File: ElectronHeatCapacity.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (225 lines) | stat: -rw-r--r-- 9,633 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#ifndef ELECTRON_HEAT_CAPACITY_H
#define ELECTRON_HEAT_CAPACITY_H

#include <map>
#include <string>
#include "ATC_TypeDefs.h"
#include "Material.h"

namespace ATC {

  /**
   *  @class  ElectronHeatCapacity
   *  @brief  Base class for defining the heat capcity of the electron gas
   */

  class ElectronHeatCapacity
  {
    public:
      ElectronHeatCapacity()    {};
      virtual ~ElectronHeatCapacity() {};
      /** computes heat capacity */
      virtual void electron_heat_capacity(const FIELD_MATS &fields,
                                                DENS_MAT &capacity)=0;
      /** derivative of electron heat capacity */
      virtual void D_electron_heat_capacity(const FIELD_MATS &fields,
                                            const GRAD_FIELD_MATS &gradFields,
                                                  DENS_MAT_VEC & Dcapacity)=0;
      /** computes thermal energy */
      virtual void electron_thermal_energy(const FIELD_MATS &fields,
                                                 DENS_MAT &energy)=0;
  };
  //-------------------------------------------------------------------

  /**
   *  @class  ElectronHeatCapacityConstant
   *  @brief  Class for a constant electron heat capacity
   */

  class ElectronHeatCapacityConstant : public ElectronHeatCapacity
  {
    public:
      ElectronHeatCapacityConstant(std::fstream &matfile,
                                   std::map<std::string,double> & parameters);
      virtual ~ElectronHeatCapacityConstant() {};
      virtual void electron_heat_capacity(const FIELD_MATS &fields,
                                                DENS_MAT &capacity)
      {
        FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
        const DENS_MAT & T = etField->second;
        capacity.resize(T.nRows(),T.nCols());
        capacity = electronHeatCapacity_;
      };
      virtual void D_electron_heat_capacity(const FIELD_MATS &fields,
                                            const GRAD_FIELD_MATS & /* gradFields */,
                                                  DENS_MAT_VEC & Dcapacity)
      {
        FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
        zeroWorkspace_.reset((etField->second).nRows(),(etField->second).nCols());
        Dcapacity[0] = zeroWorkspace_;
        Dcapacity[1] = zeroWorkspace_;
        Dcapacity[2] = zeroWorkspace_;
      }
      virtual void electron_thermal_energy(const FIELD_MATS &fields,
                                           DENS_MAT &energy)
      {
        FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
        const DENS_MAT & T = etField->second;
        energy = electronHeatCapacity_ * T;
      };
    protected:
      double electronHeatCapacity_;
      DENS_MAT zeroWorkspace_;
  };
  //-------------------------------------------------------------------

  /**
   *  @class  ElectronHeatCapacityLinear
   *  @brief  Class for an electron capacity that is directly proportional to the electron temperature
   */

  class ElectronHeatCapacityLinear : public ElectronHeatCapacity
  {
    public:
      ElectronHeatCapacityLinear(std::fstream &matfile,
                                 std::map<std::string,double> & parameters);
      virtual ~ElectronHeatCapacityLinear() {};
      virtual void electron_heat_capacity(const FIELD_MATS &fields,
                                                DENS_MAT &capacity)
      {
        FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
        const DENS_MAT & T = etField->second;
        capacity = electronHeatCapacity_*T;
      };
      virtual void D_electron_heat_capacity(const FIELD_MATS & /* fields */,
                                            const GRAD_FIELD_MATS &gradFields,
                                                  DENS_MAT_VEC &Dcapacity)
      {
        GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);
        const DENS_MAT_VEC & dT = dEtField->second;
        Dcapacity[0] = electronHeatCapacity_ * dT[0];
        Dcapacity[1] = electronHeatCapacity_ * dT[1];
        Dcapacity[2] = electronHeatCapacity_ * dT[2];
      }
      virtual void electron_thermal_energy(const FIELD_MATS &fields,
                                           DENS_MAT &energy)
      {
        FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
        const DENS_MAT & T = etField->second;
        energy = electronHeatCapacity_ * T;
        energy *= T;
      };
    protected:
      double electronHeatCapacity_;
  };
  //-------------------------------------------------------------------

  /**
   *  @class  ElectronHeatCapacityConstantAddDensity
   *  @brief  Class for a constant electron specific heat capacity (i.e, does not include the electron density)
   */

  class ElectronHeatCapacityConstantAddDensity : public ElectronHeatCapacityConstant
  {
    public:
      ElectronHeatCapacityConstantAddDensity(std::fstream &matfile,
                                             std::map<std::string,double> & parameters,
                                             Material * material);
      virtual ~ElectronHeatCapacityConstantAddDensity() {};
      virtual void electron_heat_capacity(const FIELD_MATS &fields,
                                                DENS_MAT &capacity)
      {
        ElectronHeatCapacityConstant::electron_heat_capacity(fields,capacity);
        FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
        const DENS_MAT & density = edField->second;
        capacity = capacity.mult_by_element(density);
      };
      virtual void D_electron_heat_capacity(const FIELD_MATS &fields,
                                            const GRAD_FIELD_MATS &gradFields,
                                                  DENS_MAT_VEC &Dcapacity)
      {
        ElectronHeatCapacityConstant::D_electron_heat_capacity(fields,gradFields,Dcapacity);
        FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
        const DENS_MAT & density = edField->second;
        Dcapacity[0] *= density;
        Dcapacity[1] *= density;
        Dcapacity[2] *= density;

        GRAD_FIELD_MATS::const_iterator dEdField = gradFields.find(ELECTRON_DENSITY);
        const DENS_MAT_VEC & Ddensity = dEdField->second;
        ElectronHeatCapacityConstant::electron_heat_capacity(fields,capacityMat_);
        Dcapacity[0] += Ddensity[0].mult_by_element(capacityMat_);
        Dcapacity[1] += Ddensity[1].mult_by_element(capacityMat_);
        Dcapacity[2] += Ddensity[2].mult_by_element(capacityMat_);
      }
      virtual void electron_thermal_energy(const FIELD_MATS &fields,
                                           DENS_MAT &energy)
      {
        ElectronHeatCapacityConstant::electron_thermal_energy(fields,energy);
        FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
        const DENS_MAT & density = edField->second;
        energy *= density;
      };
    protected:
      Material * material_;
      DENS_MAT capacityMat_;  // avoid resizing if possible
  };
  //-------------------------------------------------------------------

  /**
   *  @class  ElectronHeatCapacityLinearAddDensity
   *  @brief  Class for a electron specific heat capacity that is proportional to the temperature (i.e., does not include density)
   */

  class ElectronHeatCapacityLinearAddDensity : public ElectronHeatCapacityLinear
  {
    public:
      ElectronHeatCapacityLinearAddDensity(std::fstream &matfile,
                                           std::map<std::string,double> & parameters,
                                           Material * material);
      virtual ~ElectronHeatCapacityLinearAddDensity() {};
      virtual void electron_heat_capacity(const FIELD_MATS &fields,
                                                DENS_MAT &capacity)
      {
        ElectronHeatCapacityLinear::electron_heat_capacity(fields,capacity);
        FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
        const DENS_MAT & density = edField->second;
        capacity *= density;
      };
       virtual void D_electron_heat_capacity(const FIELD_MATS &fields,
                                             const GRAD_FIELD_MATS &gradFields,
                                                   DENS_MAT_VEC &Dcapacity)
      {
        ElectronHeatCapacityLinear::D_electron_heat_capacity(fields,gradFields,Dcapacity);
        FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
        const DENS_MAT & density = edField->second;
        Dcapacity[0] *= density;
        Dcapacity[1] *= density;
        Dcapacity[2] *= density;

        GRAD_FIELD_MATS::const_iterator dEdField = gradFields.find(ELECTRON_DENSITY);
        const DENS_MAT_VEC & Ddensity = dEdField->second;
        ElectronHeatCapacityLinear::electron_heat_capacity(fields,capacityWorkspace_);
        Dcapacity[0] += Ddensity[0].mult_by_element(capacityWorkspace_);
        Dcapacity[1] += Ddensity[1].mult_by_element(capacityWorkspace_);
        Dcapacity[2] += Ddensity[2].mult_by_element(capacityWorkspace_);
      }
      virtual void electron_thermal_energy(const FIELD_MATS &fields,
                                           DENS_MAT &energy)
      {
        ElectronHeatCapacityLinear::electron_thermal_energy(fields,energy);

        FIELD_MATS::const_iterator edField = fields.find(ELECTRON_DENSITY);
        const DENS_MAT & density = edField->second;

        energy *= density;
      };
    protected:
      Material * material_;
      DENS_MAT capacityWorkspace_;  // avoid resizing if possible
  };
}

#endif