1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
#ifndef ELECTRON_HEAT_FLUX_H
#define ELECTRON_HEAT_FLUX_H
#include <map>
#include <string>
#include "ATC_TypeDefs.h"
#include "ElectronFlux.h"
#include "ElectronHeatCapacity.h"
namespace ATC {
/**
* @class ElectronHeatFlux
* @brief Base class for the electron heat flux
*/
class ElectronHeatFlux
{
public:
ElectronHeatFlux(/*const*/ ElectronHeatCapacity * electronHeatCapacity = nullptr);
virtual ~ElectronHeatFlux() {};
/** computes heat flux */
virtual void electron_heat_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS & /* gradFields */,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
const DENS_MAT & Te = etField->second;
zeroWorkspace_.reset(Te.nRows(),Te.nCols());
flux[0] = zeroWorkspace_;
flux[1] = zeroWorkspace_;
flux[2] = zeroWorkspace_;
};
void electron_heat_convection(const FIELD_MATS &fields,
DENS_MAT_VEC & flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
FIELD_MATS::const_iterator evField = fields.find(ELECTRON_VELOCITY);
const DENS_MAT & Te = etField->second;
const DENS_MAT & v = evField->second;
electronHeatCapacity_->electron_heat_capacity(fields,cpTeWorkspace_);
cpTeWorkspace_ *= Te;
const CLON_VEC vx(v,CLONE_COL,0);
const CLON_VEC vy(v,CLONE_COL,1);
const CLON_VEC vz(v,CLONE_COL,2);
flux[0] = vx;
flux[1] = vy;
flux[2] = vz;
// scale by thermal energy
flux[0] *= cpTeWorkspace_;
flux[1] *= cpTeWorkspace_;
flux[2] *= cpTeWorkspace_;
};
protected:
ElectronHeatCapacity * electronHeatCapacity_;
DENS_MAT zeroWorkspace_;
DENS_MAT cpTeWorkspace_; // hopefully avoid resizing
};
//-----------------------------------------------------------------------
/**
* @class ElectronHeatFluxLinear
* @brief Class for an electron heat flux proportional to the temperature gradient with constant conductivity
*/
class ElectronHeatFluxLinear : public ElectronHeatFlux
{
public:
ElectronHeatFluxLinear(std::fstream &matfile,std::map<std::string,double> & parameters,
/*const*/ ElectronHeatCapacity * electronHeatCapacity = nullptr);
virtual ~ElectronHeatFluxLinear() {};
virtual void electron_heat_flux(const FIELD_MATS & /* fields */,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);
// flux = -ke dTe/dx
const DENS_MAT_VEC & dT = dEtField->second;
flux[0] = -conductivity_ * dT[0];
flux[1] = -conductivity_ * dT[1];
flux[2] = -conductivity_ * dT[2];
};
protected:
double conductivity_;
};
//-----------------------------------------------------------------------
/**
* @class ElectronHeatFluxPowerLaw
* @brief Class for an electron heat flux proportional to the temperature gradient but with a conductivity proportional to the ratio of the electron and phonon temperatures
*/
class ElectronHeatFluxPowerLaw : public ElectronHeatFlux
{
public:
ElectronHeatFluxPowerLaw(std::fstream &matfile,std::map<std::string,double> ¶meters,
/*const*/ ElectronHeatCapacity * electronHeatCapacity = nullptr);
virtual ~ElectronHeatFluxPowerLaw() {};
virtual void electron_heat_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
FIELD_MATS::const_iterator tField = fields.find(TEMPERATURE);
GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);
const DENS_MAT_VEC & dT = dEtField->second;
const DENS_MAT & T = tField->second;
const DENS_MAT & Te = etField->second;
// flux = -ke * ( Te / T ) dT;
flux[0] = dT[0];
flux[1] = dT[1];
flux[2] = dT[2];
electronConductivity_ = (-conductivity_* Te) / T;
flux[0] *= electronConductivity_;
flux[1] *= electronConductivity_;
flux[2] *= electronConductivity_;
};
protected:
double conductivity_;
DENS_MAT electronConductivity_; // hopefully avoid resizing
};
//-----------------------------------------------------------------------
/**
* @class ElectronHeatFluxThermopower
* @brief Class for an electron heat flux proportional to the temperature gradient but with a condu
ctivity proportional to the ratio of the electron and phonon temperatures with the thermopower from the electric current included
*/
class ElectronHeatFluxThermopower : public ElectronHeatFlux
{
public:
ElectronHeatFluxThermopower(std::fstream &matfile,
std::map<std::string,double> & parameters,
/*const*/ ElectronFlux * electronFlux = nullptr,
/*const*/ ElectronHeatCapacity * electronHeatCapacity = nullptr);
virtual ~ElectronHeatFluxThermopower() {};
virtual void electron_heat_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
FIELD_MATS::const_iterator tField = fields.find(TEMPERATURE);
GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);
const DENS_MAT_VEC & dT = dEtField->second;
const DENS_MAT & T = tField->second;
const DENS_MAT & Te = etField->second;
// flux = -ke * ( Te / T ) dT + pi J_e;
flux[0] = dT[0];
flux[1] = dT[1];
flux[2] = dT[2];
elecCondWorkspace_ = (-conductivity_* Te) / T;
flux[0] *= elecCondWorkspace_;
flux[1] *= elecCondWorkspace_;
flux[2] *= elecCondWorkspace_;
electronFlux_->electron_flux(fields, gradFields, tmp_);
tmp_[0] *= Te;
tmp_[1] *= Te;
tmp_[2] *= Te;
flux[0] += seebeckCoef_*tmp_[0];
flux[1] += seebeckCoef_*tmp_[1];
flux[2] += seebeckCoef_*tmp_[2];
};
protected:
double conductivity_,seebeckCoef_;
ElectronFlux * electronFlux_;
DENS_MAT elecCondWorkspace_; // hopefully avoid resizing
DENS_MAT_VEC tmp_;
};
}
#endif
|