegrationMethod_ = new ElasticTimeIntegratorFractionalStep(this);
            break;
          }
          case GEAR: {
            timeIntegrationMethod_ = new FluidsTimeIntegratorGear(this);
            break;
          }
        default:
          throw ATC_Error("Unknown time integration type in MomentumTimeIntegrator::Initialize()");
        }
      }
    }
  }

  //--------------------------------------------------------
  //  pack_fields
  //    add persistent variables to data list
  //--------------------------------------------------------
  void MomentumTimeIntegrator::pack_fields(RESTART_LIST & data)
  {
    data["NodalAtomicForceFiltered"] = & nodalAtomicForceFiltered_.set_quantity();
    data["NodalAtomicMomentumFiltered"] = & nodalAtomicMomentumFiltered_.set_quantity();
    TimeIntegrator::pack_fields(data);
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class MomentumIntegrationMethod
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //        Grab data from ATC
  //--------------------------------------------------------
  MomentumIntegrationMethod::MomentumIntegrationMethod(MomentumTimeIntegrator * momentumTimeIntegrator) :
    TimeIntegrationMethod(momentumTimeIntegrator),
    timeFilter_(timeIntegrator_->time_filter()),
    velocity_(atc_->field(VELOCITY)),
    acceleration_(atc_->field_roc(VELOCITY)),
    nodalAtomicVelocityOut_(atc_->nodal_atomic_field(VELOCITY)),
    velocityRhs_(atc_->field_rhs(VELOCITY)),
    nodalAtomicForceOut_(atc_->nodal_atomic_field_roc(VELOCITY))
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  construct_transfers
  //        Grab existing managed quantities,
  //        create the rest
  //--------------------------------------------------------
  void MomentumIntegrationMethod::construct_transfers()
  {
    InterscaleManager & interscaleManager(atc_->interscale_manager());
    nodalAtomicVelocity_ = interscaleManager.dense_matrix("NodalAtomicVelocity");
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class ElasticTimeIntegratorVerlet
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  ElasticTimeIntegratorVerlet::ElasticTimeIntegratorVerlet(MomentumTimeIntegrator * momentumTimeIntegrator) :
    MomentumIntegrationMethod(momentumTimeIntegrator),
    displacement_(atc_->field(DISPLACEMENT)),
    nodalAtomicDisplacementOut_(atc_->nodal_atomic_field(DISPLACEMENT)),
    nodalAtomicForceFiltered_(momentumTimeIntegrator->nodal_atomic_force_filtered()),
    nodalAtomicDisplacement_(nullptr),
    nodalAtomicForce_(nullptr)
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  construct_transfers
  //        Grab existing managed quantities,
  //        create the rest
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::construct_transfers()
  {
    MomentumIntegrationMethod::construct_transfers();
    InterscaleManager & interscaleManager = atc_->interscale_manager();
    nodalAtomicDisplacement_ = interscaleManager.dense_matrix("NodalAtomicDisplacement");
    nodalAtomicForce_ = interscaleManager.dense_matrix("NodalAtomicForce");
  }

  //--------------------------------------------------------
  //  initialize
  //        initialize all data
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::initialize()
  {
    MomentumIntegrationMethod::initialize();

    // sets up time filter for cases where variables temporally filtered
    // this time integrator should use an implicit filter
    TimeFilterManager * timeFilterManager = (timeIntegrator_->atc())->time_filter_manager();
    if (timeFilterManager->need_reset()) {
      timeFilter_->initialize(nodalAtomicForce_->quantity());
    }

    if (!(timeFilterManager->end_equilibrate())) {
      nodalAtomicForceFiltered_.reset(atc_->num_nodes(),atc_->nsd());
    }

    if (!(timeFilterManager->filter_dynamics())){
      //post_process();
      //compute_nodal_forces(velocityRhs_.set_quantity());
      velocityRhs_ = nodalAtomicForce_->quantity();
    }
  }

  //--------------------------------------------------------
  //  pre_initial_integrate1
  //    time integration before Verlet step 1
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::pre_initial_integrate1(double dt)
  {
    explicit_1(velocity_.set_quantity(),acceleration_.quantity(),.5*dt);
  }


  //--------------------------------------------------------
  //  post_initial_integrate1
  //    time integration after Verlet step 1
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::post_initial_integrate1(double dt)
  {

    //      for improved accuracy, but this would be inconsistent with
    //      the atomic integration scheme
    explicit_1(displacement_.set_quantity(),velocity_.quantity(),dt);
  }

  //--------------------------------------------------------
  //  pre_final_integrate1
  //    first time integration computations
  //    before Verlet step 2
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::pre_final_integrate1(double dt)
  {
    // integrate filtered atomic force
    timeFilter_->apply_post_step2(nodalAtomicForceFiltered_.set_quantity(),
                                  nodalAtomicForce_->quantity(),dt);
  }

  //--------------------------------------------------------
  //  post_final_integrate2
  //    second time integration computations
  //    after Verlet step 2
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::post_final_integrate2(double dt)
  {
    atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
                                    acceleration_.set_quantity(),
                                    VELOCITY);
    explicit_1(velocity_.set_quantity(),acceleration_.quantity(),.5*dt);
  }

  //--------------------------------------------------------
  //  add_to_rhs
  //    add integrated atomic force contributions
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::add_to_rhs()
  {
    // Compute MD contribution to FEM equation
    velocityRhs_ += nodalAtomicForce_->quantity();
  }

  //--------------------------------------------------------
  //  post_process
  //    post processing of variables before output
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::post_process()
  {
    nodalAtomicDisplacementOut_ = nodalAtomicDisplacement_->quantity();
    nodalAtomicVelocityOut_ = nodalAtomicVelocity_->quantity();
  }

  //--------------------------------------------------------
  //  output
  //    add variables to output list
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::output(OUTPUT_LIST & outputData)
  {
    DENS_MAT & nodalAtomicForce(nodalAtomicForce_->set_quantity());
    if ((atc_->lammps_interface())->rank_zero()) {
      outputData["NodalAtomicForce"] = &nodalAtomicForce;
    }
  }

  //--------------------------------------------------------
  //  finish
  //    finalize state of nodal atomic quantities
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerlet::finish()
  {
    post_process();
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class ElasticTimeIntegratorVerletFiltered
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  ElasticTimeIntegratorVerletFiltered::ElasticTimeIntegratorVerletFiltered(MomentumTimeIntegrator * momentumTimeIntegrator) :
    ElasticTimeIntegratorVerlet(momentumTimeIntegrator),
    nodalAtomicAcceleration_(atc_->nodal_atomic_field_roc(VELOCITY))
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  pre_initial_integrate1
  //    time integration before Verlet step 1
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerletFiltered::pre_initial_integrate1(double dt)
  {
    explicit_1(velocity_.set_quantity(),acceleration_.quantity(),.5*dt);
    explicit_1(nodalAtomicVelocityOut_.set_quantity(),nodalAtomicAcceleration_.quantity(),.5*dt);
  }

  //--------------------------------------------------------
  //  post_initial_integrate1
  //    time integration after Verlet step 1
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerletFiltered::post_initial_integrate1(double dt)
  {

    //      for improved accuracy, but this would be inconsistent with
    //      the atomic integration scheme
    explicit_1(displacement_.set_quantity(),velocity_.quantity(),dt);
    explicit_1(nodalAtomicDisplacementOut_.set_quantity(),nodalAtomicVelocityOut_.quantity(),dt);
  }

  //--------------------------------------------------------
  //  post_final_integrate2
  //    second time integration after Verlet step 2
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerletFiltered::post_final_integrate2(double dt)
  {
    DENS_MAT velocityRoc(velocityRhs_.nRows(),velocityRhs_.nCols());
    atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
                                    acceleration_.set_quantity(),
                                    VELOCITY);
    explicit_1(velocity_.set_quantity(),acceleration_.quantity(),.5*dt);

    atc_->apply_inverse_md_mass_matrix(nodalAtomicForceFiltered_.quantity(),
                                       nodalAtomicAcceleration_.set_quantity(),
                                       VELOCITY);
    explicit_1(nodalAtomicVelocityOut_.set_quantity(),nodalAtomicAcceleration_.quantity(),.5*dt);
  }

  //--------------------------------------------------------
  //  add_to_rhs
  //    add integrated atomic force contributions
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerletFiltered::add_to_rhs()
  {
    // MD contributions to FE equations
    velocityRhs_ += nodalAtomicForceFiltered_.set_quantity();
  }

  //--------------------------------------------------------
  //  output
  //    add variables to output list
  //--------------------------------------------------------
  void ElasticTimeIntegratorVerletFiltered::output(OUTPUT_LIST & outputData)
  {
    DENS_MAT & nodalAtomicForce(nodalAtomicForceFiltered_.set_quantity());
    if ((atc_->lammps_interface())->rank_zero()) {
      outputData["NodalAtomicForce"] = &nodalAtomicForce;
    }
  }

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class ElasticTimeIntegratorFractionalStep
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  ElasticTimeIntegratorFractionalStep::ElasticTimeIntegratorFractionalStep(MomentumTimeIntegrator * momentumTimeIntegrator) :
    MomentumIntegrationMethod(momentumTimeIntegrator),
    displacement_(atc_->field(DISPLACEMENT)),
    nodalAtomicDisplacementOut_(atc_->nodal_atomic_field(DISPLACEMENT)),
    nodalAtomicForceFiltered_(momentumTimeIntegrator->nodal_atomic_force_filtered()),
    nodalAtomicMomentum_(nullptr),
    nodalAtomicMomentumFiltered_(momentumTimeIntegrator->nodal_atomic_momentum_filtered()),
    nodalAtomicDisplacement_(nullptr),
    nodalAtomicMomentumOld_(atc_->num_nodes(),atc_->nsd()),
    nodalAtomicVelocityOld_(atc_->num_nodes(),atc_->nsd())
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  construct_transfers
  //        Grab existing managed quantities,
  //        create the rest
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::construct_transfers()
  {
    MomentumIntegrationMethod::construct_transfers();
    InterscaleManager & interscaleManager = atc_->interscale_manager();
    nodalAtomicMomentum_ = interscaleManager.dense_matrix("NodalAtomicMomentum");
    nodalAtomicDisplacement_ = interscaleManager.dense_matrix("NodalAtomicDisplacement");
  }

  //--------------------------------------------------------
  //  initialize
  //        initialize all data
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::initialize()
  {
    MomentumIntegrationMethod::initialize();

    // initial force to zero
    nodalAtomicForce_.reset(atc_->num_nodes(),atc_->nsd());

    // sets up time filter for cases where variables temporally filtered
    // this time integrator should use Crank-Nicholson filter for 2nd order accuracy
    TimeFilterManager * timeFilterManager = (timeIntegrator_->atc())->time_filter_manager();
    if (timeFilterManager->need_reset()) {
      // the form of this integrator implies no time filters that require history data can be used
      timeFilter_->initialize();
    }

    // sets up time filter for post-processing the filtered power
    // this time integrator should use an explicit-implicit filter
    // to mirror the 2nd order Verlet integration scheme
    // It requires no history information so initial value just sizes arrays
    if (!(timeFilterManager->end_equilibrate())) {
      // implies an initial condition of the instantaneous atomic energy
      nodalAtomicMomentumFiltered_ = nodalAtomicMomentum_->quantity();
      nodalAtomicForceFiltered_.reset(atc_->num_nodes(),atc_->nsd());
    }
  }

  //--------------------------------------------------------
  //  pre_initial_integrate1
  //    time integration before Verlet step 1, used to
  //    provide the baseline momentum and displacement to
  //    quantify the change over the timestep
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::pre_initial_integrate1(double dt)
  {
    // initialize changes in momentum
    const DENS_MAT & myNodalAtomicMomentum(nodalAtomicMomentum_->quantity());
    // updated filtered energy using explicit-implicit scheme
    timeFilter_->apply_pre_step1(nodalAtomicMomentumFiltered_.set_quantity(),
                                 myNodalAtomicMomentum,dt);
  }

  //--------------------------------------------------------
  //  pre_initial_integrate2
  //    second time integration after kinetostat application
  //    to compute MD contributions to momentum change
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::pre_initial_integrate2(double dt)
  {
    // used for updating change in velocity from mass matrix change
    this->compute_old_time_data();

    // update filtered nodal atomic force
    timeFilter_->apply_pre_step1(nodalAtomicForceFiltered_.set_quantity(),
                                 nodalAtomicForce_,dt);

    // store current force for use later
    nodalAtomicForce_ = nodalAtomicMomentum_->quantity();
    nodalAtomicForce_ *= -1.;
  }

  //--------------------------------------------------------
  //  post_initial_integrate1
  //    time integration after Verlet step 1
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::post_initial_integrate1(double dt)
  {
    // atomic contributions to change in momentum
    // compute change in restricted atomic momentum
    const DENS_MAT & nodalAtomicMomentum(nodalAtomicMomentum_->quantity());
    nodalAtomicForce_ += nodalAtomicMomentum;

    // update FE velocity with change in velocity from MD
    DENS_MAT & atomicVelocityDelta(atomicVelocityDelta_.set_quantity());
    atc_->apply_inverse_mass_matrix(nodalAtomicForce_,
                                    atomicVelocityDelta,
                                    VELOCITY);
    velocity_ += atomicVelocityDelta;

    // approximation to force for output
    nodalAtomicForce_ /= 0.5*dt;
    timeFilter_->apply_post_step1(nodalAtomicForceFiltered_.set_quantity(),
                                  nodalAtomicForce_,dt);

    // change to velocity from FE dynamics
    atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
                                    acceleration_.set_quantity(),
                                    VELOCITY);
    explicit_1(velocity_.set_quantity(),acceleration_.quantity(),0.5*dt);

    // used for updating change in momentum from mass matrix change
    atc_->apply_inverse_mass_matrix(nodalAtomicMomentum,
                                    nodalAtomicVelocityOld_,
                                    VELOCITY);
    nodalAtomicMomentumOld_ = nodalAtomicMomentum;

    // get nodal momentum for second part of force update
    nodalAtomicForce_ = nodalAtomicMomentum;
    nodalAtomicForce_ *= -1.;

    // update nodal displacements
    explicit_1(displacement_.set_quantity(),velocity_.quantity(),dt);
  }

  //--------------------------------------------------------
  //  post_final_integrate2
  //    second time integration computations
  //    after Verlet step 2
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::post_final_integrate2(double dt)
  {
    // atomic contributions to change in momentum
    // compute change in restricted atomic momentum
    nodalAtomicForce_ += nodalAtomicMomentum_->quantity();

    // update FE temperature with change in temperature from MD
    compute_velocity_delta(nodalAtomicForce_,dt);
    velocity_ += atomicVelocityDelta_.quantity();

    // approximation to power for output
    nodalAtomicForce_ /= 0.5*dt;
    timeFilter_->apply_post_step1(nodalAtomicForceFiltered_.set_quantity(),
                                  nodalAtomicForce_,dt);

    // change to velocity from FE dynamics
    atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
                                    acceleration_.set_quantity(),
                                    VELOCITY);
    explicit_1(velocity_.set_quantity(),acceleration_.quantity(),0.5*dt);
  }
  //--------------------------------------------------------
  //  post_process
  //    post processing of variables before output
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::post_process()
  {
    nodalAtomicDisplacementOut_ = nodalAtomicDisplacement_->quantity();
    nodalAtomicVelocityOut_ = nodalAtomicVelocity_->quantity();
  }

  //--------------------------------------------------------
  //  output
  //    add variables to output list
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::output(OUTPUT_LIST & outputData)
  {
    if ((atc_->lammps_interface())->rank_zero()) {
      outputData["NodalAtomicForce"] = & nodalAtomicForce_;
    }
  }

  //--------------------------------------------------------
  //  finish
  //    finalize state of nodal atomic quantities
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::finish()
  {
    post_process();
  }

  //--------------------------------------------------------
  //  compute_old_time_data
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::compute_old_time_data()
  {
    const DENS_MAT & myNodalAtomicMomentum(nodalAtomicMomentum_->quantity());
    atc_->apply_inverse_mass_matrix(myNodalAtomicMomentum,
                                    nodalAtomicVelocityOld_,
                                    VELOCITY);
    nodalAtomicMomentumOld_ = myNodalAtomicMomentum;
  }

  //--------------------------------------------------------
  //  compute_velocity_delta
  //--------------------------------------------------------
  void ElasticTimeIntegratorFractionalStep::compute_velocity_delta(const DENS_MAT & atomicMomentumDelta,
                                                                   double /* dt */)
  {
    DENS_MAT & myAtomicVelocityDelta(atomicVelocityDelta_.set_quantity());
    myAtomicVelocityDelta = nodalAtomicMomentumOld_ + atomicMomentumDelta;
    atc_->apply_inverse_mass_matrix(myAtomicVelocityDelta,
                                    VELOCITY);
    myAtomicVelocityDelta += -1.*nodalAtomicVelocityOld_;
  }
  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class FluidsTimeIntegratorGear
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //        Grab data from ATC
  //--------------------------------------------------------

  FluidsTimeIntegratorGear::FluidsTimeIntegratorGear(MomentumTimeIntegrator * momentumTimeIntegrator) :
    MomentumIntegrationMethod(momentumTimeIntegrator),
    nodalAtomicForceFiltered_(momentumTimeIntegrator->nodal_atomic_force_filtered()),
    nodalAtomicMomentum_(nullptr),
    nodalAtomicMomentumFiltered_(momentumTimeIntegrator->nodal_atomic_momentum_filtered()),
    atomicVelocityDelta_(atc_->num_nodes(),atc_->nsd()),
    nodalAtomicMomentumOld_(atc_->num_nodes(),atc_->nsd()),
    nodalAtomicVelocityOld_(atc_->num_nodes(),atc_->nsd()),
    velocity2Roc_(atc_->field_2roc(VELOCITY))
  {
    // do nothing
  }

  //--------------------------------------------------------
  //  construct_transfers
  //        Grab existing managed quantities,
  //        create the rest
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::construct_transfers()
  {
    MomentumIntegrationMethod::construct_transfers();
    InterscaleManager & interscaleManager(atc_->interscale_manager());
    nodalAtomicMomentum_ = interscaleManager.dense_matrix("NodalAtomicMomentum");
  }

  //--------------------------------------------------------
  //  initialize
  //        initialize all data
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::initialize()
  {
    MomentumIntegrationMethod::initialize();

    // initial power to zero
    nodalAtomicForce_.reset(atc_->num_nodes(),atc_->nsd());

    // sets up time filter for cases where variables temporally filtered
    // this time integrator should use Crank-Nicholson filter for 2nd order accuracy
    TimeFilterManager * timeFilterManager = atc_->time_filter_manager();
    if (timeFilterManager->need_reset()) {
      // the form of this integrator implies no time filters that require history data can be used
      timeFilter_->initialize();
    }

    // sets up time filter for post-processing the filtered power
    // this time integrator should use an explicit-implicit filter
    // to mirror the 2nd order Verlet integration scheme
    // It requires no history information so initial value just sizes arrays
    if (!timeFilterManager->end_equilibrate()) {
      // implies an initial condition of the instantaneous atomic energy
      // for the corresponding filtered variable, consistent with the temperature
      nodalAtomicMomentumFiltered_ = nodalAtomicMomentum_->quantity();
      nodalAtomicForceFiltered_.reset(atc_->num_nodes(),atc_->nsd());
    }
  }

  //--------------------------------------------------------
  //  pre_initial_integrate1
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::pre_initial_integrate1(double dt)
  {
    const DENS_MAT & myNodalAtomicMomentum(nodalAtomicMomentum_->quantity());
    // updated filtered momentum using explicit-implicit scheme
    timeFilter_->apply_pre_step1(nodalAtomicMomentumFiltered_.set_quantity(),
                                 myNodalAtomicMomentum,dt);
  }

  //--------------------------------------------------------
  //  pre_initial_integrate2
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::pre_initial_integrate2(double dt)
  {
    // used for updating change in velocity from mass matrix change
    this->compute_old_time_data();

    // update FE contributions
    apply_gear_predictor(dt);

    // update filtered nodal atomic force

    //      that way kinetostat and integrator can be consistent
    timeFilter_->apply_pre_step1(nodalAtomicForceFiltered_.set_quantity(),
                                 nodalAtomicForce_,dt);

    // store current momentum for use later
    nodalAtomicForce_ = nodalAtomicMomentum_->quantity();
    nodalAtomicForce_ *= -1.;
  }

  //--------------------------------------------------------
  //  pre_final_integrate1
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::pre_final_integrate1(double dt)
  {

    //      before the new rhs is computed but after atomic velocity is updated.
    // compute change in restricted atomic momentum
    nodalAtomicForce_ += nodalAtomicMomentum_->quantity();

    // update FE velocity with change in velocity from MD
    compute_velocity_delta(nodalAtomicForce_,dt);
    velocity_ += atomicVelocityDelta_.quantity();

    // approximation to force for output
    nodalAtomicForce_ /= dt;
    timeFilter_->apply_post_step1(nodalAtomicForceFiltered_.set_quantity(),
                                  nodalAtomicForce_,dt);

    // make sure nodes are fixed
    atc_->set_fixed_nodes();
  }

  //--------------------------------------------------------
  //  post_final_integrate1
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::post_final_integrate1(double dt)
  {
    // Finish updating temperature with FE contributions
    atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
                                    _velocityResidual_,VELOCITY);
    _velocityResidual_ -= acceleration_.quantity();
    _velocityResidual_ *= dt;
    apply_gear_corrector(_velocityResidual_,dt);
  }

  //--------------------------------------------------------
  //  post_process
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::post_final_integrate2(double dt)
  {
    // update filtered atomic energy
    timeFilter_->apply_post_step1(nodalAtomicMomentumFiltered_.set_quantity(),
                                  nodalAtomicMomentum_->quantity(),dt);
  }

  //--------------------------------------------------------
  //  output
  //    add variables to output list
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::post_process()
  {
    nodalAtomicForceOut_ = nodalAtomicForce_;
    nodalAtomicVelocityOut_ = nodalAtomicVelocity_->quantity();
  }

  //--------------------------------------------------------
  //  output
  //    add variables to output list
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::output(OUTPUT_LIST & outputData)
  {
    if ((atc_->lammps_interface())->rank_zero()) {
      outputData["NodalAtomicForce"] = & nodalAtomicForce_;
    }
  }

  //--------------------------------------------------------
  //  finish
  //    finalize state of nodal atomic quantities
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::finish()
  {
    post_process();
  }

  //--------------------------------------------------------
  //  apply_gear_predictor
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::apply_gear_predictor(double dt)
  {
    gear1_3_predict(velocity_.set_quantity(),
                    acceleration_.set_quantity(),
                    velocity2Roc_.quantity(),dt);
  }

  //--------------------------------------------------------
  //  apply_gear_corrector
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::apply_gear_corrector(const DENS_MAT & residual, double dt)
  {
    gear1_3_correct(velocity_.set_quantity(),
                    acceleration_.set_quantity(),
                    velocity2Roc_.set_quantity(),
                    residual,dt);
  }

  //--------------------------------------------------------
  //  compute_old_time_data
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::compute_old_time_data()
  {
    const DENS_MAT & myNodalAtomicMomentum(nodalAtomicMomentum_->quantity());
    atc_->apply_inverse_mass_matrix(myNodalAtomicMomentum,
                                    nodalAtomicVelocityOld_,
                                    VELOCITY);
    nodalAtomicMomentumOld_ = myNodalAtomicMomentum;
  }

  //--------------------------------------------------------
  //  compute_velocity_delta
  //--------------------------------------------------------
  void FluidsTimeIntegratorGear::compute_velocity_delta(const DENS_MAT & atomicMomentumDelta,
                                                        double /* dt */)
  {
    DENS_MAT & myAtomicVelocityDelta(atomicVelocityDelta_.set_quantity());
    myAtomicVelocityDelta = nodalAtomicMomentumOld_ + atomicMomentumDelta;
    atc_->apply_inverse_mass_matrix(myAtomicVelocityDelta,
                                    VELOCITY);
    myAtomicVelocityDelta -= nodalAtomicVelocityOld_;
  }
};