1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
// ATC transfer headers
#include "ElasticTimeIntegrator.h"
#include "ATC_Coupling.h"
#include "TimeFilter.h"
#include "ATC_Error.h"
#include "PerAtomQuantityLibrary.h"
namespace ATC {
//--------------------------------------------------------
//--------------------------------------------------------
// Class MomentumTimeIntegrator
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
MomentumTimeIntegrator::MomentumTimeIntegrator(ATC_Coupling * atc,
TimeIntegrationType timeIntegrationType) :
TimeIntegrator(atc, timeIntegrationType)
{
// do nothing
}
//--------------------------------------------------------
// modify
// parses inputs and modifies state of the integrator
//--------------------------------------------------------
bool MomentumTimeIntegrator::modify(int /* narg */, char **arg)
{
bool foundMatch = false;
int argIndex = 0;
// time integration scheme
/*! \page man_momentum_time_integration fix_modify AtC time_integration (momentum)
\section syntax
fix_modify AtC time_integration <descriptor> \n
- descriptor (string) = time integration type \n
various time integration methods for the finite elements\n
\section description
verlet - atomic velocity update with 2nd order Verlet, nodal temperature update with 2nd order Verlet, kinetostats based on controlling force \n
fractional_step - atomic velocity update with 2nd order Verlet, mixed nodal momentum update, 2nd order Verlet for continuum and exact 2nd order Verlet for atomic contributions, kinetostats based on controlling discrete momentum changes\n
gear - atomic velocity update with 2nd order Verlet, nodal temperature update with 3rd or 4th order Gear, kinetostats based on controlling power \n
\section examples
<TT> fix_modify atc time_integration verlet </TT> \n
<TT> fix_modify atc time_integration fractional_step </TT> \n
\section description
\section related
see \ref man_fix_atc
\section default
none
*/
if (strcmp(arg[argIndex],"verlet")==0) {
timeIntegrationType_ = VERLET;
needReset_ = true;
foundMatch = true;
}
else if (strcmp(arg[argIndex],"fractional_step")==0) {
timeIntegrationType_ = FRACTIONAL_STEP;
needReset_ = true;
foundMatch = true;
}
else if (strcmp(arg[argIndex],"gear")==0) {
timeIntegrationType_ = GEAR;
needReset_ = true;
foundMatch = true;
}
return foundMatch;
}
//--------------------------------------------------------
// construct_methods
// creates algorithm objects
//--------------------------------------------------------
void MomentumTimeIntegrator::construct_methods()
{
if (atc_->reset_methods()) {
if (timeIntegrationMethod_)
delete timeIntegrationMethod_;
if (timeFilterManager_->need_reset()) {
switch (timeIntegrationType_) {
case VERLET:
timeFilter_ = timeFilterManager_->construct(TimeFilterManager::IMPLICIT);
atc_->set_mass_mat_time_filter(MOMENTUM,TimeFilterManager::IMPLICIT);
break;
case FRACTIONAL_STEP:
case GEAR:
timeFilter_ = timeFilterManager_->construct(TimeFilterManager::EXPLICIT_IMPLICIT);
atc_->set_mass_mat_time_filter(MOMENTUM,TimeFilterManager::EXPLICIT_IMPLICIT);
break;
default:
throw ATC_Error("Unknown time integration type in ThermalTimeIntegrator::Initialize()");
}
}
if (timeFilterManager_->filter_dynamics()) {
switch (timeIntegrationType_) {
case VERLET: {
timeIntegrationMethod_ = new ElasticTimeIntegratorVerletFiltered(this);
break;
}
default:
throw ATC_Error("Unknown time integration type in MomentumTimeIntegrator::Initialize()");
}
}
else {
switch (timeIntegrationType_) {
case VERLET: {
timeIntegrationMethod_ = new ElasticTimeIntegratorVerlet(this);
break;
}
case FRACTIONAL_STEP: {
timeIntegrationMethod_ = new ElasticTimeIntegratorFractionalStep(this);
break;
}
case GEAR: {
timeIntegrationMethod_ = new FluidsTimeIntegratorGear(this);
break;
}
default:
throw ATC_Error("Unknown time integration type in MomentumTimeIntegrator::Initialize()");
}
}
}
}
//--------------------------------------------------------
// pack_fields
// add persistent variables to data list
//--------------------------------------------------------
void MomentumTimeIntegrator::pack_fields(RESTART_LIST & data)
{
data["NodalAtomicForceFiltered"] = & nodalAtomicForceFiltered_.set_quantity();
data["NodalAtomicMomentumFiltered"] = & nodalAtomicMomentumFiltered_.set_quantity();
TimeIntegrator::pack_fields(data);
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class MomentumIntegrationMethod
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
// Grab data from ATC
//--------------------------------------------------------
MomentumIntegrationMethod::MomentumIntegrationMethod(MomentumTimeIntegrator * momentumTimeIntegrator) :
TimeIntegrationMethod(momentumTimeIntegrator),
timeFilter_(timeIntegrator_->time_filter()),
velocity_(atc_->field(VELOCITY)),
acceleration_(atc_->field_roc(VELOCITY)),
nodalAtomicVelocityOut_(atc_->nodal_atomic_field(VELOCITY)),
velocityRhs_(atc_->field_rhs(VELOCITY)),
nodalAtomicForceOut_(atc_->nodal_atomic_field_roc(VELOCITY))
{
// do nothing
}
//--------------------------------------------------------
// construct_transfers
// Grab existing managed quantities,
// create the rest
//--------------------------------------------------------
void MomentumIntegrationMethod::construct_transfers()
{
InterscaleManager & interscaleManager(atc_->interscale_manager());
nodalAtomicVelocity_ = interscaleManager.dense_matrix("NodalAtomicVelocity");
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class ElasticTimeIntegratorVerlet
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ElasticTimeIntegratorVerlet::ElasticTimeIntegratorVerlet(MomentumTimeIntegrator * momentumTimeIntegrator) :
MomentumIntegrationMethod(momentumTimeIntegrator),
displacement_(atc_->field(DISPLACEMENT)),
nodalAtomicDisplacementOut_(atc_->nodal_atomic_field(DISPLACEMENT)),
nodalAtomicForceFiltered_(momentumTimeIntegrator->nodal_atomic_force_filtered()),
nodalAtomicDisplacement_(nullptr),
nodalAtomicForce_(nullptr)
{
// do nothing
}
//--------------------------------------------------------
// construct_transfers
// Grab existing managed quantities,
// create the rest
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::construct_transfers()
{
MomentumIntegrationMethod::construct_transfers();
InterscaleManager & interscaleManager = atc_->interscale_manager();
nodalAtomicDisplacement_ = interscaleManager.dense_matrix("NodalAtomicDisplacement");
nodalAtomicForce_ = interscaleManager.dense_matrix("NodalAtomicForce");
}
//--------------------------------------------------------
// initialize
// initialize all data
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::initialize()
{
MomentumIntegrationMethod::initialize();
// sets up time filter for cases where variables temporally filtered
// this time integrator should use an implicit filter
TimeFilterManager * timeFilterManager = (timeIntegrator_->atc())->time_filter_manager();
if (timeFilterManager->need_reset()) {
timeFilter_->initialize(nodalAtomicForce_->quantity());
}
if (!(timeFilterManager->end_equilibrate())) {
nodalAtomicForceFiltered_.reset(atc_->num_nodes(),atc_->nsd());
}
if (!(timeFilterManager->filter_dynamics())){
//post_process();
//compute_nodal_forces(velocityRhs_.set_quantity());
velocityRhs_ = nodalAtomicForce_->quantity();
}
}
//--------------------------------------------------------
// pre_initial_integrate1
// time integration before Verlet step 1
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::pre_initial_integrate1(double dt)
{
explicit_1(velocity_.set_quantity(),acceleration_.quantity(),.5*dt);
}
//--------------------------------------------------------
// post_initial_integrate1
// time integration after Verlet step 1
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::post_initial_integrate1(double dt)
{
// for improved accuracy, but this would be inconsistent with
// the atomic integration scheme
explicit_1(displacement_.set_quantity(),velocity_.quantity(),dt);
}
//--------------------------------------------------------
// pre_final_integrate1
// first time integration computations
// before Verlet step 2
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::pre_final_integrate1(double dt)
{
// integrate filtered atomic force
timeFilter_->apply_post_step2(nodalAtomicForceFiltered_.set_quantity(),
nodalAtomicForce_->quantity(),dt);
}
//--------------------------------------------------------
// post_final_integrate2
// second time integration computations
// after Verlet step 2
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::post_final_integrate2(double dt)
{
atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
acceleration_.set_quantity(),
VELOCITY);
explicit_1(velocity_.set_quantity(),acceleration_.quantity(),.5*dt);
}
//--------------------------------------------------------
// add_to_rhs
// add integrated atomic force contributions
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::add_to_rhs()
{
// Compute MD contribution to FEM equation
velocityRhs_ += nodalAtomicForce_->quantity();
}
//--------------------------------------------------------
// post_process
// post processing of variables before output
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::post_process()
{
nodalAtomicDisplacementOut_ = nodalAtomicDisplacement_->quantity();
nodalAtomicVelocityOut_ = nodalAtomicVelocity_->quantity();
}
//--------------------------------------------------------
// output
// add variables to output list
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::output(OUTPUT_LIST & outputData)
{
DENS_MAT & nodalAtomicForce(nodalAtomicForce_->set_quantity());
if ((atc_->lammps_interface())->rank_zero()) {
outputData["NodalAtomicForce"] = &nodalAtomicForce;
}
}
//--------------------------------------------------------
// finish
// finalize state of nodal atomic quantities
//--------------------------------------------------------
void ElasticTimeIntegratorVerlet::finish()
{
post_process();
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class ElasticTimeIntegratorVerletFiltered
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ElasticTimeIntegratorVerletFiltered::ElasticTimeIntegratorVerletFiltered(MomentumTimeIntegrator * momentumTimeIntegrator) :
ElasticTimeIntegratorVerlet(momentumTimeIntegrator),
nodalAtomicAcceleration_(atc_->nodal_atomic_field_roc(VELOCITY))
{
// do nothing
}
//--------------------------------------------------------
// pre_initial_integrate1
// time integration before Verlet step 1
//--------------------------------------------------------
void ElasticTimeIntegratorVerletFiltered::pre_initial_integrate1(double dt)
{
explicit_1(velocity_.set_quantity(),acceleration_.quantity(),.5*dt);
explicit_1(nodalAtomicVelocityOut_.set_quantity(),nodalAtomicAcceleration_.quantity(),.5*dt);
}
//--------------------------------------------------------
// post_initial_integrate1
// time integration after Verlet step 1
//--------------------------------------------------------
void ElasticTimeIntegratorVerletFiltered::post_initial_integrate1(double dt)
{
// for improved accuracy, but this would be inconsistent with
// the atomic integration scheme
explicit_1(displacement_.set_quantity(),velocity_.quantity(),dt);
explicit_1(nodalAtomicDisplacementOut_.set_quantity(),nodalAtomicVelocityOut_.quantity(),dt);
}
//--------------------------------------------------------
// post_final_integrate2
// second time integration after Verlet step 2
//--------------------------------------------------------
void ElasticTimeIntegratorVerletFiltered::post_final_integrate2(double dt)
{
DENS_MAT velocityRoc(velocityRhs_.nRows(),velocityRhs_.nCols());
atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
acceleration_.set_quantity(),
VELOCITY);
explicit_1(velocity_.set_quantity(),acceleration_.quantity(),.5*dt);
atc_->apply_inverse_md_mass_matrix(nodalAtomicForceFiltered_.quantity(),
nodalAtomicAcceleration_.set_quantity(),
VELOCITY);
explicit_1(nodalAtomicVelocityOut_.set_quantity(),nodalAtomicAcceleration_.quantity(),.5*dt);
}
//--------------------------------------------------------
// add_to_rhs
// add integrated atomic force contributions
//--------------------------------------------------------
void ElasticTimeIntegratorVerletFiltered::add_to_rhs()
{
// MD contributions to FE equations
velocityRhs_ += nodalAtomicForceFiltered_.set_quantity();
}
//--------------------------------------------------------
// output
// add variables to output list
//--------------------------------------------------------
void ElasticTimeIntegratorVerletFiltered::output(OUTPUT_LIST & outputData)
{
DENS_MAT & nodalAtomicForce(nodalAtomicForceFiltered_.set_quantity());
if ((atc_->lammps_interface())->rank_zero()) {
outputData["NodalAtomicForce"] = &nodalAtomicForce;
}
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class ElasticTimeIntegratorFractionalStep
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
//--------------------------------------------------------
ElasticTimeIntegratorFractionalStep::ElasticTimeIntegratorFractionalStep(MomentumTimeIntegrator * momentumTimeIntegrator) :
MomentumIntegrationMethod(momentumTimeIntegrator),
displacement_(atc_->field(DISPLACEMENT)),
nodalAtomicDisplacementOut_(atc_->nodal_atomic_field(DISPLACEMENT)),
nodalAtomicForceFiltered_(momentumTimeIntegrator->nodal_atomic_force_filtered()),
nodalAtomicMomentum_(nullptr),
nodalAtomicMomentumFiltered_(momentumTimeIntegrator->nodal_atomic_momentum_filtered()),
nodalAtomicDisplacement_(nullptr),
nodalAtomicMomentumOld_(atc_->num_nodes(),atc_->nsd()),
nodalAtomicVelocityOld_(atc_->num_nodes(),atc_->nsd())
{
// do nothing
}
//--------------------------------------------------------
// construct_transfers
// Grab existing managed quantities,
// create the rest
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::construct_transfers()
{
MomentumIntegrationMethod::construct_transfers();
InterscaleManager & interscaleManager = atc_->interscale_manager();
nodalAtomicMomentum_ = interscaleManager.dense_matrix("NodalAtomicMomentum");
nodalAtomicDisplacement_ = interscaleManager.dense_matrix("NodalAtomicDisplacement");
}
//--------------------------------------------------------
// initialize
// initialize all data
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::initialize()
{
MomentumIntegrationMethod::initialize();
// initial force to zero
nodalAtomicForce_.reset(atc_->num_nodes(),atc_->nsd());
// sets up time filter for cases where variables temporally filtered
// this time integrator should use Crank-Nicholson filter for 2nd order accuracy
TimeFilterManager * timeFilterManager = (timeIntegrator_->atc())->time_filter_manager();
if (timeFilterManager->need_reset()) {
// the form of this integrator implies no time filters that require history data can be used
timeFilter_->initialize();
}
// sets up time filter for post-processing the filtered power
// this time integrator should use an explicit-implicit filter
// to mirror the 2nd order Verlet integration scheme
// It requires no history information so initial value just sizes arrays
if (!(timeFilterManager->end_equilibrate())) {
// implies an initial condition of the instantaneous atomic energy
nodalAtomicMomentumFiltered_ = nodalAtomicMomentum_->quantity();
nodalAtomicForceFiltered_.reset(atc_->num_nodes(),atc_->nsd());
}
}
//--------------------------------------------------------
// pre_initial_integrate1
// time integration before Verlet step 1, used to
// provide the baseline momentum and displacement to
// quantify the change over the timestep
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::pre_initial_integrate1(double dt)
{
// initialize changes in momentum
const DENS_MAT & myNodalAtomicMomentum(nodalAtomicMomentum_->quantity());
// updated filtered energy using explicit-implicit scheme
timeFilter_->apply_pre_step1(nodalAtomicMomentumFiltered_.set_quantity(),
myNodalAtomicMomentum,dt);
}
//--------------------------------------------------------
// pre_initial_integrate2
// second time integration after kinetostat application
// to compute MD contributions to momentum change
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::pre_initial_integrate2(double dt)
{
// used for updating change in velocity from mass matrix change
this->compute_old_time_data();
// update filtered nodal atomic force
timeFilter_->apply_pre_step1(nodalAtomicForceFiltered_.set_quantity(),
nodalAtomicForce_,dt);
// store current force for use later
nodalAtomicForce_ = nodalAtomicMomentum_->quantity();
nodalAtomicForce_ *= -1.;
}
//--------------------------------------------------------
// post_initial_integrate1
// time integration after Verlet step 1
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::post_initial_integrate1(double dt)
{
// atomic contributions to change in momentum
// compute change in restricted atomic momentum
const DENS_MAT & nodalAtomicMomentum(nodalAtomicMomentum_->quantity());
nodalAtomicForce_ += nodalAtomicMomentum;
// update FE velocity with change in velocity from MD
DENS_MAT & atomicVelocityDelta(atomicVelocityDelta_.set_quantity());
atc_->apply_inverse_mass_matrix(nodalAtomicForce_,
atomicVelocityDelta,
VELOCITY);
velocity_ += atomicVelocityDelta;
// approximation to force for output
nodalAtomicForce_ /= 0.5*dt;
timeFilter_->apply_post_step1(nodalAtomicForceFiltered_.set_quantity(),
nodalAtomicForce_,dt);
// change to velocity from FE dynamics
atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
acceleration_.set_quantity(),
VELOCITY);
explicit_1(velocity_.set_quantity(),acceleration_.quantity(),0.5*dt);
// used for updating change in momentum from mass matrix change
atc_->apply_inverse_mass_matrix(nodalAtomicMomentum,
nodalAtomicVelocityOld_,
VELOCITY);
nodalAtomicMomentumOld_ = nodalAtomicMomentum;
// get nodal momentum for second part of force update
nodalAtomicForce_ = nodalAtomicMomentum;
nodalAtomicForce_ *= -1.;
// update nodal displacements
explicit_1(displacement_.set_quantity(),velocity_.quantity(),dt);
}
//--------------------------------------------------------
// post_final_integrate2
// second time integration computations
// after Verlet step 2
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::post_final_integrate2(double dt)
{
// atomic contributions to change in momentum
// compute change in restricted atomic momentum
nodalAtomicForce_ += nodalAtomicMomentum_->quantity();
// update FE temperature with change in temperature from MD
compute_velocity_delta(nodalAtomicForce_,dt);
velocity_ += atomicVelocityDelta_.quantity();
// approximation to power for output
nodalAtomicForce_ /= 0.5*dt;
timeFilter_->apply_post_step1(nodalAtomicForceFiltered_.set_quantity(),
nodalAtomicForce_,dt);
// change to velocity from FE dynamics
atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
acceleration_.set_quantity(),
VELOCITY);
explicit_1(velocity_.set_quantity(),acceleration_.quantity(),0.5*dt);
}
//--------------------------------------------------------
// post_process
// post processing of variables before output
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::post_process()
{
nodalAtomicDisplacementOut_ = nodalAtomicDisplacement_->quantity();
nodalAtomicVelocityOut_ = nodalAtomicVelocity_->quantity();
}
//--------------------------------------------------------
// output
// add variables to output list
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::output(OUTPUT_LIST & outputData)
{
if ((atc_->lammps_interface())->rank_zero()) {
outputData["NodalAtomicForce"] = & nodalAtomicForce_;
}
}
//--------------------------------------------------------
// finish
// finalize state of nodal atomic quantities
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::finish()
{
post_process();
}
//--------------------------------------------------------
// compute_old_time_data
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::compute_old_time_data()
{
const DENS_MAT & myNodalAtomicMomentum(nodalAtomicMomentum_->quantity());
atc_->apply_inverse_mass_matrix(myNodalAtomicMomentum,
nodalAtomicVelocityOld_,
VELOCITY);
nodalAtomicMomentumOld_ = myNodalAtomicMomentum;
}
//--------------------------------------------------------
// compute_velocity_delta
//--------------------------------------------------------
void ElasticTimeIntegratorFractionalStep::compute_velocity_delta(const DENS_MAT & atomicMomentumDelta,
double /* dt */)
{
DENS_MAT & myAtomicVelocityDelta(atomicVelocityDelta_.set_quantity());
myAtomicVelocityDelta = nodalAtomicMomentumOld_ + atomicMomentumDelta;
atc_->apply_inverse_mass_matrix(myAtomicVelocityDelta,
VELOCITY);
myAtomicVelocityDelta += -1.*nodalAtomicVelocityOld_;
}
//--------------------------------------------------------
//--------------------------------------------------------
// Class FluidsTimeIntegratorGear
//--------------------------------------------------------
//--------------------------------------------------------
//--------------------------------------------------------
// Constructor
// Grab data from ATC
//--------------------------------------------------------
FluidsTimeIntegratorGear::FluidsTimeIntegratorGear(MomentumTimeIntegrator * momentumTimeIntegrator) :
MomentumIntegrationMethod(momentumTimeIntegrator),
nodalAtomicForceFiltered_(momentumTimeIntegrator->nodal_atomic_force_filtered()),
nodalAtomicMomentum_(nullptr),
nodalAtomicMomentumFiltered_(momentumTimeIntegrator->nodal_atomic_momentum_filtered()),
atomicVelocityDelta_(atc_->num_nodes(),atc_->nsd()),
nodalAtomicMomentumOld_(atc_->num_nodes(),atc_->nsd()),
nodalAtomicVelocityOld_(atc_->num_nodes(),atc_->nsd()),
velocity2Roc_(atc_->field_2roc(VELOCITY))
{
// do nothing
}
//--------------------------------------------------------
// construct_transfers
// Grab existing managed quantities,
// create the rest
//--------------------------------------------------------
void FluidsTimeIntegratorGear::construct_transfers()
{
MomentumIntegrationMethod::construct_transfers();
InterscaleManager & interscaleManager(atc_->interscale_manager());
nodalAtomicMomentum_ = interscaleManager.dense_matrix("NodalAtomicMomentum");
}
//--------------------------------------------------------
// initialize
// initialize all data
//--------------------------------------------------------
void FluidsTimeIntegratorGear::initialize()
{
MomentumIntegrationMethod::initialize();
// initial power to zero
nodalAtomicForce_.reset(atc_->num_nodes(),atc_->nsd());
// sets up time filter for cases where variables temporally filtered
// this time integrator should use Crank-Nicholson filter for 2nd order accuracy
TimeFilterManager * timeFilterManager = atc_->time_filter_manager();
if (timeFilterManager->need_reset()) {
// the form of this integrator implies no time filters that require history data can be used
timeFilter_->initialize();
}
// sets up time filter for post-processing the filtered power
// this time integrator should use an explicit-implicit filter
// to mirror the 2nd order Verlet integration scheme
// It requires no history information so initial value just sizes arrays
if (!timeFilterManager->end_equilibrate()) {
// implies an initial condition of the instantaneous atomic energy
// for the corresponding filtered variable, consistent with the temperature
nodalAtomicMomentumFiltered_ = nodalAtomicMomentum_->quantity();
nodalAtomicForceFiltered_.reset(atc_->num_nodes(),atc_->nsd());
}
}
//--------------------------------------------------------
// pre_initial_integrate1
//--------------------------------------------------------
void FluidsTimeIntegratorGear::pre_initial_integrate1(double dt)
{
const DENS_MAT & myNodalAtomicMomentum(nodalAtomicMomentum_->quantity());
// updated filtered momentum using explicit-implicit scheme
timeFilter_->apply_pre_step1(nodalAtomicMomentumFiltered_.set_quantity(),
myNodalAtomicMomentum,dt);
}
//--------------------------------------------------------
// pre_initial_integrate2
//--------------------------------------------------------
void FluidsTimeIntegratorGear::pre_initial_integrate2(double dt)
{
// used for updating change in velocity from mass matrix change
this->compute_old_time_data();
// update FE contributions
apply_gear_predictor(dt);
// update filtered nodal atomic force
// that way kinetostat and integrator can be consistent
timeFilter_->apply_pre_step1(nodalAtomicForceFiltered_.set_quantity(),
nodalAtomicForce_,dt);
// store current momentum for use later
nodalAtomicForce_ = nodalAtomicMomentum_->quantity();
nodalAtomicForce_ *= -1.;
}
//--------------------------------------------------------
// pre_final_integrate1
//--------------------------------------------------------
void FluidsTimeIntegratorGear::pre_final_integrate1(double dt)
{
// before the new rhs is computed but after atomic velocity is updated.
// compute change in restricted atomic momentum
nodalAtomicForce_ += nodalAtomicMomentum_->quantity();
// update FE velocity with change in velocity from MD
compute_velocity_delta(nodalAtomicForce_,dt);
velocity_ += atomicVelocityDelta_.quantity();
// approximation to force for output
nodalAtomicForce_ /= dt;
timeFilter_->apply_post_step1(nodalAtomicForceFiltered_.set_quantity(),
nodalAtomicForce_,dt);
// make sure nodes are fixed
atc_->set_fixed_nodes();
}
//--------------------------------------------------------
// post_final_integrate1
//--------------------------------------------------------
void FluidsTimeIntegratorGear::post_final_integrate1(double dt)
{
// Finish updating temperature with FE contributions
atc_->apply_inverse_mass_matrix(velocityRhs_.quantity(),
_velocityResidual_,VELOCITY);
_velocityResidual_ -= acceleration_.quantity();
_velocityResidual_ *= dt;
apply_gear_corrector(_velocityResidual_,dt);
}
//--------------------------------------------------------
// post_process
//--------------------------------------------------------
void FluidsTimeIntegratorGear::post_final_integrate2(double dt)
{
// update filtered atomic energy
timeFilter_->apply_post_step1(nodalAtomicMomentumFiltered_.set_quantity(),
nodalAtomicMomentum_->quantity(),dt);
}
//--------------------------------------------------------
// output
// add variables to output list
//--------------------------------------------------------
void FluidsTimeIntegratorGear::post_process()
{
nodalAtomicForceOut_ = nodalAtomicForce_;
nodalAtomicVelocityOut_ = nodalAtomicVelocity_->quantity();
}
//--------------------------------------------------------
// output
// add variables to output list
//--------------------------------------------------------
void FluidsTimeIntegratorGear::output(OUTPUT_LIST & outputData)
{
if ((atc_->lammps_interface())->rank_zero()) {
outputData["NodalAtomicForce"] = & nodalAtomicForce_;
}
}
//--------------------------------------------------------
// finish
// finalize state of nodal atomic quantities
//--------------------------------------------------------
void FluidsTimeIntegratorGear::finish()
{
post_process();
}
//--------------------------------------------------------
// apply_gear_predictor
//--------------------------------------------------------
void FluidsTimeIntegratorGear::apply_gear_predictor(double dt)
{
gear1_3_predict(velocity_.set_quantity(),
acceleration_.set_quantity(),
velocity2Roc_.quantity(),dt);
}
//--------------------------------------------------------
// apply_gear_corrector
//--------------------------------------------------------
void FluidsTimeIntegratorGear::apply_gear_corrector(const DENS_MAT & residual, double dt)
{
gear1_3_correct(velocity_.set_quantity(),
acceleration_.set_quantity(),
velocity2Roc_.set_quantity(),
residual,dt);
}
//--------------------------------------------------------
// compute_old_time_data
//--------------------------------------------------------
void FluidsTimeIntegratorGear::compute_old_time_data()
{
const DENS_MAT & myNodalAtomicMomentum(nodalAtomicMomentum_->quantity());
atc_->apply_inverse_mass_matrix(myNodalAtomicMomentum,
nodalAtomicVelocityOld_,
VELOCITY);
nodalAtomicMomentumOld_ = myNodalAtomicMomentum;
}
//--------------------------------------------------------
// compute_velocity_delta
//--------------------------------------------------------
void FluidsTimeIntegratorGear::compute_velocity_delta(const DENS_MAT & atomicMomentumDelta,
double /* dt */)
{
DENS_MAT & myAtomicVelocityDelta(atomicVelocityDelta_.set_quantity());
myAtomicVelocityDelta = nodalAtomicMomentumOld_ + atomicMomentumDelta;
atc_->apply_inverse_mass_matrix(myAtomicVelocityDelta,
VELOCITY);
myAtomicVelocityDelta -= nodalAtomicVelocityOld_;
}
};
|