1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
#ifndef ELECTRON_FLUX_H
#define ELECTRON_FLUX_H
#include <map>
#include <string>
#include "ATC_TypeDefs.h"
namespace ATC {
/**
* @class ElectronFlux
* @brief Base class for the flux appearing in the electron density transport equation
*/
class ElectronFlux
{
public:
ElectronFlux();
virtual ~ElectronFlux() {};
/** computes flux */
virtual void electron_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS & /* gradFields */,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
const DENS_MAT & etMat = etField->second;
zeroWorkspace_.reset(etMat.nRows(),etMat.nCols());
flux[0] = zeroWorkspace_;
flux[1] = zeroWorkspace_;
flux[2] = zeroWorkspace_;
};
void electron_convection(const FIELD_MATS &fields,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
FIELD_MATS::const_iterator evField = fields.find(ELECTRON_VELOCITY);
const DENS_MAT & n = edField->second;
const DENS_MAT & v = evField->second;
const CLON_VEC vx(v,CLONE_COL,0);
const CLON_VEC vy(v,CLONE_COL,1);
const CLON_VEC vz(v,CLONE_COL,2);
zeroWorkspace_.reset(v.nRows(),1);
if (maskX_) {
flux[0] = zeroWorkspace_;
}
else {
flux[0] = vx;
flux[0] *= n; // scale by n
}
if (maskY_) {
flux[1] = zeroWorkspace_;
}
else {
flux[1] = vy;
flux[1] *= n;
}
if (maskZ_) {
flux[2] = zeroWorkspace_;
}
else {
flux[2] = vz;
flux[2] *= n;
}
};
protected:
bool maskX_, maskY_, maskZ_;
DENS_MAT zeroWorkspace_;
};
//-----------------------------------------------------------------------
/**
* @class ElectronFluxLinear
* @brief Class for drift-diffusion electron flux with linear dependency on the electron density gradient
*/
class ElectronFluxLinear : public ElectronFlux
{
public:
ElectronFluxLinear(std::fstream &matfile, std::map<std::string,double> & parameters);
virtual ~ElectronFluxLinear() {};
virtual void electron_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
GRAD_FIELD_MATS::const_iterator dEdField = gradFields.find(ELECTRON_DENSITY);
GRAD_FIELD_MATS::const_iterator dPhiField = gradFields.find(ELECTRIC_POTENTIAL);
// J_n = - \mu n E - D grad n
// note electrons move counter to electric field grad E = - grad \phi
const DENS_MAT & n = edField->second;
const DENS_MAT_VEC & dn = dEdField->second;
const DENS_MAT_VEC & dphi = dPhiField->second;
//n.print("DENSITY");
//for (int i = 0; i < 3; i++) {
// dn[i].print("GRAD N");
// dphi[i].print("GRAD PHI");
//}
//cout << "------------------------------------------------====\n";
flux[0] = n;
flux[1] = n;
flux[2] = n;
if (maskX_)
flux[0] = 0.;
else {
flux[0] *= electronMobility_*dphi[0]; // scale by n to get : n \mu grad(\phi)
flux[0] += -electronDiffusivity_* dn[0];
}
if (maskY_)
flux[1] = 0.;
else {
flux[1] *= electronMobility_* dphi[1] ;
flux[1] += -electronDiffusivity_* dn[1];
}
if (maskZ_)
flux[2] = 0.;
else {
flux[2] *= electronMobility_*dphi[2];
flux[2] += -electronDiffusivity_* dn[2];
}
};
protected:
double electronMobility_, electronDiffusivity_;
};
//-----------------------------------------------------------------------
/**
* @class ElectronFluxThermopower
* @brief Class for defining the electron flux (i.e., current) to include the elctron velocity or have a electron temperature-dependent mobility
*/
class ElectronFluxThermopower : public ElectronFlux
{
public:
ElectronFluxThermopower(std::fstream &matfile,std::map<std::string,double> & parameters);
virtual ~ElectronFluxThermopower() {};
virtual void electron_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
if (fields.find(ELECTRON_VELOCITY)!=fields.end()) {
// J_n = - e n v, note the electron charge e is unity
electron_convection(fields,flux);
flux[0] *= -1;
flux[1] *= -1;
flux[2] *= -1;
}
else {
FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
GRAD_FIELD_MATS::const_iterator dEdField = gradFields.find(ELECTRON_VELOCITY);
GRAD_FIELD_MATS::const_iterator dPhiField = gradFields.find(ELECTRIC_POTENTIAL);
GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);
// J_n = - \mu n grad \phi - \mu kB/e T_e grad n
// - \mu S n grad T_e - \mu kB/e n grad T_e
const DENS_MAT & n = edField->second;
const DENS_MAT_VEC & dn = dEdField->second;
const DENS_MAT_VEC & dphi = dPhiField->second;
const DENS_MAT_VEC & dT = dEtField->second;
flux[0] = -electronMobility_*dphi[0];
flux[1] = -electronMobility_*dphi[1];
flux[2] = -electronMobility_*dphi[2];
double coef = -electronMobility_*(seebeckCoef_ + kBeV_);
flux[0] += coef* dT[0];
flux[1] += coef* dT[1];
flux[2] += coef* dT[2];
flux[0] *= n; // scale by n
flux[1] *= n;
flux[2] *= n;
//GRAD_FIELD tmp = dn;
const DENS_MAT & Te = etField->second;
//tmp[0] *= Te;
//tmp[1] *= Te;
//tmp[2] *= Te;
coef = -electronMobility_*kBeV_;
//flux[0] += tmp[0];
flux[0] += dn[0].mult_by_element(Te);
flux[1] += dn[1].mult_by_element(Te);
flux[2] += dn[2].mult_by_element(Te);
}
};
protected:
double electronMobility_, seebeckCoef_;
};
//-----------------------------------------------------------------------
/**
* @class ElectronFluxConvection
* @brief Class for electron flux based on the standard convection term
*/
class ElectronFluxConvection : public ElectronFlux
{
public:
ElectronFluxConvection(std::fstream &matfile,std::map<std::string,double> & parameters);
virtual ~ElectronFluxConvection() {};
virtual void electron_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS & /* gradFields */,
DENS_MAT_VEC &flux)
{
// flux = n v
electron_convection(fields,flux);
};
};
}
#endif
|