File: FE_Element.cpp

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (747 lines) | stat: -rw-r--r-- 25,472 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
// ATC header files
#include "ATC_Error.h"
#include "FE_Mesh.h"
#include "FE_Element.h"
#include "FE_Interpolate.h"
#include "LinearSolver.h"
#include "PolynomialSolver.h"
#include "Utility.h"

// Other headers
#include <cmath>

using ATC_Utility::dbl_geq;
using ATC_Utility::det3;
using std::vector;

namespace ATC {

static const int localCoordinatesMaxIterations_ = 40;
static const double localCoordinatesTolerance = 1.e-09;


  // =============================================================
  //   class FE_Element
  // =============================================================
  FE_Element::FE_Element(const int nSD,
                         int numFaces,
                         int numNodes,
                         int numFaceNodes,
                         int numNodes1d)
    : nSD_(nSD),
      numFaces_(numFaces),
      numNodes_(numNodes),
      numFaceNodes_(numFaceNodes),
      numNodes1d_(numNodes1d),
      tolerance_(localCoordinatesTolerance),
      projectionGuess_(COORDINATE_ALIGNED)
  {
    feInterpolate_ = nullptr;
  }

  FE_Element::~FE_Element()
  {
    if (feInterpolate_) delete feInterpolate_;
  }

  int FE_Element::num_ips() const
  {
    return feInterpolate_->num_ips();
  }

  int FE_Element::num_face_ips() const
  {
    return feInterpolate_->num_face_ips();
  }

  void FE_Element::face_coordinates(const DENS_MAT &eltCoords,
                                    const int faceID,
                                    DENS_MAT & faceCoords) const
  {
    faceCoords.reset(nSD_, numFaceNodes_);

    for (int inode=0; inode < numFaceNodes_; inode++)
    {
      int id = localFaceConn_(faceID,inode);
      for (int isd=0; isd<nSD_; isd++) {
        faceCoords(isd,inode) = eltCoords(isd,id);
      }
    }
  }

  void FE_Element::mapping(const int inode, vector<int> &mapping) const
  {
    for (int iSD=0; iSD<nSD_; ++iSD) {
      mapping[iSD] = static_cast<int>((localCoords_(iSD,inode)+1)/2*
                                      (numNodes1d_-1));
    }
  }

  DENS_VEC FE_Element::local_coords_1d() const
  {
    DENS_VEC localCoords1d(numNodes1d_);
    for (int inode1d=0; inode1d<numNodes1d_; ++inode1d) {
       localCoords1d(inode1d) = (double(inode1d)/double(numNodes1d_-1))*2 - 1;
    }
    return localCoords1d;
  }

  void FE_Element::centroid(const DENS_MAT &eltCoords,
                                  DENS_VEC &centroid) const
  {
    centroid.reset(nSD_);
    for (int i = 0; i < nSD_; i++) {
      centroid(i) = eltCoords.row_mean(i);
    }
  }

  // -------------------------------------------------------------
  //  generic conversion from global to local coordinates using
  //  Newton's method to solve the nonliear equation that arises
  // -------------------------------------------------------------
  bool FE_Element::local_coordinates(const DENS_MAT &eltCoords,
                                     const DENS_VEC &x,
                                     DENS_VEC &xi) const
  {
    // initial guess
    DENS_VEC xiGuess(nSD_);
    this->initial_local_coordinates(eltCoords,x,xiGuess);
    // clip out-of-range guesses
    if (fabs(xiGuess(0)) > 1.0) xiGuess(0) = 0.;
    if (fabs(xiGuess(1)) > 1.0) xiGuess(1) = 0.;
    if (fabs(xiGuess(2)) > 1.0) xiGuess(2) = 0.;

    // iteratively solve the equation by calculating the global
    // position of the guess and bringing the difference between it
    // and the actual global position of x to zero
    //
    // uses Newton's method
    DENS_VEC N(numNodes_);
    DENS_MAT dNdr(nSD_,numNodes_);

    DENS_VEC xGuess(nSD_);
    DENS_VEC xDiff(nSD_);
    DENS_MAT eltCoordsT = transpose(eltCoords);
    int count = 0;
    bool converged = false;
    while (count < localCoordinatesMaxIterations_) {
      feInterpolate_->compute_N_dNdr(xiGuess,N,dNdr);
      xGuess = N*eltCoordsT;
      xDiff  = xGuess-x;
      // determine if the guess is close enough.
      // if it is, take it and run
      // if not, use Newton's method to update the guess
      if (!dbl_geq(abs(xDiff(0)),tolerance_) &&
          !dbl_geq(abs(xDiff(1)),tolerance_) &&
          !dbl_geq(abs(xDiff(2)),tolerance_)) {
        converged = true;
        xi = xiGuess;
        break;
      } else {
        xiGuess = xiGuess - transpose(inv(dNdr*eltCoordsT))*xDiff;
      }
      ++count;
    }
    return converged;
  }

  // -------------------------------------------------------------
  //  guess for initial local coordinates
  // -------------------------------------------------------------
  void FE_Element::initial_local_coordinates(const DENS_MAT &eltCoords,
                                             const DENS_VEC &x,
                                             DENS_VEC &xi) const
  {
    xi.reset(nSD_);
    if      (projectionGuess_ == COORDINATE_ALIGNED) {
      double min=0; double max=0;
      for (int i=0; i<nSD_; ++i) {
        bounds_in_dim(eltCoords,i,min,max);
        xi(i) = 2.0*(x(i)-min)/(max-min) - 1.0;
      }
    }
    else if (projectionGuess_ == CENTROID_LINEARIZED) {
      DENS_VEC xi0(nSD_); xi0 = 0;
      DENS_VEC x0(nSD_), dx(nSD_);
      centroid(eltCoords,x0);
      dx = x - x0;
      vector<DENS_VEC> ts; ts.reserve(nSD_);
      tangents(eltCoords,xi0,ts);
      DENS_VEC & t1 = ts[0];
      DENS_VEC & t2 = ts[1];
      DENS_VEC & t3 = ts[2];
      double J = det3(t1.ptr(),t2.ptr(),t3.ptr());
      double J1 = det3(dx.ptr(),t2.ptr(),t3.ptr());
      double J2 = det3(t1.ptr(),dx.ptr(),t3.ptr());
      double J3 = det3(t1.ptr(),t2.ptr(),dx.ptr());
      xi(0) = J1/J;
      xi(1) = J2/J;
      xi(2) = J3/J;
    }
    else if (projectionGuess_ == TWOD_ANALYTIC) {
      // assume x-y planar and HEX8
      double x0 = x(0), y0 = x(1);
      double X[4] = {eltCoords(0,0),eltCoords(0,1),eltCoords(0,2),eltCoords(0,3)};
      double Y[4] = {eltCoords(1,0),eltCoords(1,1),eltCoords(1,2),eltCoords(1,3)};
      double c[3]={0,0,0};
      c[0] = y0*X[0] - y0*X[1] - y0*X[2] + y0*X[3] - x0*Y[0] + (X[1]*Y[0])*0.5 + (X[2]*Y[0])*0.5 + x0*Y[1] - (X[0]*Y[1])*0.5 - (X[3]*Y[1])*0.5 + x0*Y[2] - (X[0]*Y[2])*0.5 - (X[3]*Y[2])*0.5 - x0*Y[3] + (X[1]*Y[3])*0.5 + (X[2]*Y[3])*0.5;
      c[1] = -(y0*X[0]) + y0*X[1] - y0*X[2] + y0*X[3] + x0*Y[0] - X[1]*Y[0] - x0*Y[1] + X[0]*Y[1] + x0*Y[2] - X[3]*Y[2] - x0*Y[3] + X[2]*Y[3];
      c[1] = (X[1]*Y[0])*0.5 - (X[2]*Y[0])*0.5 - (X[0]*Y[1])*0.5 + (X[3]*Y[1])*0.5 + (X[0]*Y[2])*0.5 - (X[3]*Y[2])*0.5 - (X[1]*Y[3])*0.5 + (X[2]*Y[3])*0.5;
      double xi2[2]={0,0};
      int nroots = solve_quadratic(c,xi2);
      if (nroots == 0) throw ATC_Error("no real roots in 2D analytic projection guess");
      double xi1[2]={0,0};
      xi1[0] = (4*x0 - X[0] + xi2[0]*X[0] - X[0] + xi2[0]*X[0] - X[0] - xi2[0]*X[0] - X[0] - xi2[0]*X[0])/(-X[0] + xi2[0]*X[0] + X[0] - xi2[0]*X[0] + X[0] + xi2[0]*X[0] - X[0] - xi2[0]*X[0]);
      xi1[1] = (4*x0 - X[0] + xi2[0]*X[0] - X[0] + xi2[0]*X[0] - X[0] - xi2[0]*X[0] - X[0] - xi2[0]*X[0])/(-X[0] + xi2[0]*X[0] + X[0] - xi2[0]*X[0] + X[0] + xi2[0]*X[0] - X[0] - xi2[0]*X[0]);
      // choose which one gives back x
      xi(0) = xi1[0];
      xi(1) = xi2[0];
      xi(2) = 0;
    }
  }


  bool FE_Element::range_check(const DENS_MAT &eltCoords,
                               const DENS_VEC &x) const
  {
    double min=0; double max=0;
    for (int i=0; i<nSD_; ++i) {
      bounds_in_dim(eltCoords,i,min,max);
      if (!dbl_geq(x(i),min) || !dbl_geq(max,x(i))) return false;
    }
    return true;
  }


  // -------------------------------------------------------------
  //   Note: Only works for convex elements with planar faces with
  //   outward normals
  // -------------------------------------------------------------
  bool FE_Element::contains_point(const DENS_MAT &eltCoords,
                                  const DENS_VEC &x) const
  {
    if (! range_check(eltCoords,x) ) return false;
    DENS_MAT faceCoords;
    DENS_VEC normal;
    normal.reset(nSD_);
    DENS_VEC faceToPoint;
    double dot;
    bool inside = true;
    for (int faceID=0; faceID<numFaces_; ++faceID) {
      face_coordinates(eltCoords, faceID, faceCoords);
      feInterpolate_->face_normal(faceCoords,
                                  0,
                                  normal);
      faceToPoint = x - column(faceCoords, 0);
      dot = normal.dot(faceToPoint);
      if (dbl_geq(dot,0)) {
        inside = false;
        break;
      }
    }
    return inside;
  }

  // -------------------------------------------------------------
  //   returns the minimum and maximum values of an element in the
  //   specified dimension
  // -------------------------------------------------------------
  void FE_Element::bounds_in_dim(const DENS_MAT &eltCoords, const int dim,
                                 double &min, double &max) const
  {
    int it;
    // iterate over all nodes
    min = eltCoords(dim,0);
    it = 1;
    while (it < numNodes_) {
      if (dbl_geq(min,eltCoords(dim,it))) {
        if (dbl_geq(eltCoords(dim,it),min)) {
          ++it;
        } else {
          // set min to this node's coord in the specified dim, if it's
          // smaller than the value previously stored
          min = eltCoords(dim,it);
        }
      } else {
        ++it;
      }
    }
    max = eltCoords(dim,0);
    it = 1;
    while (it < numNodes_) {
      if (dbl_geq(max,eltCoords(dim,it))) {
        ++it;
      } else {
        // same, except max/larger
        max = eltCoords(dim,it);
      }
    }
  }

  // -------------------------------------------------------------
  //   shape_function calls should stay generic at all costs
  // -------------------------------------------------------------
  void FE_Element::shape_function(const VECTOR &xi,
                                  DENS_VEC &N) const
  {
    feInterpolate_->shape_function(xi, N);
  }

  void FE_Element::shape_function(const DENS_MAT eltCoords,
                                  const VECTOR &x,
                                  DENS_VEC &N)
  {
    DENS_VEC xi;
    local_coordinates(eltCoords, x, xi);

    feInterpolate_->shape_function(xi, N);
  }

  void FE_Element::shape_function(const DENS_MAT eltCoords,
                                  const VECTOR &x,
                                  DENS_VEC &N,
                                  DENS_MAT &dNdx)
  {
    DENS_VEC xi;
    local_coordinates(eltCoords, x, xi);

    feInterpolate_->shape_function(eltCoords, xi, N, dNdx);
  }

  void FE_Element::shape_function_derivatives(const DENS_MAT eltCoords,
                                  const VECTOR &x,
                                  DENS_MAT &dNdx)
  {
    DENS_VEC xi;
    local_coordinates(eltCoords, x, xi);

    feInterpolate_->shape_function_derivatives(eltCoords, xi, dNdx);
  }


  void FE_Element::shape_function(const DENS_MAT eltCoords,
                                  DENS_MAT &N,
                                  vector<DENS_MAT> &dN,
                                  DIAG_MAT &weights)
  {
    feInterpolate_->shape_function(eltCoords, N, dN, weights);
  }

  void FE_Element::face_shape_function(const DENS_MAT &eltCoords,
                                       const int faceID,
                                       DENS_MAT &N,
                                       DENS_MAT &n,
                                       DIAG_MAT &weights)
  {
    DENS_MAT faceCoords;
    face_coordinates(eltCoords, faceID, faceCoords);

    feInterpolate_->face_shape_function(eltCoords, faceCoords, faceID,
                                        N, n, weights);
  }

  void FE_Element::face_shape_function(const DENS_MAT &eltCoords,
                                       const int faceID,
                                       DENS_MAT &N,
                                       vector<DENS_MAT> &dN,
                                       vector<DENS_MAT> &Nn,
                                       DIAG_MAT &weights)
  {
    DENS_MAT faceCoords;
    face_coordinates(eltCoords, faceID, faceCoords);

    feInterpolate_->face_shape_function(eltCoords, faceCoords, faceID,
                                        N, dN, Nn, weights);
  }

  double FE_Element::face_normal(const DENS_MAT &eltCoords,
                                 const int faceID,
                                 int ip,
                                 DENS_VEC &normal)
  {
    DENS_MAT faceCoords;
    face_coordinates(eltCoords, faceID, faceCoords);

    double J = feInterpolate_->face_normal(faceCoords, ip, normal);
    return J;
  }

  void FE_Element::tangents(const DENS_MAT &eltCoords,
                            const DENS_VEC & localCoords,
                            vector<DENS_VEC> &tangents,
                            const bool normalize)  const
  {
    feInterpolate_->tangents(eltCoords,localCoords,tangents,normalize);
  }


  // =============================================================
  //   class FE_ElementHex
  // =============================================================
  FE_ElementHex::FE_ElementHex(int numNodes,
                               int numFaceNodes,
                               int numNodes1d)
    : FE_Element(3,                 // number of spatial dimensions
                 6,                 // number of faces
                 numNodes,
                 numFaceNodes,
                 numNodes1d)
  {
    //       3 --- 2
    //      /|    /|
    //     / 0 --/ 1     y
    //    7 --- 6 /      |
    //    |     |/       |
    //    4 --- 5         -----x
    //                  /
    //                 /
    //                z

    // Basic properties of element:
    vol_ = 8.0;
    faceArea_ = 4.0;

    // Order-specific information:
    if (numNodes != 8  &&
        numNodes != 20 &&
        numNodes != 27) {
      throw ATC_Error("Unrecognized interpolation order specified "
                      "for element class: \n"
                      "  element only knows how to construct lin "
                        "and quad elements.");
    }

    localCoords_.resize(nSD_,numNodes_);
    localFaceConn_ = Array2D<int>(numFaces_,numFaceNodes_);

    // Matrix of local nodal coordinates
    localCoords_(0,0) = -1; localCoords_(0,4) = -1;
    localCoords_(1,0) = -1; localCoords_(1,4) = -1;
    localCoords_(2,0) = -1; localCoords_(2,4) =  1;
    //
    localCoords_(0,1) =  1; localCoords_(0,5) =  1;
    localCoords_(1,1) = -1; localCoords_(1,5) = -1;
    localCoords_(2,1) = -1; localCoords_(2,5) =  1;
    //
    localCoords_(0,2) =  1; localCoords_(0,6) =  1;
    localCoords_(1,2) =  1; localCoords_(1,6) =  1;
    localCoords_(2,2) = -1; localCoords_(2,6) =  1;
    //
    localCoords_(0,3) = -1; localCoords_(0,7) = -1;
    localCoords_(1,3) =  1; localCoords_(1,7) =  1;
    localCoords_(2,3) = -1; localCoords_(2,7) =  1;
    if (numNodes >= 20) {
      // only for quads
      localCoords_(0,8) =  0;  localCoords_(0,14) =  1;
      localCoords_(1,8) = -1;  localCoords_(1,14) =  1;
      localCoords_(2,8) = -1;  localCoords_(2,14) =  0;
      //
      localCoords_(0,9) =  1;  localCoords_(0,15) = -1;
      localCoords_(1,9) =  0;  localCoords_(1,15) =  1;
      localCoords_(2,9) = -1;  localCoords_(2,15) =  0;
      //
      localCoords_(0,10) =  0; localCoords_(0,16) =  0;
      localCoords_(1,10) =  1; localCoords_(1,16) = -1;
      localCoords_(2,10) = -1; localCoords_(2,16) =  1;
      //
      localCoords_(0,11) = -1; localCoords_(0,17) =  1;
      localCoords_(1,11) =  0; localCoords_(1,17) =  0;
      localCoords_(2,11) = -1; localCoords_(2,17) =  1;
      //
      localCoords_(0,12) = -1; localCoords_(0,18) =  0;
      localCoords_(1,12) = -1; localCoords_(1,18) =  1;
      localCoords_(2,12) =  0; localCoords_(2,18) =  1;
      //
      localCoords_(0,13) =  1; localCoords_(0,19) = -1;
      localCoords_(1,13) = -1; localCoords_(1,19) =  0;
      localCoords_(2,13) =  0; localCoords_(2,19) =  1;
      if (numNodes >= 27) {
        // only for quads
        localCoords_(0,20) =  0; localCoords_(0,24) =  1;
        localCoords_(1,20) =  0; localCoords_(1,24) =  0;
        localCoords_(2,20) =  0; localCoords_(2,24) =  0;
        //
        localCoords_(0,21) =  0; localCoords_(0,25) =  0;
        localCoords_(1,21) =  0; localCoords_(1,25) = -1;
        localCoords_(2,21) = -1; localCoords_(2,25) =  0;
        //
        localCoords_(0,22) =  0; localCoords_(0,26) =  0;
        localCoords_(1,22) =  0; localCoords_(1,26) =  1;
        localCoords_(2,22) =  1; localCoords_(2,26) =  0;
        //
        localCoords_(0,23) = -1;
        localCoords_(1,23) =  0;
        localCoords_(2,23) =  0;
      }
    }

    // Matrix of local face connectivity
    // -x                    // +x
    localFaceConn_(0,0) = 0; localFaceConn_(1,0) = 1;
    localFaceConn_(0,1) = 4; localFaceConn_(1,1) = 2;
    localFaceConn_(0,2) = 7; localFaceConn_(1,2) = 6;
    localFaceConn_(0,3) = 3; localFaceConn_(1,3) = 5;
    if (numNodes >= 20) {
      localFaceConn_(0,4) = 12; localFaceConn_(1,4) = 9;
      localFaceConn_(0,5) = 19; localFaceConn_(1,5) = 14;
      localFaceConn_(0,6) = 15; localFaceConn_(1,6) = 17;
      localFaceConn_(0,7) = 11; localFaceConn_(1,7) = 13;
      if (numNodes >= 27) {
        localFaceConn_(0,8) = 23; localFaceConn_(1,8) = 24;
      }
    }

    // -y                    // +y
    localFaceConn_(2,0) = 0; localFaceConn_(3,0) = 3;
    localFaceConn_(2,1) = 1; localFaceConn_(3,1) = 7;
    localFaceConn_(2,2) = 5; localFaceConn_(3,2) = 6;
    localFaceConn_(2,3) = 4; localFaceConn_(3,3) = 2;
    if (numNodes >= 20) {
      localFaceConn_(2,4) = 8;  localFaceConn_(3,4) = 15;
      localFaceConn_(2,5) = 13; localFaceConn_(3,5) = 18;
      localFaceConn_(2,6) = 16; localFaceConn_(3,6) = 14;
      localFaceConn_(2,7) = 12; localFaceConn_(3,7) = 10;
      if (numNodes >= 27) {
        localFaceConn_(2,8) = 25; localFaceConn_(3,8) = 26;
      }
    }

    // -z                    // +z
    localFaceConn_(4,0) = 0; localFaceConn_(5,0) = 4;
    localFaceConn_(4,1) = 3; localFaceConn_(5,1) = 5;
    localFaceConn_(4,2) = 2; localFaceConn_(5,2) = 6;
    localFaceConn_(4,3) = 1; localFaceConn_(5,3) = 7;
    if (numNodes >= 20) {
      localFaceConn_(4,4) = 8;  localFaceConn_(5,4) = 16;
      localFaceConn_(4,5) = 11; localFaceConn_(5,5) = 17;
      localFaceConn_(4,6) = 10; localFaceConn_(5,6) = 18;
      localFaceConn_(4,7) = 9;  localFaceConn_(5,7) = 19;
      if (numNodes >= 27) {
        localFaceConn_(4,8) = 21; localFaceConn_(5,8) = 22;
      }
    }

    if (numNodes == 8) {
      feInterpolate_ = new FE_InterpolateCartLin(this);
    } else if (numNodes == 20) {
      feInterpolate_ = new FE_InterpolateCartSerendipity(this);
    } else if (numNodes == 27) {
      feInterpolate_ = new FE_InterpolateCartLagrange(this);
    }

    // determine alignment and skewness to see which guess we should use

  }

  FE_ElementHex::~FE_ElementHex()
  {
    // Handled by base class
  }

  void FE_ElementHex::set_quadrature(FeIntQuadrature type)
  {
    feInterpolate_->set_quadrature(HEXA,type);
  }

  bool FE_ElementHex::contains_point(const DENS_MAT &eltCoords,
                                     const DENS_VEC &x) const
  {
    if (! range_check(eltCoords,x) ) return false;

    DENS_VEC xi;
    bool converged = local_coordinates(eltCoords,x,xi);
    if (!converged) return false;
    for (int i=0; i<nSD_; ++i) {
      if (!dbl_geq(1.0,abs(xi(i)))) return false;
    }
    return true;
  }

  // =============================================================
  //   class FE_ElementRect
  // =============================================================
  FE_ElementRect::FE_ElementRect()
    : FE_ElementHex(8,4,2)
  {
    // Handled by hex class
  }

  FE_ElementRect::~FE_ElementRect()
  {
    // Handled by base class
  }

  bool FE_ElementRect::contains_point(const DENS_MAT &eltCoords,
                                      const DENS_VEC &x) const
  {
    return range_check(eltCoords,x);
  }

  // much faster than the unstructured method
  bool FE_ElementRect::local_coordinates(const DENS_MAT &eltCoords,
                                         const DENS_VEC &x,
                                         DENS_VEC &xi) const
  {
    xi.reset(nSD_);
    double min = 0.0;
    double max = 0.0;
    for (int iSD=0; iSD<nSD_; ++iSD) {
      min = eltCoords(iSD,0);
      max = eltCoords(iSD,6);
      xi(iSD) = 2.0*(x(iSD)-min)/(max-min) - 1.0;
    }
    return true;
  }


  // =============================================================
  //   class FE_ElementTet
  // =============================================================
  FE_ElementTet::FE_ElementTet(int numNodes,
                               int numFaceNodes,
                               int numNodes1d)
    : FE_Element(3,                 // number of spatial dimensions
                 4,                 // number of faces
                 numNodes,
                 numFaceNodes,
                 numNodes1d)
  {
    // t
    // ^
    // |
    // |
    //                          s
    // 3                     .7
    // |\```---           .
    // |  \     ```--2 .
    // |    \       .|
    // |      \  .   |
    // |      . \    |
    // |   .      \  |
    // |.___________\|  -------> r
    // 0             1
    //
    // (This is as dictated by the EXODUSII standard.)
    //
    // The face opposite point 1 has r = 0,
    //                         2 has s = 0,
    //                         3 has t = 0,
    //                         0 has u = 0.

    // Basic properties of element:
    vol_ = 1.0/6.0; // local volume
    faceArea_ = 1.0/2.0;

    // Order-specific information:
    if (numNodes != 4 && numNodes != 10) {
      throw ATC_Error("Unrecognized interpolation order specified "
                      "for element class: \n"
                      "  element only knows how to construct lin "
                        "and quad elements.");
    }

    localCoords_.resize(nSD_+1, numNodes_);
    localFaceConn_ = Array2D<int>(numFaces_,numFaceNodes_);

    // Matrix of local nodal coordinates
    //
    // Remember, there's actually another coordinate too (u), coming
    // out from the third non-normal face. But we can deal with it on
    // the fly; these coordinates are barycentric, such that
    // r + s + t + u = 1 always. As such we only need to deal with r,
    // s, and t and the computations become easy.
    //
    // The first three axes correspond to x, y, and z (essentially),
    // for the canonical element.

    // Everyone gets these nodes...
    localCoords_(0,0) = 0; localCoords_(0,2) = 0;
    localCoords_(1,0) = 0; localCoords_(1,2) = 1;
    localCoords_(2,0) = 0; localCoords_(2,2) = 0;
    localCoords_(3,0) = 1; localCoords_(3,2) = 0;
    //
    localCoords_(0,1) = 1; localCoords_(0,3) = 0;
    localCoords_(1,1) = 0; localCoords_(1,3) = 0;
    localCoords_(2,1) = 0; localCoords_(2,3) = 1;
    localCoords_(3,1) = 0; localCoords_(3,3) = 0;
    if (numNodes >= 10) {
      // ...quads get even more!
      localCoords_(0,4) = 0.5; localCoords_(0,5) = 0.5;
      localCoords_(1,4) = 0.0; localCoords_(1,5) = 0.5;
      localCoords_(2,4) = 0.0; localCoords_(2,5) = 0.0;
      localCoords_(3,4) = 0.5; localCoords_(3,5) = 0.0;
      //
      localCoords_(0,6) = 0.0; localCoords_(0,7) = 0.0;
      localCoords_(1,6) = 0.5; localCoords_(1,7) = 0.0;
      localCoords_(2,6) = 0.0; localCoords_(2,7) = 0.5;
      localCoords_(3,6) = 0.5; localCoords_(3,7) = 0.5;
      //
      localCoords_(0,8) = 0.5; localCoords_(0,9) = 0.0;
      localCoords_(1,8) = 0.0; localCoords_(1,9) = 0.5;
      localCoords_(2,8) = 0.5; localCoords_(2,9) = 0.5;
      localCoords_(3,8) = 0.0; localCoords_(3,9) = 0.0;
    }

    // Matrix of local face connectivity:
    // ...opposite point 0,     ...opposite point 2,
    localFaceConn_(0,0) = 1; localFaceConn_(2,0) = 0;
    localFaceConn_(0,1) = 2; localFaceConn_(2,1) = 1;
    localFaceConn_(0,2) = 3; localFaceConn_(2,2) = 3;

    // ...opposite point 1,     ...opposite point 3.
    localFaceConn_(1,0) = 2; localFaceConn_(3,0) = 0;
    localFaceConn_(1,1) = 0; localFaceConn_(3,1) = 2;
    localFaceConn_(1,2) = 3; localFaceConn_(3,2) = 1;

    feInterpolate_ = new FE_InterpolateSimpLin(this);
  }

  FE_ElementTet::~FE_ElementTet()
  {
    // Handled by base class
  }

  void FE_ElementTet::set_quadrature(FeIntQuadrature type)
  {
    feInterpolate_->set_quadrature(TETRA,type);
  }

  bool FE_ElementTet::local_coordinates(const DENS_MAT &eltCoords,
                                        const DENS_VEC &x,
                                        DENS_VEC &xi) const
  {
    DENS_MAT T(nSD_, numNodes_-1);
    DENS_VEC r(nSD_);
    for (int iSD=0; iSD<nSD_; ++iSD) {
      for (int inode=1; inode<numNodes_; ++inode) {
        T(iSD, inode-1) = eltCoords(iSD, inode) -
                          eltCoords(iSD, 0);
      }
      r(iSD) = x(iSD) - eltCoords(iSD, 0);
    }
    MultMv(inv(T), r, xi, false, 1.0, 0.0);
    return true;
  }

  bool FE_ElementTet::contains_point(const DENS_MAT &eltCoords,
                                     const DENS_VEC &x) const
  {
    if (! range_check(eltCoords,x) ) return false;
    DENS_VEC xi(nSD_);
    bool converged = local_coordinates(eltCoords, x, xi);
    if (! converged) return false;
    double sum = 0.0;
    bool inside = true;
    for (int iSD = 0; iSD < nSD_; ++iSD) {
      if (dbl_geq(xi(iSD),1.0) || dbl_geq(0.0,xi(iSD))) {
        inside = false;
        break;
      }
      sum += xi(iSD);
    }
    if (dbl_geq(sum,1.0)) inside = false;
    return inside;
  }


}; // namespace ATC