File: ExtrinsicModelElectrostatic.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (1011 lines) | stat: -rw-r--r-- 42,312 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
// ATC Headers
#include "ExtrinsicModelElectrostatic.h"
#include "PhysicsModel.h"
#include "ATC_Error.h"
#include "FieldEulerIntegrator.h"
#include "ATC_Coupling.h"
#include "LammpsInterface.h"
#include "PrescribedDataManager.h"
#include "PoissonSolver.h"
#include "PerAtomQuantityLibrary.h"
#include "AtomToMoleculeTransfer.h"
#include "MoleculeSet.h"
#include "ChargeRegulator.h"
#include <set>

using std::string;
using std::vector;
using std::map;
using std::pair;
using std::set;

namespace ATC {

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class ExtrinsicModelElectrostatic
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  ExtrinsicModelElectrostatic::ExtrinsicModelElectrostatic
                              (ExtrinsicModelManager * modelManager,
                               ExtrinsicModelType modelType,
                               string matFileName) :
    ExtrinsicModel(modelManager,modelType,matFileName),
    poissonSolverType_(DIRECT), // ITERATIVE | DIRECT
    poissonSolverTol_(0),
    poissonSolverMaxIter_(0),
    poissonSolver_(nullptr),
    maxSolves_(0),
    baseSize_(0),
    chargeRegulator_(nullptr),
    useSlab_(false),
    includeShortRange_(true),
    atomForces_(nullptr),
    nodalAtomicCharge_(nullptr),
    nodalAtomicGhostCharge_(nullptr)
  {
     physicsModel_ = new PhysicsModelSpeciesElectrostatic(matFileName);
     // set up correct masks for coupling
     rhsMaskIntrinsic_.reset(NUM_FIELDS,NUM_FLUX);
     rhsMaskIntrinsic_ = false;
     if (atc_->track_charge()) {

       if (! chargeRegulator_) chargeRegulator_ = new ChargeRegulator(atc_);
     }
  }

  //--------------------------------------------------------
  //  Destructor
  //--------------------------------------------------------
  ExtrinsicModelElectrostatic::~ExtrinsicModelElectrostatic()
  {
    if (poissonSolver_) delete poissonSolver_;
    if (chargeRegulator_) delete chargeRegulator_;
  }

  //--------------------------------------------------------
  // modify
  //--------------------------------------------------------
  bool ExtrinsicModelElectrostatic::modify(int narg, char **arg)
  {
    bool match = false;
    int argIndx = 0;

    /** */

    if (strcmp(arg[argIndx],"poisson_solver")==0) {
      argIndx++;
      if (strcmp(arg[argIndx],"max_solves")==0) {
        argIndx++;
         maxSolves_ = atoi(arg[argIndx]) ; }

      else if (strcmp(arg[argIndx],"tolerance")==0) {
        argIndx++;
        poissonSolverTol_ = atof(arg[argIndx]);
      }
      else if (strcmp(arg[argIndx],"max_iterations")==0) {
        argIndx++;
        poissonSolverMaxIter_ = atoi(arg[argIndx]);
      }
      else if (strcmp(arg[argIndx],"iterative")==0) {
        poissonSolverType_ = ITERATIVE; }
      else {
        poissonSolverType_ = DIRECT; }
      match = true;
    } // end "poisson_solver"



    /** creates fixed charge on faceset
        units on surface charge density are lammps charge units / lammps length units ^ 2
        fix_modify ATC extrinsic fix_charge faceset_id value
    */
#ifdef CHARGED_SURFACE
    else if (strcmp(arg[argIndx],"fix_charge")==0) {
      argIndx++;
      string facesetName(arg[argIndx]);
      argIndx++;
      double chargeDensity = atof(arg[argIndx]);
      surfaceCharges_[facesetName] = chargeDensity;
      match = true;
    }

    /** */
    else if (strcmp(arg[argIndx],"unfix_charge")==0) {
      argIndx++;
      string fsetName(arg[argIndx]);
      throw ATC_Error("Ability to unfix charge not yet implemented");
      match = true;
    }
#endif
    else if (strcmp(arg[argIndx],"control")==0) {
      argIndx++;
      if (strcmp(arg[argIndx],"charge")==0) {
        argIndx++;
        if (!atc_->track_charge()) throw ATC_Error("must have charges to regulate");
        match = chargeRegulator_->modify(narg-argIndx,&arg[argIndx]);
      }
    }

    /** switch to use slabbing */
    else if (strcmp(arg[argIndx],"slab")==0) {
      argIndx++;
      if (strcmp(arg[argIndx],"on")==0) {
        useSlab_ = true;
        match = true;
      }
      else if (strcmp(arg[argIndx],"off")==0) {
        useSlab_ = false;
        match = true;
      }
    }

    /** switch to account for short range interfaces */
    else if (strcmp(arg[argIndx],"short_range")==0) {
      argIndx++;
      if (strcmp(arg[argIndx],"on")==0) {
        includeShortRange_ = true;
        match = true;
      }
      else if (strcmp(arg[argIndx],"off")==0) {
        includeShortRange_ = false;
        match = true;
      }
    }

    return match;
  }

  //--------------------------------------------------------
  //  initialize
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::construct_transfers()
  {
    // add charge density transfer operator
    if (atc_->track_charge()) {
      InterscaleManager & interscaleManager(atc_->interscale_manager());

      // make sure we have gradients at atoms
      VectorDependencyManager<SPAR_MAT * > * interpolantGradient = interscaleManager.vector_sparse_matrix("InterpolantGradient");
      if (!interpolantGradient) {
        interpolantGradient = new PerAtomShapeFunctionGradient(atc_);
        interscaleManager.add_vector_sparse_matrix(interpolantGradient,
                                                   "InterpolantGradient");
      }

      FundamentalAtomQuantity * atomicCharge =
        interscaleManager.fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE);
      AtfShapeFunctionRestriction * nodalAtomicCharge =
        new AtfShapeFunctionRestriction(atc_,atomicCharge,atc_->accumulant());
      interscaleManager.add_dense_matrix(nodalAtomicCharge,"NodalAtomicCharge");
      AtfShapeFunctionMdProjection * nodalAtomicChargeDensity =
        new AtfShapeFunctionMdProjection(atc_,nodalAtomicCharge,MASS_DENSITY);
      interscaleManager.add_dense_matrix(nodalAtomicChargeDensity,"NodalAtomicChargeDensity");


      // get the total charge and dipole moment at the node per molecule
      // small molecules require per atom quantities with ghosts
      const map<string,pair<MolSize,int> > & moleculeIds(atc_->molecule_ids());
      map<string,pair<MolSize,int> >::const_iterator molecule;
      PerAtomQuantity<double> * atomProcGhostCoarseGrainingPositions = interscaleManager.per_atom_quantity("AtomicProcGhostCoarseGrainingPositions");
      FundamentalAtomQuantity * charge = interscaleManager.fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE,
                                                                                      PROC_GHOST);
      for (molecule = moleculeIds.begin(); molecule != moleculeIds.end(); molecule++) {
        const string moleculeName = molecule->first;
        SmallMoleculeSet * smallMoleculeSet = interscaleManager.small_molecule_set(moleculeName);
        // calculate nodal charge from the molecules
        AtomToSmallMoleculeTransfer<double> * moleculeCharge =
          new AtomToSmallMoleculeTransfer<double>(atc_,charge,smallMoleculeSet);
        interscaleManager.add_dense_matrix(moleculeCharge,"MoleculeCharge"+moleculeName);
        MotfShapeFunctionRestriction * nodalAtomicMoleculeCharge =
          new MotfShapeFunctionRestriction(moleculeCharge,
                                           interscaleManager.sparse_matrix("ShapeFunction"+moleculeName));
        interscaleManager.add_dense_matrix(nodalAtomicMoleculeCharge,"NodalMoleculeCharge"+moleculeName);
        AtfShapeFunctionMdProjection * nodalAtomicMoleculeChargeDensity =
          new AtfShapeFunctionMdProjection(atc_,nodalAtomicMoleculeCharge,MASS_DENSITY);
        interscaleManager.add_dense_matrix(nodalAtomicMoleculeChargeDensity,"NodalMoleculeChargeDensity"+moleculeName);

        // dipole moment density
        // calculate the dipole moment of the molecules
        SmallMoleculeCentroid * moleculeCentroid = static_cast<SmallMoleculeCentroid*>(interscaleManager.dense_matrix("MoleculeCentroid"+moleculeName));
        SmallMoleculeDipoleMoment * dipoleMoment =
          new SmallMoleculeDipoleMoment(atc_,charge,smallMoleculeSet,atomProcGhostCoarseGrainingPositions,moleculeCentroid);
        interscaleManager.add_dense_matrix(dipoleMoment,"DipoleMoment"+moleculeName);
        MotfShapeFunctionRestriction * nodalAtomicMoleculeDipole =
          new MotfShapeFunctionRestriction(dipoleMoment,
                                           interscaleManager.sparse_matrix("ShapeFunction"+moleculeName));
        interscaleManager.add_dense_matrix(nodalAtomicMoleculeDipole,"NodalMoleculeDipole"+moleculeName);
        AtfShapeFunctionMdProjection * nodalAtomicMoleculeDipoleDensity =
          new AtfShapeFunctionMdProjection(atc_,nodalAtomicMoleculeDipole,MASS_DENSITY);
        interscaleManager.add_dense_matrix(nodalAtomicMoleculeDipoleDensity,"NodalMoleculeDipoleDensity"+moleculeName);
      }
    }

  }

  //--------------------------------------------------------
  //  initialize
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::initialize()
  {
    ExtrinsicModel::initialize();
    InterscaleManager & interscaleManager = atc_->interscale_manager();

    int nNodes = atc_->num_nodes();
    atomForces_ = interscaleManager.fundamental_atom_quantity(LammpsInterface::ATOM_FORCE);
    rhs_[ELECTRIC_POTENTIAL].reset(nNodes,1);

#ifdef CHARGED_SURFACE

    // set fixed potential surfaces form charged surfaces
    map<string,double>::const_iterator isurface;
    for (isurface = surfaceCharges_.begin(); isurface != surfaceCharges_.end(); isurface++)
      add_charged_surface(isurface->first,isurface->second);
#endif

    // set up poisson solver
    rhsMask_.reset(NUM_FIELDS,NUM_FLUX);
    rhsMask_ = false;
    for (int i = 0; i < NUM_FLUX; i++) {
      rhsMask_(ELECTRIC_POTENTIAL,i) = atc_->fieldMask_(ELECTRIC_POTENTIAL,i);
    }
    rhsMask_(ELECTRIC_POTENTIAL,FLUX) = false;// for poisson solve & rhs compute
    // need to create the bcs for the solver to configure properly
    atc_->set_fixed_nodes();
    if (poissonSolver_) delete poissonSolver_;


        int type = ATC::LinearSolver::ITERATIVE_SOLVE_SYMMETRIC;
    if (poissonSolverType_ == DIRECT) {
      type = ATC::LinearSolver::DIRECT_SOLVE;
    }
    poissonSolver_ = new PoissonSolver(ELECTRIC_POTENTIAL,
                                       physicsModel_, atc_->feEngine_,
                                       atc_->prescribedDataMgr_, atc_,
                                       rhsMask_,type, true);
    if (poissonSolverTol_) poissonSolver_->set_tolerance(poissonSolverTol_);
    if (poissonSolverMaxIter_) poissonSolver_->set_max_iterations(poissonSolverMaxIter_);
    poissonSolver_->initialize();

    // initialize localized Green's function for FE electric field correction
    if (atc_->track_charge() && includeShortRange_) {
      greensFunctions_.reserve(nNodes);

      // set up Green's function per node
      for (int i = 0; i < nNodes; i++) {
        set<int> localNodes;

        for (int j = 0; j < nNodes; j++)
          localNodes.insert(j);

        // call Poisson solver to get Green's function for node i
        DENS_VEC globalGreensFunction;
        poissonSolver_->greens_function(i,globalGreensFunction);

        // store green's functions as sparse vectors only on local nodes
        set<int>::const_iterator thisNode;
        SparseVector<double> sparseGreensFunction(nNodes);
        for (thisNode = localNodes.begin(); thisNode != localNodes.end(); thisNode++)
          sparseGreensFunction(*thisNode) = globalGreensFunction(*thisNode);
        greensFunctions_.push_back(sparseGreensFunction);
      }
    }


    if (atc_->track_charge()) {
      double *  q = LammpsInterface::instance()->atom_charge();
      if (!q) throw ATC_Error(" charge tracking requested but charge pointer is null");

      nodalAtomicCharge_ = interscaleManager.dense_matrix("NodalAtomicCharge");
      if (! nodalAtomicCharge_) {
        FundamentalAtomQuantity * atomCharge = interscaleManager.fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE);
        nodalAtomicCharge_ = new AtfShapeFunctionRestriction(atc_,atomCharge,
                                                             atc_->accumulant());
        interscaleManager.add_dense_matrix(nodalAtomicCharge_,"NodalAtomicCharge");
      }
      if (atc_->groupbitGhost_) {
        nodalAtomicGhostCharge_ = interscaleManager.dense_matrix("NodalAtomicGhostCharge");
        if (! nodalAtomicGhostCharge_) {
          FundamentalAtomQuantity * ghostCharge = interscaleManager.fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE, GHOST);

          PerAtomSparseMatrix<double> * ghostShapeFunctions = interscaleManager.per_atom_sparse_matrix("InterpolantGhost");
          if (!ghostShapeFunctions) {
            ghostShapeFunctions = new PerAtomShapeFunction(atc_,
                                                           interscaleManager.per_atom_quantity("AtomicGhostCoarseGrainingPositions"),
                                                           interscaleManager.per_atom_int_quantity("AtomGhostElement"),
                                                           GHOST);
            interscaleManager.add_per_atom_sparse_matrix(ghostShapeFunctions,"InterpolantGhost");
          }

          nodalAtomicGhostCharge_ = new AtfShapeFunctionRestriction(atc_,ghostCharge,
                                                                    ghostShapeFunctions);
          interscaleManager.add_dense_matrix(nodalAtomicGhostCharge_,"NodalAtomicGhostCharge");
        }
      }
    }

    if (chargeRegulator_) {
      if (! poissonSolver_) throw ATC_Error("passing of Poisson solver from ExtrinsicModelElectrostatic to ChargeRegulator failed");
      chargeRegulator_->assign_poisson_solver(poissonSolver_);
      chargeRegulator_->construct_methods();
      chargeRegulator_->initialize();
    }

    // set initial force
    post_force();
  }

  //--------------------------------------------------------
  //  pre final integration
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::post_init_integrate()
  {
    if (chargeRegulator_) chargeRegulator_->apply_pre_force(atc_->dt());
  }
  //--------------------------------------------------------
  //  post force
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::post_force()
  {

    if (chargeRegulator_) chargeRegulator_->apply_post_force(atc_->dt());
    // add in correction accounting for lumped mass matrix in charge density
    // in atomistic part of domain & account for physics model fluxes,resets rhs


    // set Dirchlet data
    atc_->set_fixed_nodes();

    // set sources
    (atc_->prescribed_data_manager())->set_sources(atc_->time()+0.5*(atc_->dt()),atc_->sources());

    // compute Poisson equation RHS sources
    atc_->compute_rhs_vector(rhsMask_, atc_->fields_, rhs_, atc_->source_integration(), physicsModel_);

    // add atomic charges to rhs
    DENS_MAT & rhs = rhs_[ELECTRIC_POTENTIAL].set_quantity();
    if (atc_->track_charge()) {

      rhs += nodalAtomicCharge_->quantity();
      if (nodalAtomicGhostCharge_) {
        rhs += nodalAtomicGhostCharge_->quantity();
      }
    }





    // solve poisson eqn for electric potential
    // electron charge density added to Poisson RHS in solver
    DENS_MAT & potential = (atc_->field(ELECTRIC_POTENTIAL)).set_quantity();
    if ( maxSolves_ == 0 || (atc_->local_step() < maxSolves_) ) {
//potential.print("POT");
//    rhs.print("RHS");
    bool converged = poissonSolver_->solve(potential,rhs);
    if (! converged ) throw ATC_Error("Poisson solver did not converge in ExtrinsicModelElectrostatic");
    }

    // do this for intrinsic charges or effective electron charges at atoms
    if (atc_->track_charge()
      || ( LammpsInterface::instance()->atom_charge() && atc_->source_atomic_quadrature(ELECTRIC_POTENTIAL) ) ) {
      _atomElectricalForce_.resize(atc_->nlocal(),atc_->nsd());
      add_electrostatic_forces(potential);
#ifdef CHARGED_SURFACE
      if (includeShortRange_)
        apply_charged_surfaces(potential);
#endif

      InterscaleManager & interscaleManager_ = atc_->interscale_manager();
      atomForces_ = interscaleManager_.fundamental_atom_quantity(LammpsInterface::ATOM_FORCE);
      (*atomForces_) += _atomElectricalForce_; // f_E in ours, f in lammps ultimately
    }
  }

  //--------------------------------------------------------
  //  output
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::output(OUTPUT_LIST & outputData)
  {
    double scale = 1./(LammpsInterface::instance()->ftm2v());
    double localF[3];
    if (_atomElectricalForce_.nRows() > 0) {
      localF[0] = scale*(_atomElectricalForce_).col_sum(0);
      localF[1] = scale*(_atomElectricalForce_).col_sum(1);
      localF[2] = scale*(_atomElectricalForce_).col_sum(2);
    }
    else {
      localF[0] = 0.;localF[1] = 0.; localF[2] = 0.;
    }
    LammpsInterface::instance()->allsum(localF,totalElectricalForce_,3);
    if (LammpsInterface::instance()->rank_zero()) {
      atc_->feEngine_->add_global("electrostatic_force_x",  totalElectricalForce_[0]);
      atc_->feEngine_->add_global("electrostatic_force_y",  totalElectricalForce_[1]);
      atc_->feEngine_->add_global("electrostatic_force_z",  totalElectricalForce_[2]);
    }

    // add in FE fields related to charge
    FIELDS & fields(atc_->fields());
    FIELDS::const_iterator rhoField = fields.find(CHARGE_DENSITY);
    if (rhoField!=fields.end()) {
      InterscaleManager & interscaleManager(atc_->interscale_manager());
      const DENS_MAN * atomicChargeDensity(interscaleManager.dense_matrix("NodalAtomicChargeDensity"));
      atc_->nodal_atomic_field(CHARGE_DENSITY) = atomicChargeDensity->quantity();

      fields[CHARGE_DENSITY] = atomicChargeDensity->quantity();

      DENS_MAT & chargeDensity(fields[CHARGE_DENSITY].set_quantity());
      DENS_MAT & nodalAtomicChargeDensity((atc_->nodal_atomic_field(CHARGE_DENSITY)).set_quantity());
      if ((atc_->lammps_interface())->rank_zero()) {
        outputData["charge_density"] = &chargeDensity;
        outputData["NodalAtomicChargeDensity"] = &nodalAtomicChargeDensity;
      }
    }


    if (fields.find(ELECTRON_DENSITY)==fields.end()) {
      fields[ELECTRON_DENSITY].reset(fields[CHARGE_DENSITY].nRows(),1);
      DENS_MAT & electronDensity(fields[ELECTRON_DENSITY].set_quantity());
      if ((atc_->lammps_interface())->rank_zero()) {
        outputData["electron_density"] = &electronDensity;
      }
    }

    const map<string,pair<MolSize,int> > & moleculeIds(atc_->molecule_ids());
    map<string,pair<MolSize,int> >::const_iterator molecule;
    for (molecule = moleculeIds.begin(); molecule != moleculeIds.end(); molecule++) {
      // net charge
      DENS_MAN & nodalMoleculeChargeDensityOut(atc_->tagged_dens_man("NodalMoleculeChargeDensity"+molecule->first));
      DENS_MAN * nodalMoleculeChargeDensity((atc_->interscale_manager()).dense_matrix("NodalMoleculeChargeDensity"+molecule->first));
      nodalMoleculeChargeDensityOut = nodalMoleculeChargeDensity->quantity();
      // dipole moment
      DENS_MAN & nodalMoleculeDipoleDensityOut(atc_->tagged_dens_man("NodalMoleculeDipoleDensity"+molecule->first));
      DENS_MAN * nodalMoleculeDipoleDensity((atc_->interscale_manager()).dense_matrix("NodalMoleculeDipoleDensity"+molecule->first));
      nodalMoleculeDipoleDensityOut = nodalMoleculeDipoleDensity->quantity();
    }

    if(chargeRegulator_) chargeRegulator_->output(outputData);
  }

  //--------------------------------------------------------
  //  size_vector
  //--------------------------------------------------------
  int ExtrinsicModelElectrostatic::size_vector(int intrinsicSize)
  {
    baseSize_ = intrinsicSize;
    return 5;
  }

  //--------------------------------------------------------
  //  compute_scalar : added energy = - f.x
  //--------------------------------------------------------
  double ExtrinsicModelElectrostatic::compute_scalar(void)
  {
    //((atc_->interscale_manager()).fundamental_atom_quantity(LammpsInterface::ATOM_POSITION))->force_reset();
    const DENS_MAT & atomPosition = ((atc_->interscale_manager()).fundamental_atom_quantity(LammpsInterface::ATOM_POSITION))->quantity();
    double local_fdotx = 0, fdotx;

    for (int i = 0; i < _atomElectricalForce_.nRows() ; i++) {
      for (int j = 0; j < _atomElectricalForce_.nCols() ; j++) {
        local_fdotx -= _atomElectricalForce_(i,j)*atomPosition(i,j);
      }
    }
    LammpsInterface::instance()->allsum(&local_fdotx,&fdotx,1);
    // convert
    fdotx *=  LammpsInterface::instance()->mvv2e();
    return fdotx;
  }
  //--------------------------------------------------------
  //  compute_vector
  //--------------------------------------------------------
  bool ExtrinsicModelElectrostatic::compute_vector(int n, double & value)
  {
    if (n == baseSize_) {

      double nSum = ((atc_->field(ELECTRON_DENSITY)).quantity()).col_sum();
      value = nSum;
      return true;
    }
    else if (n > baseSize_ && n < baseSize_+4) {
      int dof = n-baseSize_-1;
      double localF = (_atomElectricalForce_).col_sum(dof), F=0;
      LammpsInterface::instance()->allsum(&localF,&F,1);
      double ftm2v = LammpsInterface::instance()->ftm2v();
      value = F/ftm2v;
      return true;
    }
    else if (n == baseSize_+4) {
      double nSum = ((atc_->field(ELECTRIC_POTENTIAL)).quantity()).col_sum();
      value = nSum;
      return true;
    }
    return false;
  }

  //--------------------------------------------------------
  //  add_electrostatic_forces
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::add_electrostatic_forces
    (MATRIX & potential)
  {

    //double qE2f = LammpsInterface::instance()->qe2f();
    double qV2e = LammpsInterface::instance()->qv2e(); // charge volts to our energy units
    //double ** f = LammpsInterface::instance()->fatom();
    double *  q = LammpsInterface::instance()->atom_charge();
    // f_ai = \sum_IJ N_Ia Bi_IJ phi_J = \sum_I N_Ia Ei_I
    int nsd = atc_->nsd();
    int nLocal = atc_->nlocal();
    DENS_MAT E(nLocal,nsd);
    const SPAR_MAT_VEC & shapeFucntionDerivatives(((atc_->interscale_manager()).vector_sparse_matrix("InterpolantGradient"))->quantity());
    if (nLocal > 0) {
      for (int i=0; i < nsd; i++) {
        CLON_VEC Ei = column(E,i);
        Ei = -1.*(*(shapeFucntionDerivatives[i])*potential);
      }
    }

    int dimOffset = 0;
    if (useSlab_) dimOffset = nsd - 1;
    for (int i = 0; i < nLocal; i++) {
      int atomIdx = atc_->internalToAtom_(i);
      double c = qV2e*q[atomIdx];
      for (int j = 0; j < dimOffset; j ++)
        _atomElectricalForce_(i,j) = 0.;
      for (int j = dimOffset; j < nsd; j ++)
        _atomElectricalForce_(i,j) = c*E(i,j);
    }

    // correct field for short range interactions
    if (includeShortRange_)
      correct_electrostatic_forces();
  }

  //--------------------------------------------------------
  //  correct_electrostatic_forces
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::correct_electrostatic_forces()
  {
    // compute restricted sparse shape function set for each atom
    // to account for its Green's Function
    //double qE2f = LammpsInterface::instance()->qe2f();
    double qV2e = LammpsInterface::instance()->qv2e();
    double *  q = LammpsInterface::instance()->atom_charge();
    vector<SparseVector<double> > atomicFePotential;
    int nLocal = atc_->nlocal();

    int nGhostLammps = LammpsInterface::instance()->nghost();
    int nLocalLammps = LammpsInterface::instance()->nlocal();
    int nLocalTotal = nLocalLammps + nGhostLammps; // total number of atoms on this processor
    atomicFePotential.reserve(nLocalTotal);
    SparseVector<double> dummy(atc_->num_nodes());
    for (int i = 0; i < nLocalTotal; i++)
      atomicFePotential.push_back(dummy);

    // compute local potential contributions from atoms on this processor
    InterscaleManager & interscaleManager(atc_->interscale_manager());
    const SPAR_MAT & myShpFcn((interscaleManager.per_atom_sparse_matrix("Interpolant"))->quantity());
    for (int i = 0; i < nLocal; i++) {
      DenseVector<INDEX> nodeIndices;
      DENS_VEC nodeValues;
      myShpFcn.row(i,nodeValues,nodeIndices);

      int atomIdx = atc_->internalToAtom_(i);
      //double c = qE2f*q[atomIdx];
      //double c = qV2e*q[atomIdx];
      //nodeValues *= c;
      nodeValues *= q[atomIdx];

      for (int j = 0; j < nodeIndices.size(); j++)
        atomicFePotential[atomIdx].add_scaled(greensFunctions_[nodeIndices(j)],nodeValues(j));
    }

    // compute local potential contribtutions for lammps ghost atoms
    // which are known to ATC,
    // this will grab both processor and periodic neighbors,
    // so we need to add in neighbor contributions using lammps indices
    // rather than atc indices or we could potentially
    // double count periodic contributions
    double ** xatom = LammpsInterface::instance()->xatom();
    const int * mask = LammpsInterface::instance()->atom_mask();
    int nodesPerElement = ((atc_->feEngine_)->fe_mesh())->num_nodes_per_element();
    int nsd = atc_->nsd();
    for (int i = nLocalLammps; i < nLocalTotal; i++) {
      if (mask[i] & atc_->groupbit_) {
        DENS_VEC coords(nsd);
        coords.copy(xatom[i],nsd);
        Array<int> nodeIndices(nodesPerElement);
        DENS_VEC nodeValues(nodesPerElement);
        (atc_->feEngine_)->shape_functions(coords,nodeValues,nodeIndices);

        //double c = qV2e*q[i];
        //nodeValues *= c;
        nodeValues *= q[i];

        for (int j = 0; j < nodeIndices.size(); j++) {
          atomicFePotential[i].add_scaled(greensFunctions_[nodeIndices(j)],nodeValues(j));
        }
      }
    }

    // Get sparse vectors of derivatives at each atom

    //      to compute this only when the shape functions change
    vector<vector<SparseVector<double> > > atomicDerivatives;
    atomicDerivatives.reserve(nLocal);
    for (int i = 0; i < nLocal; i++) {

      // determine shape function derivatives at atomic location
      // and construct sparse vectors to store derivative data
      vector<SparseVector<double> > derivativeVectors;
      derivativeVectors.reserve(nsd);
      for (int j = 0; j < nsd; j++)
        derivativeVectors.push_back(dummy);
      atomicDerivatives.push_back(derivativeVectors);
      InterscaleManager & interscaleManager(atc_->interscale_manager());
      const SPAR_MAT_VEC & shapeFucntionDerivatives((interscaleManager.vector_sparse_matrix("InterpolantGradient"))->quantity());
      for (int j = 0; j < nsd; j++) {
        DenseVector<INDEX> nodeIndices;
        DENS_VEC nodeValues;
        shapeFucntionDerivatives[j]->row(i,nodeValues,nodeIndices);
        for (int k = 0; k < nodeIndices.size(); k++)
          atomicDerivatives[i][j](nodeIndices(k)) = nodeValues(k);
      }
    }

    // loop over all atoms and correct their efield based on all their
    // neighbor's local efield response

    //      need to use specific coulombic cutoff from different pairs
    //      see pair_coul_cut for an example of the data structures
    //      unfortunately don't know how to get at this data in general
    //      beyond a cast from the LAMMPS pair object (see force.h).
    //      Until this is fixed, only use this method with the coulombic force
    //      the same for all pairs and equal to the largest force cutoff.
    //      Probably the best fix is to implement our own pair style for this.

    double cutoffRadius = LammpsInterface::instance()->pair_cutoff();
    double cutoffSq = cutoffRadius*cutoffRadius;

    int inum = LammpsInterface::instance()->neighbor_list_inum();
    int * ilist = LammpsInterface::instance()->neighbor_list_ilist();
    int * numneigh = LammpsInterface::instance()->neighbor_list_numneigh();
    int ** firstneigh = LammpsInterface::instance()->neighbor_list_firstneigh();

      // loop over neighbors of my atoms
    for (int ii = 0; ii < inum; ii++) {
      int i = ilist[ii];
      if (mask[i] & atc_->groupbit_) {
        double xtmp = xatom[i][0];
        double ytmp = xatom[i][1];
        double ztmp = xatom[i][2];

        int * jlist = firstneigh[i];
        int jnum = numneigh[i];

        for (int jj = 0; jj < jnum; jj++) {
          int j = jlist[jj];
          if (mask[j] & atc_->groupbit_) {
            //double factor_coul = LammpsInterface::instance()->coulomb_factor(j);
            LammpsInterface::instance()->neighbor_remap(j);

            double delx = xtmp - xatom[j][0];
            double dely = ytmp - xatom[j][1];
            double delz = ztmp - xatom[j][2];
            double rsq = delx*delx + dely*dely + delz*delz;
            if (rsq < cutoffSq) {
              DENS_VEC efield(nsd);
              efield = 0.;
              int atcIdx = atc_->atomToInternal_[i];
              for (int k = 0; k < nsd; k++)
                efield(k) = -1.*dot(atomicDerivatives[atcIdx][k],atomicFePotential[j]);

              // apply correction in atomic forces
              //double c = factor_coul*qE2f*q[i];
              //double c = factor_coul*qV2e*q[i];
              double c = qV2e*q[i];
              for (int k = 0; k < nsd; k++) {
                if ((!useSlab_) || (k==nsd)) {
                  //f[i][k] -= c*efield(k);
                  _atomElectricalForce_(atcIdx,k) -= c*efield(k);
                }
              }
            }
          }
        }
      }
    }
  }

#ifdef CHARGED_SURFACE

  //--------------------------------------------------------
  //  add_charged_surface
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::add_charged_surface(const string & facesetName,
                                                        const double chargeDensity)
  {
    // get faceset information
    int nNodes = atc_->num_nodes();
    const FE_Mesh * feMesh = (atc_->feEngine_)->fe_mesh();
    const set< pair <int,int> > * faceset
      = & ( feMesh->faceset(facesetName));

    // set face sources to all point at one function for use in integration
    SURFACE_SOURCE faceSources;
    XT_Function * f = XT_Function_Mgr::instance()->constant_function(1.);
    set< pair<int,int> >::const_iterator iset;
    for (iset = faceset->begin(); iset != faceset->end(); iset++) {
      pair<int,int>  face = *iset;
      // allocate
      Array < XT_Function * > & dof  = faceSources[ELECTRIC_POTENTIAL][face];
      dof.reset(1);
      dof(0) = f;
    }

    // Get associated nodeset
    set<int> nodeset;
    feMesh->faceset_to_nodeset(facesetName,nodeset);

    // Get coordinates of each node in face set
    map<int,pair<DENS_VEC,double> > & myFaceset = chargedSurfaces_[facesetName];
    set<int>::const_iterator myNode;
    for (myNode = nodeset.begin(); myNode != nodeset.end(); myNode++) {
      DENS_VEC myCoords = feMesh->nodal_coordinates(*myNode);
      pair<DENS_VEC,double> myPair(myCoords,0.);
      myFaceset[*myNode] = myPair;
    }

    // computed integrals of nodal shape functions on face
    FIELDS nodalFaceWeights;
    nodalFaceWeights[ELECTRIC_POTENTIAL].reset(nNodes,1);
    Array<bool> fieldMask(NUM_FIELDS);
    fieldMask(ELECTRIC_POTENTIAL) = true;

    (atc_->feEngine_)->add_fluxes(fieldMask,0.,faceSources,nodalFaceWeights);
    // set up data structure holding charged faceset information
    FIELDS sources;
    double coulombConstant = LammpsInterface::instance()->coulomb_constant();
    map<int,pair<DENS_VEC,double> >::iterator myNodeData;
    for (myNodeData = myFaceset.begin(); myNodeData != myFaceset.end(); myNodeData++) {
      // evaluate voltage at each node I
      // set up X_T function for integration: k*chargeDensity/||x_I - x_s||

      // integral is approximated in two parts:
      // 1) near part with all faces within r < rcrit evaluated as 2 * pi * rcrit * k sigma A/A0, A is area of this region and A0 = pi * rcrit^2, so 2 k sigma A / rcrit
      // 2) far part evaluated using Gaussian quadrature on faceset
      double rcritSq = LammpsInterface::instance()->pair_cutoff();
      rcritSq *= rcritSq;
      int nodalIndex = myNodeData->first;
      DENS_VEC myCoords((myNodeData->second).first);
      double xtArgs[8];
      xtArgs[0] = myCoords(0); xtArgs[1] = myCoords(1); xtArgs[2] = myCoords(2);
      xtArgs[3] = 1.; xtArgs[4] = 1.; xtArgs[5] = 1.;
      xtArgs[6] = coulombConstant*chargeDensity;
      xtArgs[7] = -1.;
      string radialPower = "radial_power";
      f = XT_Function_Mgr::instance()->function(radialPower,8,xtArgs);


      for (iset = faceset->begin(); iset != faceset->end(); iset++) {
        pair<int,int>  face = *iset;
        // allocate
        Array < XT_Function * > & dof  = faceSources[ELECTRIC_POTENTIAL][face];
        dof.reset(1);
          dof(0) = f;
      }

      // perform integration to get quantities at nodes on facesets
      // V_J' = int_S N_J k*sigma/|x_I - x_s| dS
      sources[ELECTRIC_POTENTIAL].reset(nNodes,1);
      (atc_->feEngine_)->add_fluxes(fieldMask,0.,faceSources,sources);

      double myPotential = 0.;
      // sum over all nodes in faceset to get total potential:
      // V_I = sum_J VJ'
      const DENS_MAT & myPotentialSource(sources[ELECTRIC_POTENTIAL].quantity());
      nodalChargePotential_[facesetName][nodalIndex] = myPotentialSource(nodalIndex,0);
      for (myNode = nodeset.begin(); myNode != nodeset.end(); myNode++)
        myPotential += myPotentialSource(*myNode,0);

      // assign an XT function per each node and
      // then call the prescribed data manager and fix each node individually.
      f = XT_Function_Mgr::instance()->constant_function(myPotential);
      (atc_->prescribedDataMgr_)->fix_field(nodalIndex,ELECTRIC_POTENTIAL,0,f);

      // compute effective charge at each node I
      // multiply charge density by integral of N_I over face
      (myNodeData->second).second = (nodalFaceWeights[ELECTRIC_POTENTIAL].quantity())(nodalIndex,0)*chargeDensity;
    }
  }

  //--------------------------------------------------------
  //  apply_charged_surfaces
  //--------------------------------------------------------
  void ExtrinsicModelElectrostatic::apply_charged_surfaces
  (MATRIX & /* potential */)
  {
    //double qE2f = LammpsInterface::instance()->qe2f();
    double qV2e = LammpsInterface::instance()->qv2e();
    double qqrd2e = LammpsInterface::instance()->qqrd2e();
    //double ** fatom = LammpsInterface::instance()->fatom();
    //double *  qatom = LammpsInterface::instance()->atom_charge();
    InterscaleManager & interscaleManager(atc_->interscale_manager());
    const DENS_MAT & qatom((interscaleManager.fundamental_atom_quantity(LammpsInterface::ATOM_CHARGE))->quantity());
    double cutoffRadius = LammpsInterface::instance()->pair_cutoff();
    double cutoffSq = cutoffRadius*cutoffRadius;
    int nLocal = qatom.nRows();
    int nsd = atc_->nsd();
    int nNodes = atc_->num_nodes();
    double penalty = poissonSolver_->penalty_coefficient();
    if (penalty <= 0.0) throw ATC_Error("ExtrinsicModelElectrostatic::apply_charged_surfaces expecting non zero penalty");
    SparseVector<double> dummy(atc_->num_nodes());

    map<string,map<int,pair<DENS_VEC,double> > >::const_iterator isurface;
    for (isurface = chargedSurfaces_.begin(); isurface != chargedSurfaces_.end(); isurface++) {
      string facesetName = isurface->first;
      map<int,pair<DENS_VEC,double> >::const_iterator inode;
      for (inode = (isurface->second).begin(); inode != (isurface->second).end(); inode++) {

        int nodeId = inode->first;
        DENS_VEC nodalCoords = (inode->second).first;
        double nodalCharge = (inode->second).second;
        double nodalPotential = nodalChargePotential_[facesetName][nodeId];
        PerAtomQuantity<double> * atomicCoords = (atc_->interscale_manager()).per_atom_quantity("AtomicCoarseGrainingPositions");
        const DENS_MAT & myAtomicCoords(atomicCoords->quantity());
        for (int i = 0; i < nLocal; i++) {
          if (abs(qatom(i,0)) > 0) {
            double distanceSq = 0.;
            double deltaX[3];
            for (int j = 0; j < nsd; j++) {
              deltaX[j] = myAtomicCoords(i,j) - nodalCoords(j);
              distanceSq += deltaX[j]*deltaX[j];
            }
            if (distanceSq < cutoffSq) {
              // first apply pairwise coulombic interaction
              if (!useSlab_) {
                double coulForce = qqrd2e*nodalCharge*qatom(i,0)/(distanceSq*sqrtf(distanceSq));
                for (int j = 0; j < nsd; j++)
                  //fatom[atomIdx][j] += deltaX[j]*coulForce;
                  _atomElectricalForce_(i,j) += deltaX[j]*coulForce;
              }

              // second correct for FE potential induced by BCs
              // determine shape function derivatives at atomic location
              // and construct sparse vectors to store derivative data

              vector<SparseVector<double> > derivativeVectors;
              derivativeVectors.reserve(nsd);
              const SPAR_MAT_VEC & shapeFunctionDerivatives((interscaleManager.vector_sparse_matrix("InterpolantGradient"))->quantity());
              for (int j = 0; j < nsd; j++) {
                DenseVector<INDEX> nodeIndices;
                DENS_VEC nodeValues;
                shapeFunctionDerivatives[j]->row(i,nodeValues,nodeIndices);
                derivativeVectors.push_back(dummy);
                for (int k = 0; k < nodeIndices.size(); k++)
                  derivativeVectors[j](nodeIndices(k)) = nodeValues(k);
              }

              // compute greens function from charge quadrature

              SparseVector<double> shortFePotential(nNodes);
              shortFePotential.add_scaled(greensFunctions_[nodeId],penalty*nodalPotential);

              // compute electric field induced by charge
              DENS_VEC efield(nsd);
              efield = 0.;
              for (int j = 0; j < nsd; j++)
                efield(j) = -.1*dot(derivativeVectors[j],shortFePotential);

              // apply correction in atomic forces
              //double c = qE2f*qatom[atomIdx];
              double c = qV2e*qatom(i,0);
              for (int j = 0; j < nsd; j++)
                if ((!useSlab_) || (j==nsd)) {
                  //fatom[atomIdx][j] -= c*efield(j);
                  _atomElectricalForce_(i,j) -= c*efield(j);
                }
            }
          }
        }
      }
    }
  }
#endif

  //--------------------------------------------------------
  //--------------------------------------------------------
  //  Class ExtrinsicModelElectrostaticMomentum
  //--------------------------------------------------------
  //--------------------------------------------------------

  //--------------------------------------------------------
  //  Constructor
  //--------------------------------------------------------
  ExtrinsicModelElectrostaticMomentum::ExtrinsicModelElectrostaticMomentum
                                     (ExtrinsicModelManager * modelManager,
                                      ExtrinsicModelType modelType,
                                      string matFileName) :
    ExtrinsicModelElectrostatic(modelManager,modelType,matFileName)
  {
     if (physicsModel_) delete physicsModel_;
     if (modelType == ELECTROSTATIC) {
       physicsModel_ = new PhysicsModelElectrostatic(matFileName);
     }
     else {
       physicsModel_ = new PhysicsModelElectrostaticEquilibrium(matFileName);
     }
     // set up correct masks for coupling
     rhsMaskIntrinsic_(VELOCITY,SOURCE) = true;
     atc_->fieldMask_(VELOCITY,EXTRINSIC_SOURCE) = true;
  }

  //--------------------------------------------------------
  //  Destructor
  //--------------------------------------------------------
  ExtrinsicModelElectrostaticMomentum::~ExtrinsicModelElectrostaticMomentum()
  {
    // do nothing
  }

  //--------------------------------------------------------
  // modify
  //--------------------------------------------------------
  bool ExtrinsicModelElectrostaticMomentum::modify(int narg, char **arg)
  {
    bool match = false;

    if (!match)
      match = ExtrinsicModelElectrostatic::modify(narg,arg);

    return match;
  }

  //--------------------------------------------------------
  //  initialize
  //--------------------------------------------------------
  void ExtrinsicModelElectrostaticMomentum::initialize()
  {
    ExtrinsicModelElectrostatic::initialize();

    int nNodes = atc_->num_nodes();
    int nsd    = atc_->nsd();
    rhs_[VELOCITY].reset(nNodes,nsd);
  }

  //--------------------------------------------------------
  //  set coupling source terms
  //--------------------------------------------------------
  void ExtrinsicModelElectrostaticMomentum::set_sources(FIELDS & fields, FIELDS & sources)
  {
    // compute charge density
    if (modelType_ == ELECTROSTATIC_EQUILIBRIUM) {
      DENS_MAN & n = atc_->field(ELECTRON_DENSITY);
      atc_->nodal_projection(ELECTRON_DENSITY,physicsModel_,n);
    }
    // else {
    //   FIELDS rhs;
    //   Array2D<bool> mask;
    //   mask(ELECTRON_DENSITY,SOURCE) = true;
    //   atc_->evaluate_rhs_integral(mask,fields,rhs,FULL_DOMAIN,physicsModel_);
    //   atc_->apply_inverse_mass_matrix(rhs[ELECTRON_DENSITY].quantity(),n.set_quantity(),ELECTRON_DENSITY);
    // }

    // compute source term with appropriate masking and physics model
    atc_->evaluate_rhs_integral(rhsMaskIntrinsic_, fields, sources,
                                atc_->source_integration(), physicsModel_);
//(sources[VELOCITY].quantity()).print("V SRC");
  }

  //--------------------------------------------------------
  //  output
  //--------------------------------------------------------
  void ExtrinsicModelElectrostaticMomentum::output(OUTPUT_LIST & outputData)
  {
    ExtrinsicModelElectrostatic::output(outputData);
  }
};