File: ElectronFlux.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (225 lines) | stat: -rw-r--r-- 7,313 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#ifndef ELECTRON_FLUX_H
#define ELECTRON_FLUX_H

#include <map>
#include <string>
#include "ATC_TypeDefs.h"

namespace ATC {

  /**
   *  @class  ElectronFlux
   *  @brief  Base class for the flux appearing in the electron density transport equation
   */

  class ElectronFlux
  {
    public:
      ElectronFlux();
      virtual ~ElectronFlux() {};
      /** computes flux */
      virtual void electron_flux(const FIELD_MATS &fields,
                                 const GRAD_FIELD_MATS & /* gradFields */,
                                       DENS_MAT_VEC &flux)
      {




        FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
        const DENS_MAT & etMat = etField->second;
        zeroWorkspace_.reset(etMat.nRows(),etMat.nCols());
        flux[0] = zeroWorkspace_;
        flux[1] = zeroWorkspace_;
        flux[2] = zeroWorkspace_;
      };
      void electron_convection(const FIELD_MATS &fields,
                                     DENS_MAT_VEC &flux)
      {
        FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
        FIELD_MATS::const_iterator evField = fields.find(ELECTRON_VELOCITY);
        const DENS_MAT & n = edField->second;
        const DENS_MAT & v = evField->second;
        const CLON_VEC vx(v,CLONE_COL,0);
        const CLON_VEC vy(v,CLONE_COL,1);
        const CLON_VEC vz(v,CLONE_COL,2);
        zeroWorkspace_.reset(v.nRows(),1);

        if (maskX_) {
          flux[0] = zeroWorkspace_;
        }
        else {
          flux[0] = vx;
          flux[0] *= n;  // scale by n
        }

        if (maskY_) {
          flux[1] = zeroWorkspace_;
        }
        else {
          flux[1] = vy;
          flux[1] *= n;
        }

        if (maskZ_) {
          flux[2] = zeroWorkspace_;
        }
        else {
          flux[2] = vz;
          flux[2] *= n;
        }

      };
    protected:
      bool maskX_, maskY_, maskZ_;
      DENS_MAT zeroWorkspace_;
  };
  //-----------------------------------------------------------------------

  /**
   *  @class  ElectronFluxLinear
   *  @brief  Class for drift-diffusion electron flux with linear dependency on the electron density gradient
   */

  class ElectronFluxLinear : public ElectronFlux
  {
    public:
      ElectronFluxLinear(std::fstream &matfile, std::map<std::string,double> & parameters);
      virtual ~ElectronFluxLinear() {};
      virtual void electron_flux(const FIELD_MATS &fields,
                                 const GRAD_FIELD_MATS &gradFields,
                                       DENS_MAT_VEC &flux)
      {
        FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
        GRAD_FIELD_MATS::const_iterator dEdField = gradFields.find(ELECTRON_DENSITY);
        GRAD_FIELD_MATS::const_iterator dPhiField = gradFields.find(ELECTRIC_POTENTIAL);
         // J_n = - \mu n E  - D grad n
        // note electrons move counter to electric field grad E = - grad \phi
        const DENS_MAT & n = edField->second;
        const DENS_MAT_VEC & dn   = dEdField->second;
        const DENS_MAT_VEC & dphi = dPhiField->second;

        //n.print("DENSITY");
        //for (int i = 0; i < 3; i++) {
        //  dn[i].print("GRAD N");
        //  dphi[i].print("GRAD PHI");
        //}
        //cout << "------------------------------------------------====\n";

        flux[0] = n;
        flux[1] = n;
        flux[2] = n;

        if (maskX_)
          flux[0] = 0.;
        else {
          flux[0] *= electronMobility_*dphi[0]; // scale by n to get : n \mu grad(\phi)
          flux[0] += -electronDiffusivity_* dn[0];
        }

        if (maskY_)
          flux[1] = 0.;
        else {
          flux[1] *= electronMobility_* dphi[1] ;
          flux[1] += -electronDiffusivity_* dn[1];
        }

        if (maskZ_)
          flux[2] = 0.;
        else {
          flux[2] *= electronMobility_*dphi[2];
          flux[2] += -electronDiffusivity_* dn[2];
        }

      };
    protected:
      double electronMobility_, electronDiffusivity_;
  };
  //-----------------------------------------------------------------------

  /**
   *  @class  ElectronFluxThermopower
   *  @brief  Class for defining the electron flux (i.e., current) to include the elctron velocity or have a electron temperature-dependent mobility
   */

  class ElectronFluxThermopower : public ElectronFlux
  {
    public:
      ElectronFluxThermopower(std::fstream &matfile,std::map<std::string,double> & parameters);
      virtual ~ElectronFluxThermopower() {};
      virtual void electron_flux(const FIELD_MATS &fields,
                                 const GRAD_FIELD_MATS &gradFields,
                                 DENS_MAT_VEC &flux)
      {
        if (fields.find(ELECTRON_VELOCITY)!=fields.end()) {
          // J_n = - e n v, note the electron charge e is unity
          electron_convection(fields,flux);
          flux[0] *= -1;
          flux[1] *= -1;
          flux[2] *= -1;
        }
        else {
          FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
          FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
          GRAD_FIELD_MATS::const_iterator dEdField = gradFields.find(ELECTRON_VELOCITY);
          GRAD_FIELD_MATS::const_iterator dPhiField = gradFields.find(ELECTRIC_POTENTIAL);
          GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);

          // J_n = - \mu n grad \phi  - \mu kB/e T_e grad n
          //       - \mu S n grad T_e - \mu kB/e n grad T_e
          const DENS_MAT & n   = edField->second;
          const DENS_MAT_VEC & dn   = dEdField->second;
          const DENS_MAT_VEC & dphi = dPhiField->second;
          const DENS_MAT_VEC & dT = dEtField->second;

          flux[0] = -electronMobility_*dphi[0];
          flux[1] = -electronMobility_*dphi[1];
          flux[2] = -electronMobility_*dphi[2];
          double coef = -electronMobility_*(seebeckCoef_ + kBeV_);
          flux[0] += coef* dT[0];
          flux[1] += coef* dT[1];
          flux[2] += coef* dT[2];
          flux[0] *= n; // scale by n
          flux[1] *= n;
          flux[2] *= n;

          //GRAD_FIELD tmp = dn;
          const DENS_MAT & Te   = etField->second;
          //tmp[0] *= Te;
          //tmp[1] *= Te;
          //tmp[2] *= Te;
          coef = -electronMobility_*kBeV_;
          //flux[0] += tmp[0];
          flux[0] += dn[0].mult_by_element(Te);
          flux[1] += dn[1].mult_by_element(Te);
          flux[2] += dn[2].mult_by_element(Te);
        }
      };
  protected:
      double electronMobility_, seebeckCoef_;
  };
  //-----------------------------------------------------------------------

  /**
   *  @class  ElectronFluxConvection
   *  @brief  Class for electron flux based on the standard convection term
   */

  class ElectronFluxConvection : public ElectronFlux
  {
    public:
      ElectronFluxConvection(std::fstream &matfile,std::map<std::string,double> & parameters);
      virtual ~ElectronFluxConvection() {};
      virtual void electron_flux(const FIELD_MATS &fields,
                                 const GRAD_FIELD_MATS & /* gradFields */,
                                       DENS_MAT_VEC &flux)
      {
        // flux = n v
        electron_convection(fields,flux);
      };
  };
}

#endif