File: ElectronChargeDensity.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (269 lines) | stat: -rw-r--r-- 10,122 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#ifndef ELECTRON_DENSITY_H
#define ELECTRON_DENSITY_H

#include <map>
#include <string>
#include <fstream>
#include "ATC_TypeDefs.h"
#include "Function.h"

const double tol = 1.e-8;

namespace ATC {

  /**
   *  @class  ElectronChargeDensity
   *  @brief  Base class for models of extrinsic electric charges
   */

  class ElectronChargeDensity
  {
    public:
      ElectronChargeDensity()   {};
      virtual ~ElectronChargeDensity() {};
      virtual bool electron_charge_density(const FIELD_MATS & /* fields */,
                                           DENS_MAT & /* flux */) const { return false; };


      virtual void D_electron_charge_density(const FieldName /* fieldName */,
                                             const FIELD_MATS & /* fields */,
                                             DENS_MAT & /* flux */) const
        { throw ATC_Error("Charge density D_electron_charge_density unimplemented function");}

      virtual void band_edge_potential(const FIELD_MATS & /* fields */,
                                       DENS_MAT & /* density */) const
        { throw ATC_Error("Charge density band_edge_potential unimplemented function");}
  };
  //-----------------------------------------------------------------------
  /**
   *  @class  ElectronChargeDensityInterpolation
   *  @brief  Class for models of electron charge density as a tabular function of electric potential
   */

  class ElectronChargeDensityInterpolation : public ElectronChargeDensity
  {
    public:
      ElectronChargeDensityInterpolation(std::fstream &matfile,std::map<std::string,double> & parameters);
      virtual ~ElectronChargeDensityInterpolation() {};
      virtual bool electron_charge_density(const FIELD_MATS &fields,
                                           DENS_MAT &flux) const
      {
        FIELD_MATS::const_iterator phi_field = fields.find(ELECTRIC_POTENTIAL);
        const DENS_MAT & phi = phi_field->second;
        int nNodes  = phi.nRows();
        flux.reset(nNodes,1,false);
        for (int i = 0; i < nNodes; i++) {  // a mapping of a vector
          flux(i,0) = n_.f(phi(i,0));
        }
        flux *= -1.;
        return true;
      };
      virtual void D_electron_charge_density(const FieldName /* field */,
                                             const FIELD_MATS &fields,
                                             DENS_MAT &coef) const
      {
        FIELD_MATS::const_iterator phi_field = fields.find(ELECTRIC_POTENTIAL);
        const DENS_MAT & phi = phi_field->second;
        int nNodes  = phi.nRows();
        coef.reset(nNodes,1,false);
        for (int i = 0; i < nNodes; i++) {
          coef(i,0) = n_.dfdt(phi(i,0));
          coef(i,0) = n_.dfdt(phi(i,0));
        }
        coef *= -1.;
      }
    private:
      InterpolationFunction n_;
  };
  //-----------------------------------------------------------------------
  /**
   *  @class  ElectronChargeDensityLinear
   *  @brief  Class for models of electron charge density proportional to electric potential
   */

  class ElectronChargeDensityLinear : public ElectronChargeDensity
  {
    public:
      ElectronChargeDensityLinear(std::fstream &matfile,std::map<std::string,double> & parameters);
      virtual ~ElectronChargeDensityLinear() {};
      virtual bool electron_charge_density(const FIELD_MATS &fields,
                                           DENS_MAT &flux) const
      {
        FIELD_MATS::const_iterator phi_field = fields.find(ELECTRIC_POTENTIAL);
        flux = phi_field->second;
        flux *= -C_;
        return true;
      };
      virtual void D_electron_charge_density(const FieldName /* field */,
                                             const FIELD_MATS &fields,
                                             DENS_MAT &coef) const
      {
        FIELD_MATS::const_iterator phi_field = fields.find(ELECTRIC_POTENTIAL);
        const DENS_MAT & phi = phi_field->second;
        int nNodes  = phi.nRows();
        coef.reset(nNodes,1,false);
        coef = -C_;
      }
    private:
      double C_;
  };
  //-----------------------------------------------------------------------
  /**
   *  @class  ElectronChargeDensityExponential
   *  @brief  Class for models of electron charge density dependent on difference between electric potential and the Fermi level n = n_i exp ( (phi-E_i) / kB T)
   */

  class ElectronChargeDensityExponential : public ElectronChargeDensity
  {
    public:
      ElectronChargeDensityExponential(std::fstream &matfile,std::map<std::string,double> & parameters);
      virtual ~ElectronChargeDensityExponential() {};

      double n(const double phi, double T)  const
      {
        return -intrinsicConcentration_*exp((phi-intrinsicEnergy_)/(kBeV_*T));
      }
      double dndphi(const double phi, double T)  const
      {
        return n(phi,T)/(kBeV_*T);
      }
      virtual bool electron_charge_density(const FIELD_MATS &fields,
                     DENS_MAT &density) const
      {
        FIELD_MATS::const_iterator phi_field = fields.find(ELECTRIC_POTENTIAL);
        FIELD_MATS::const_iterator T_field   = fields.find(TEMPERATURE);
        double T = 300;
        bool hasTref = (referenceTemperature_ > 0 );
        const DENS_MAT & phi = phi_field->second;
        int nNodes = phi.nRows();
        density.resize(nNodes,1);
        if (hasTref) {
          T = referenceTemperature_;
          for (int i = 0; i < nNodes; i++) {
            density(i,0) = n(phi(i,0),T); }
        }
        else {
          const DENS_MAT & temp = T_field->second;
          for (int i = 0; i < nNodes; i++) {
            density(i,0) = n(phi(i,0),temp(i,0)); }
        }
        density *= -1.;
        return true;
      };
      virtual void D_electron_charge_density(const FieldName /* field */,
                                             const FIELD_MATS &fields,
                                             DENS_MAT &coef) const
      {
        FIELD_MATS::const_iterator phi_field = fields.find(ELECTRIC_POTENTIAL);
        FIELD_MATS::const_iterator T_field   = fields.find(TEMPERATURE);
        double T = 300;
        bool hasTref = (referenceTemperature_ > 0 );
        const DENS_MAT & phi = phi_field->second;
        int nNodes = phi.nRows();
        coef.resize(nNodes,1);
        if (hasTref) {
          T = referenceTemperature_;
          for (int i = 0; i < nNodes; i++) {
            coef(i,0) = dndphi(phi(i,0),T); }
        }
        else {
          const DENS_MAT & temp = T_field->second;
          for (int i = 0; i < nNodes; i++) {
            coef(i,0) = dndphi(phi(i,0),temp(i,0)); }
        }
        coef *= -1.;
      };
    protected:
      double intrinsicConcentration_,intrinsicEnergy_;
      double referenceTemperature_;
  };

  //-----------------------------------------------------------------------
  /**
   *  @class  ElectronChargeDensityFermiDirac
   *  @brief  Class for models of electron charge density based on Fermi-Dirac statistics
   */

  class ElectronChargeDensityFermiDirac : public ElectronChargeDensity
  {
    public:
      ElectronChargeDensityFermiDirac(std::fstream &matfile,std::map<std::string,double> & parameters);
      virtual ~ElectronChargeDensityFermiDirac() {};
      double fermi_dirac(const double E, const double T) const
      {
        double f = 1.0;
        if      (T > 0)   f = 1.0 / ( exp((E-Ef_)/kBeV_/T)+1.0 );
        else if (E > Ef_) f = 0;
        return f;
      };
      virtual bool electron_charge_density(const FIELD_MATS &fields,
                                           DENS_MAT &density) const
      {
        // psi : the inhomogeneous solution
        FIELD_MATS::const_iterator psi_field = fields.find(ELECTRON_WAVEFUNCTION);

        const DENS_MAT & psi = psi_field->second;
        FIELD_MATS::const_iterator psis_field = fields.find(ELECTRON_WAVEFUNCTIONS);
        // if (psis_field==fields.end())
        //throw ATC_Error("Wavefunctions not defined");
        const DENS_MAT & psis = psis_field->second;
        FIELD_MATS::const_iterator E_field = fields.find(ELECTRON_WAVEFUNCTION_ENERGIES);
        const DENS_MAT & Es = E_field->second;
        FIELD_MATS::const_iterator T_field   = fields.find(ELECTRON_TEMPERATURE);
        const DENS_MAT & Ts = T_field->second;
        FIELD_MATS::const_iterator phi_field = fields.find(ELECTRIC_POTENTIAL);
        const DENS_MAT & phi = phi_field->second;

        int nNodes = psi.nRows();
        density.reset(nNodes,1);
        double T  = referenceTemperature_;
        int count = 0;
        for (int i = 0; i < nNodes; i++) {
          if (!hasReferenceTemperature_) { T = Ts(i,0); }
          int j = 0;
          for (j = 0; j < psis.nCols(); j++) {
            double E = Es(j,0); // Eigenvalue
            double f = fermi_dirac(E,T);
            if (f < tol) break;
            else  count++;
            density(i,0) -= psis(i,j)*psis(i,j)*f;  // < 0
          }
          if (donorIonization_) {
            double E = -1.0* phi(i,0);// units [eV] E = - |e| phi
            if ( E + Eb_ > Ef_+Ed_) density(i,0) += Nd_;  // > 0
          }
        }
        return true;
      };
      virtual void D_electron_charge_density(const FieldName /* fieldName */,
                                             const FIELD_MATS &fields,
                                             DENS_MAT &coef) const
      {
        FIELD_MATS::const_iterator phi_field = fields.find(ELECTRIC_POTENTIAL);
        const DENS_MAT & phi = phi_field->second;
        int nNodes  = phi.nRows();
        coef.reset(nNodes,1,false);
      }

      virtual void band_edge_potential(const FIELD_MATS &fields,
                                       DENS_MAT &density) const
      {
        FIELD_MATS::const_iterator p_field   = fields.find(ELECTRIC_POTENTIAL);
        const DENS_MAT & phi = p_field->second;
        int nNodes  = phi.nRows();
        density.reset(nNodes,1,false);
        density = Eb_;
      };

    protected:
      double Ef_;
      double referenceTemperature_;
      double Ed_, Nd_;
      double Eb_;
      bool hasReferenceTemperature_, donorIonization_;
  };
}

#endif