1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
// ATC header files
#include "ATC_Error.h"
#include "FE_Element.h"
#include "FE_Interpolate.h"
#include "FE_Quadrature.h"
// Other headers
#include <cmath>
using std::map;
using std::vector;
namespace ATC {
FE_Interpolate::FE_Interpolate(FE_Element *feElement)
: feElement_(feElement),
nSD_(feElement->num_dims())
{
// Nothing to do here
}
FE_Interpolate::~FE_Interpolate()
{
if (!feQuadList_.empty()) {
map<FeIntQuadrature,FE_Quadrature *>::iterator qit;
for (qit = feQuadList_.begin();
qit != feQuadList_.end(); ++qit) {
delete (qit->second);
}
}
}
void FE_Interpolate::set_quadrature(FeEltGeometry geo,
FeIntQuadrature quad)
{
if (feQuadList_.count(quad) == 0) {
feQuad_ = new FE_Quadrature(geo,quad);
feQuadList_[quad] = feQuad_;
} else {
feQuad_ = feQuadList_[quad];
}
precalculate_shape_functions();
}
void FE_Interpolate::precalculate_shape_functions()
{
int numEltNodes = feElement_->num_elt_nodes();
int numFaces = feElement_->num_faces();
int numFaceNodes = feElement_->num_face_nodes();
int numIPs = feQuad_->numIPs;
DENS_MAT &ipCoords = feQuad_->ipCoords;
int numFaceIPs = feQuad_->numFaceIPs;
vector<DENS_MAT> &ipFaceCoords = feQuad_->ipFaceCoords;
DENS_MAT &ipFace2DCoords = feQuad_->ipFace2DCoords;
// Compute elemental shape functions at ips
N_.reset(numIPs,numEltNodes);
dNdr_.assign(numIPs,DENS_MAT(nSD_,numEltNodes));
for (int ip = 0; ip < numIPs; ip++) {
CLON_VEC thisIP = column(ipCoords,ip);
CLON_VEC thisN = row(N_,ip);
DENS_MAT &thisdNdr = dNdr_[ip];
compute_N(thisIP,thisN);
compute_N_dNdr(thisIP,thisN,thisdNdr);
}
// Compute face shape functions at ip's
NFace_.assign(numFaces,DENS_MAT(numFaceIPs,numEltNodes));
dNdrFace_.resize(numFaces);
for (int f = 0; f < numFaces; f++) {
dNdrFace_[f].assign(numIPs,DENS_MAT(nSD_,numEltNodes));
}
for (int f = 0; f < numFaces; f++) {
for (int ip = 0; ip < numFaceIPs; ip++) {
CLON_VEC thisIP = column(ipFaceCoords[f],ip);
CLON_VEC thisN = row(NFace_[f],ip);
DENS_MAT &thisdNdr = dNdrFace_[f][ip];
compute_N_dNdr(thisIP,thisN,thisdNdr);
}
}
// Compute 2D face shape function derivatives
dNdrFace2D_.assign(numFaceIPs,DENS_MAT(nSD_-1,numFaceNodes));
for (int ip = 0; ip < numFaceIPs; ip++) {
CLON_VEC thisIP = column(ipFace2DCoords,ip);
DENS_MAT &thisdNdr = dNdrFace2D_[ip];
compute_dNdr(thisIP,
numFaceNodes,nSD_-1,feElement_->face_area(),
thisdNdr);
}
}
//-----------------------------------------------------------------
// shape function value at a particular point given local coordinates
//-----------------------------------------------------------------
void FE_Interpolate::shape_function(const VECTOR &xi,
DENS_VEC &N)
{
int numEltNodes = feElement_->num_elt_nodes();
N.resize(numEltNodes);
compute_N(xi,N);
}
void FE_Interpolate::shape_function(const DENS_MAT &eltCoords,
const VECTOR &xi,
DENS_VEC &N,
DENS_MAT &dNdx)
{
int numEltNodes = feElement_->num_elt_nodes();
N.resize(numEltNodes);
DENS_MAT dNdr(nSD_,numEltNodes,false);
compute_N_dNdr(xi,N,dNdr);
DENS_MAT eltCoordsT = transpose(eltCoords);
DENS_MAT dxdr, drdx;
dxdr = dNdr*eltCoordsT;
drdx = inv(dxdr);
dNdx = drdx*dNdr;
}
void FE_Interpolate::shape_function_derivatives(const DENS_MAT &eltCoords,
const VECTOR &xi,
DENS_MAT &dNdx)
{
int numEltNodes = feElement_->num_elt_nodes();
DENS_MAT dNdr(nSD_,numEltNodes,false);
DENS_VEC N(numEltNodes);
compute_N_dNdr(xi,N,dNdr);
DENS_MAT eltCoordsT = transpose(eltCoords);
DENS_MAT dxdr, drdx;
dxdr = dNdr*eltCoordsT; // tangents or Jacobian matrix
drdx = inv(dxdr);
dNdx = drdx*dNdr; // dN/dx = dN/dxi (dx/dxi)^-1
}
void FE_Interpolate::tangents(const DENS_MAT &eltCoords,
const VECTOR &xi,
DENS_MAT &dxdr) const
{
int numEltNodes = feElement_->num_elt_nodes();
DENS_MAT dNdr(nSD_,numEltNodes,false);
DENS_VEC N(numEltNodes);
compute_N_dNdr(xi,N,dNdr);
//dNdr.print("dNdr");
DENS_MAT eltCoordsT = transpose(eltCoords);
//eltCoordsT.print("elt coords");
dxdr = dNdr*eltCoordsT;
//dxdr.print("dxdr");
}
void FE_Interpolate::tangents(const DENS_MAT &eltCoords,
const VECTOR &xi,
vector<DENS_VEC> & dxdxi,
const bool normalize) const
{
DENS_MAT dxdr;
tangents(eltCoords,xi,dxdr);
//dxdr.print("dxdr-post");
dxdxi.resize(nSD_);
//for (int i = 0; i < nSD_; ++i) dxdxi[i] = CLON_VEC(dxdr,CLONE_COL,i);
for (int i = 0; i < nSD_; ++i) {
dxdxi[i].resize(nSD_);
for (int j = 0; j < nSD_; ++j) {
dxdxi[i](j) = dxdr(i,j);
}
}
//dxdxi[0].print("t1");
//dxdxi[1].print("t2");
//dxdxi[2].print("t3");
if (normalize) {
for (int j = 0; j < nSD_; ++j) {
double norm = 0;
VECTOR & t = dxdxi[j];
for (int i = 0; i < nSD_; ++i) norm += t(i)*t(i);
norm = 1./sqrt(norm);
for (int i = 0; i < nSD_; ++i) t(i) *= norm;
}
}
}
// -------------------------------------------------------------
// shape_function values at nodes
// -------------------------------------------------------------
void FE_Interpolate::shape_function(const DENS_MAT &eltCoords,
DENS_MAT &N,
vector<DENS_MAT> &dN,
DIAG_MAT &weights)
{
int numEltNodes = feElement_->num_elt_nodes();
// Transpose eltCoords
DENS_MAT eltCoordsT(transpose(eltCoords));
// Shape functions are simply the canonical element values
N = N_;
// Set sizes of matrices and vectors
if ((int)dN.size() != nSD_) dN.resize(nSD_);
for (int isd = 0; isd < nSD_; isd++)
dN[isd].resize(feQuad_->numIPs,numEltNodes);
weights.resize(feQuad_->numIPs,feQuad_->numIPs);
// Create some temporary matrices:
// Jacobian matrix: [dx/dr dy/ds dz/dt | dx/ds ... ]
DENS_MAT dxdr, drdx, dNdx;
// Loop over integration points
for (int ip = 0; ip < feQuad_->numIPs; ip++) {
// Compute dx/dxi matrix
dxdr = dNdr_[ip]*eltCoordsT;
drdx = inv(dxdr);
// Compute dNdx and fill dN matrix
dNdx = drdx * dNdr_[ip];
for (int isd = 0; isd < nSD_; isd++)
for (int inode = 0; inode < numEltNodes; inode++)
dN[isd](ip,inode) = dNdx(isd,inode);
// Compute jacobian determinant of dxdr at this ip
double J = dxdr(0,0) * (dxdr(1,1)*dxdr(2,2) - dxdr(2,1)*dxdr(1,2))
- dxdr(0,1) * (dxdr(1,0)*dxdr(2,2) - dxdr(1,2)*dxdr(2,0))
+ dxdr(0,2) * (dxdr(1,0)*dxdr(2,1) - dxdr(1,1)*dxdr(2,0));
// Compute ip weight
weights(ip,ip) = feQuad_->ipWeights(ip)*J;
}
}
//-----------------------------------------------------------------
// shape functions on a given face
//-----------------------------------------------------------------
void FE_Interpolate::face_shape_function(const DENS_MAT &eltCoords,
const DENS_MAT &faceCoords,
const int faceID,
DENS_MAT &N,
DENS_MAT &n,
DIAG_MAT &weights)
{
int numFaceIPs = feQuad_->numFaceIPs;
// Transpose eltCoords
DENS_MAT eltCoordsT = transpose(eltCoords);
// Shape functions are simply the canonical element values
N = NFace_[faceID];
// Create some temporary matrices:
// Jacobian matrix: [dx/dr dy/ds dz/dt | dx/ds ... ]
DENS_MAT dxdr, drdx, dNdx;
// Loop over integration points
DENS_VEC normal(nSD_);
n.resize(nSD_,numFaceIPs);
weights.resize(numFaceIPs,numFaceIPs);
for (int ip = 0; ip < numFaceIPs; ip++) {
// Compute 2d jacobian determinant of dxdr at this ip
double J = face_normal(faceCoords,ip,normal);
// Copy normal at integration point
for (int isd = 0; isd < nSD_; isd++) {
n(isd,ip) = normal(isd);
}
// Compute ip weight
weights(ip,ip) = feQuad_->ipFaceWeights(ip)*J;
}
}
void FE_Interpolate::face_shape_function(const DENS_MAT &eltCoords,
const DENS_MAT &faceCoords,
const int faceID,
DENS_MAT &N,
vector<DENS_MAT> &dN,
vector<DENS_MAT> &Nn,
DIAG_MAT &weights)
{
int numEltNodes = feElement_->num_elt_nodes();
int numFaceIPs = feQuad_->numFaceIPs;
// Transpose eltCoords
DENS_MAT eltCoordsT = transpose(eltCoords);
// Shape functions are simply the canonical element values
N = NFace_[faceID];
// Set sizes of matrices and vectors
if ((int)dN.size() != nSD_) dN.resize(nSD_);
if ((int)Nn.size() != nSD_) Nn.resize(nSD_);
for (int isd = 0; isd < nSD_; isd++) {
dN[isd].resize(numFaceIPs,numEltNodes);
Nn[isd].resize(numFaceIPs,numEltNodes);
}
weights.resize(numFaceIPs,numFaceIPs);
// Create some temporary matrices:
// Jacobian matrix: [dx/dr dy/ds dz/dt | dx/ds ... ]
DENS_MAT dxdr, drdx, dNdx;
DENS_VEC normal(nSD_);
// Loop over integration points
for (int ip = 0; ip < numFaceIPs; ip++) {
// Compute dx/dxi matrix
dxdr = dNdrFace_[faceID][ip] * eltCoordsT;
drdx = inv(dxdr);
// Compute 2d jacobian determinant of dxdr at this ip
double J = face_normal(faceCoords,ip,normal);
// Compute dNdx and fill dN matrix
dNdx = drdx * dNdrFace_[faceID][ip];
for (int isd = 0; isd < nSD_; isd++) {
for (int inode = 0; inode < numEltNodes; inode++) {
dN[isd](ip,inode) = dNdx(isd,inode);
Nn[isd](ip,inode) = N(ip,inode)*normal(isd);
}
}
// Compute ip weight
weights(ip,ip) = feQuad_->ipFaceWeights(ip)*J;
}
}
// -------------------------------------------------------------
// face normal
// -------------------------------------------------------------
double FE_Interpolate::face_normal(const DENS_MAT &faceCoords,
int ip,
DENS_VEC &normal)
{
// Compute dx/dr for deformed element
DENS_MAT faceCoordsT = transpose(faceCoords);
DENS_MAT dxdr = dNdrFace2D_[ip]*faceCoordsT;
// Normal vector from cross product, hardcoded for 3D, sad
normal(0) = dxdr(0,1)*dxdr(1,2) - dxdr(0,2)*dxdr(1,1);
normal(1) = dxdr(0,2)*dxdr(1,0) - dxdr(0,0)*dxdr(1,2);
normal(2) = dxdr(0,0)*dxdr(1,1) - dxdr(0,1)*dxdr(1,0);
// Jacobian (3D)
double J = sqrt(normal(0)*normal(0) +
normal(1)*normal(1) +
normal(2)*normal(2));
double invJ = 1.0/J;
normal(0) *= invJ;
normal(1) *= invJ;
normal(2) *= invJ;
return J;
}
int FE_Interpolate::num_ips() const
{
return feQuad_->numIPs;
}
int FE_Interpolate::num_face_ips() const
{
return feQuad_->numFaceIPs;
}
/*********************************************************
* Class FE_InterpolateCartLagrange
*
* For computing Lagrange shape functions using Cartesian
* coordinate systems (all quads/hexes fall under this
* category, and any elements derived by degenerating
* them). Not to be used for serendipity elements, which
* should be implemented for SPEED.
*
*********************************************************/
FE_InterpolateCartLagrange::FE_InterpolateCartLagrange(
FE_Element *feElement)
: FE_Interpolate(feElement)
{
set_quadrature(HEXA,GAUSS2);
}
FE_InterpolateCartLagrange::~FE_InterpolateCartLagrange()
{
// Handled by base class
}
void FE_InterpolateCartLagrange::compute_N(const VECTOR &point,
VECTOR &N)
{
// *** see comments for compute_N_dNdr ***
const DENS_VEC &localCoords1d = feElement_->local_coords_1d();
int numEltNodes = feElement_->num_elt_nodes();
int numEltNodes1d = feElement_->num_elt_nodes_1d();
DENS_MAT lagrangeTerms(nSD_,numEltNodes1d);
DENS_MAT lagrangeDenom(nSD_,numEltNodes1d);
lagrangeTerms = 1.0;
lagrangeDenom = 1.0;
for (int iSD = 0; iSD < nSD_; ++iSD) {
for (int inode = 0; inode < numEltNodes1d; ++inode) {
for (int icont = 0; icont < numEltNodes1d; ++icont) {
if (inode != icont) {
lagrangeDenom(iSD,inode) *= (localCoords1d(inode) -
localCoords1d(icont));
lagrangeTerms(iSD,inode) *= (point(iSD)-localCoords1d(icont));
}
}
}
}
for (int iSD=0; iSD<nSD_; ++iSD) {
for (int inode=0; inode<numEltNodes1d; ++inode) {
lagrangeTerms(iSD,inode) /= lagrangeDenom(iSD,inode);
}
}
N = 1.0;
vector<int> mapping(nSD_);
for (int inode=0; inode<numEltNodes; ++inode) {
feElement_->mapping(inode,mapping);
for (int iSD=0; iSD<nSD_; ++iSD) {
N(inode) *= lagrangeTerms(iSD,mapping[iSD]);
}
}
}
// Sort of a test-ride for a generic version that can be used for
// faces too. The only thing that's not "generic" is localCoords,
// which very magically works in both cases.
void FE_InterpolateCartLagrange::compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double,
DENS_MAT &dNdr)
{
// *** see comments for compute_N_dNdr ***
const DENS_VEC &localCoords1d = feElement_->local_coords_1d();
int numEltNodes1d = feElement_->num_elt_nodes_1d();
DENS_MAT lagrangeTerms(nD,numEltNodes1d);
DENS_MAT lagrangeDenom(nD,numEltNodes1d);
DENS_MAT lagrangeDeriv(nD,numEltNodes1d);
lagrangeDenom = 1.0;
lagrangeTerms = 1.0;
lagrangeDeriv = 0.0;
DENS_VEC productRuleVec(numEltNodes1d);
productRuleVec = 1.0;
for (int iSD = 0; iSD < nD; ++iSD) {
for (int inode = 0; inode < numEltNodes1d; ++inode) {
for (int icont = 0; icont < numEltNodes1d; ++icont) {
if (inode != icont) {
lagrangeTerms(iSD,inode) *= (point(iSD)-localCoords1d(icont));
lagrangeDenom(iSD,inode) *= (localCoords1d(inode) -
localCoords1d(icont));
for (int dcont=0; dcont<numEltNodes1d; ++dcont) {
if (inode == dcont) {
productRuleVec(dcont) = 0.0;
} else if (icont == dcont) {
} else {
productRuleVec(dcont) *= (point(iSD)-localCoords1d(icont));
}
}
}
}
for (int dcont=0; dcont<numEltNodes1d; ++dcont) {
lagrangeDeriv(iSD,inode) += productRuleVec(dcont);
}
productRuleVec = 1.0;
}
}
for (int iSD=0; iSD<nD; ++iSD) {
for (int inode=0; inode<numEltNodes1d; ++inode) {
lagrangeTerms(iSD,inode) /= lagrangeDenom(iSD,inode);
lagrangeDeriv(iSD,inode) /= lagrangeDenom(iSD,inode);
}
}
dNdr = 1.0;
vector<int> mapping(nD);
for (int inode=0; inode<numNodes; ++inode) {
feElement_->mapping(inode,mapping);
for (int iSD=0; iSD<nD; ++iSD) {
for (int dSD=0; dSD<nD; ++dSD) {
if (iSD == dSD) {
dNdr(dSD,inode) *= lagrangeDeriv(iSD,mapping[iSD]);
} else {
dNdr(dSD,inode) *= lagrangeTerms(iSD,mapping[iSD]);
}
}
}
}
}
void FE_InterpolateCartLagrange::compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const
{
// Required data from element class
const DENS_VEC &localCoords1d = feElement_->local_coords_1d();
int numEltNodes = feElement_->num_elt_nodes();
int numEltNodes1d = feElement_->num_elt_nodes_1d();
// lagrangeTerms stores the numerator for the various Lagrange polynomials
// in one dimension, that will be used to produce the three dimensional
// shape functions
DENS_MAT lagrangeTerms(nSD_,numEltNodes1d);
// lagrangeDenom stores the denominator. Stored separately to reduce
// redundancy, because it will be used for the shape functions and derivs
DENS_MAT lagrangeDenom(nSD_,numEltNodes1d);
// lagrangeDeriv stores the numerator for the derivative of the Lagrange
// polynomials
DENS_MAT lagrangeDeriv(nSD_,numEltNodes1d);
// Terms/Denom are products, Deriv will be a sum, so initialize as such:
lagrangeTerms = 1.0;
lagrangeDenom = 1.0;
lagrangeDeriv = 0.0;
// the derivative requires use of the product rule; to store the prodcuts
// which make up the terms produced by the product rule, we'll use this
// vector
DENS_VEC productRuleVec(numEltNodes1d);
productRuleVec = 1.0;
for (int iSD = 0; iSD < nSD_; ++iSD) {
for (int inode = 0; inode < numEltNodes1d; ++inode) {
for (int icont = 0; icont < numEltNodes1d; ++icont) {
if (inode != icont) {
// each dimension and each 1d node per dimension has a
// contribution from all nodes besides the current node
lagrangeTerms(iSD,inode) *= (point(iSD)-localCoords1d(icont));
lagrangeDenom(iSD,inode) *= (localCoords1d(inode) -
localCoords1d(icont));
// complciated; each sum produced by the product rule has one
// "derivative", and the rest are just identical to the terms
// above
for (int dcont=0; dcont<numEltNodes1d; ++dcont) {
if (inode == dcont) {
// skip this term, derivative is 0
productRuleVec(dcont) = 0.0;
} else if (icont == dcont) {
// no numerator contribution, derivative is 1
} else {
// part of the "constant"
productRuleVec(dcont) *= (point(iSD)-localCoords1d(icont));
}
}
}
}
// sum the terms produced by the product rule and store in Deriv
for (int dcont=0; dcont<numEltNodes1d; ++dcont) {
lagrangeDeriv(iSD,inode) += productRuleVec(dcont);
}
productRuleVec = 1.0;
}
}
// divide by denom
for (int iSD=0; iSD<nSD_; ++iSD) {
for (int inode=0; inode<numEltNodes1d; ++inode) {
lagrangeTerms(iSD,inode) /= lagrangeDenom(iSD,inode);
lagrangeDeriv(iSD,inode) /= lagrangeDenom(iSD,inode);
}
}
N = 1.0;
dNdr = 1.0;
// mapping returns the 1d nodes in each dimension that should be multiplied
// to achieve the shape functions in 3d
vector<int> mapping(nSD_);
for (int inode=0; inode<numEltNodes; ++inode) {
feElement_->mapping(inode,mapping);
for (int iSD=0; iSD<nSD_; ++iSD) {
N(inode) *= lagrangeTerms(iSD,mapping[iSD]);
for (int dSD=0; dSD<nSD_; ++dSD) {
// only use Deriv for the dimension in which we're taking the
// derivative, because the rest is essentially a "constant"
if (iSD == dSD) {
dNdr(dSD,inode) *= lagrangeDeriv(iSD,mapping[iSD]);
} else {
dNdr(dSD,inode) *= lagrangeTerms(iSD,mapping[iSD]);
}
}
}
}
}
/*********************************************************
* Class FE_InterpolateCartLin
*
* For computing linear shape functions using Cartesian
* coordinate systems (all quads/hexes fall under this
* category, and any elements derived by degenerating
* them).
*
*********************************************************/
FE_InterpolateCartLin::FE_InterpolateCartLin(
FE_Element *feElement)
: FE_Interpolate(feElement)
{
set_quadrature(HEXA,GAUSS2);
}
FE_InterpolateCartLin::~FE_InterpolateCartLin()
{
// Handled by base class
}
void FE_InterpolateCartLin::compute_N(const VECTOR &point,
VECTOR &N)
{
// *** see comments for compute_N_dNdr ***
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/(feElement_->vol());
int numEltNodes = feElement_->num_elt_nodes();
for (int inode = 0; inode < numEltNodes; ++inode) {
N(inode) = invVol;
for (int isd = 0; isd < nSD_; ++isd) {
N(inode) *= (1.0 + point(isd)*localCoords(isd,inode));
}
}
}
// Sort of a test-ride for a generic version that can be used for
// faces too. The only thing that's not "generic" is localCoords,
// which very magically works in both cases.
void FE_InterpolateCartLin::compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double vol,
DENS_MAT &dNdr)
{
// *** see comments for compute_N_dNdr ***
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/vol;
for (int inode = 0; inode < numNodes; ++inode) {
for (int idr = 0; idr < nD; ++idr) {
dNdr(idr,inode) = invVol;
}
for (int id = 0; id < nD; ++id) {
for (int idr = 0; idr < nD; ++idr) {
if (id == idr) dNdr(idr,inode) *= localCoords(id,inode);
else dNdr(idr,inode) *= 1.0 +
point(id)*localCoords(id,inode);
}
}
}
}
void FE_InterpolateCartLin::compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const
{
// Required data from element class
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/(feElement_->vol());
int numEltNodes = feElement_->num_elt_nodes();
// Fill in for each node
for (int inode = 0; inode < numEltNodes; ++inode) {
// Intiialize shape function and derivatives
N(inode) = invVol;
for (int idr = 0; idr < nSD_; ++idr) {
dNdr(idr,inode) = invVol;
}
for (int isd = 0; isd < nSD_; ++isd) {
// One term for each dimension
N(inode) *= (1.0 + point(isd)*localCoords(isd,inode));
// One term for each dimension, only deriv in deriv's dimension
for (int idr = 0; idr < nSD_; ++idr) {
if (isd == idr) dNdr(idr,inode) *= localCoords(isd,inode);
else dNdr(idr,inode) *= 1.0 +
point(isd)*localCoords(isd,inode);
}
}
}
}
/*********************************************************
* Class FE_InterpolateCartSerendipity
*
* For computing shape functions for quadratic serendipity
* elements, implemented for SPEED.
*
*********************************************************/
FE_InterpolateCartSerendipity::FE_InterpolateCartSerendipity(
FE_Element *feElement)
: FE_Interpolate(feElement)
{
set_quadrature(HEXA,GAUSS2);
}
FE_InterpolateCartSerendipity::~FE_InterpolateCartSerendipity()
{
// Handled by base class
}
void FE_InterpolateCartSerendipity::compute_N(const VECTOR &point,
VECTOR &N)
{
// *** see comments for compute_N_dNdr ***
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/(feElement_->vol());
int numEltNodes = feElement_->num_elt_nodes();
for (int inode = 0; inode < numEltNodes; ++inode) {
N(inode) = invVol;
for (int isd = 0; isd < nSD_; ++isd) {
if (((inode == 8 || inode == 10 || inode == 16 || inode == 18) &&
(isd == 0)) ||
((inode == 9 || inode == 11 || inode == 17 || inode == 19) &&
(isd == 1)) ||
((inode == 12 || inode == 13 || inode == 14 || inode == 15) &&
(isd == 2))) {
N(inode) *= (1.0 - pow(point(isd),2))*2;
} else {
N(inode) *= (1.0 + point(isd)*localCoords(isd,inode));
}
}
if (inode < 8) {
N(inode) *= (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) +
point(2)*localCoords(2,inode) - 2);
}
}
}
// Sort of a test-ride for a generic version that can be used for
// faces too. The only thing that's not "generic" is localCoords,
// which very magically works in both cases.
void FE_InterpolateCartSerendipity::compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double vol,
DENS_MAT &dNdr)
{
// *** see comments for compute_N_dNdr ***
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/vol;
bool serendipityNode = false;
double productRule1 = 0.0;
double productRule2 = 0.0;
if (nD != 3 && nD != 2) {
ATC_Error("Serendipity dNdr calculations are too hard-wired to do "
"what you want them to. Only 2D and 3D currently work.");
}
for (int inode = 0; inode < numNodes; ++inode) {
for (int idr = 0; idr < nD; ++idr) {
dNdr(idr,inode) = invVol;
}
for (int id = 0; id < nD; ++id) {
for (int idr = 0; idr < nD; ++idr) {
// identify nodes/dims differently if 3d or 2d case
if (nD == 3) {
serendipityNode =
(((inode == 8 || inode == 10 || inode == 16 || inode == 18) &&
(id == 0)) ||
((inode == 9 || inode == 11 || inode == 17 || inode == 19) &&
(id == 1)) ||
((inode == 12 || inode == 13 || inode == 14 || inode == 15) &&
(id == 2)));
} else if (nD == 2) {
serendipityNode =
(((inode == 4 || inode == 6) && (id == 0)) ||
((inode == 5 || inode == 7) && (id == 1)));
}
if (serendipityNode) {
if (id == idr) {
dNdr(idr,inode) *= point(id)*(-4);
} else {
dNdr(idr,inode) *= (1.0 - pow(point(id),2))*2;
}
} else {
if (id == idr) {
dNdr(idr,inode) *= localCoords(id,inode);
} else {
dNdr(idr,inode) *= (1.0 + point(id)*localCoords(id,inode));
}
}
}
}
for (int idr = 0; idr < nD; ++idr) {
if (inode < 8) {
// final corner contribution slightly different for 3d and 2d cases
if (nD == 3) {
productRule2 = (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) +
point(2)*localCoords(2,inode) - 2);
} else if (nD == 2) {
productRule2 = (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) - 1);
}
productRule1 = dNdr(idr,inode) *
(1 + point(idr)*localCoords(idr,inode));
productRule2 *= dNdr(idr,inode);
dNdr(idr,inode) = productRule1 + productRule2;
}
}
}
}
void FE_InterpolateCartSerendipity::compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const
{
// Required data from element class
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/(feElement_->vol());
int numEltNodes = feElement_->num_elt_nodes();
// Will store terms for product rule derivative for dNdr
double productRule1;
double productRule2;
// Fill in for each node
for (int inode = 0; inode < numEltNodes; ++inode) {
// Initialize shape functions and derivatives
N(inode) = invVol;
for (int idr = 0; idr < nSD_; ++idr) {
dNdr(idr,inode) = invVol;
}
// Add components from each dimension
for (int isd = 0; isd < nSD_; ++isd) {
for (int idr = 0; idr < nSD_; ++idr) {
// Check to see if the node is NOT a corner node, and if its
// "0-coordinate" is in the same dimension as the one we're currently
// iterating over. If that's the case, we want to contribute to its
// shape functions and derivatives in a modified way:
if (((inode == 8 || inode == 10 || inode == 16 || inode == 18) &&
(isd == 0)) ||
((inode == 9 || inode == 11 || inode == 17 || inode == 19) &&
(isd == 1)) ||
((inode == 12 || inode == 13 || inode == 14 || inode == 15) &&
(isd == 2))) {
// If the 1d shape function dimension matches the derivative
// dimension...
if (isd == idr) {
// contribute to N; sloppy, but this is the easiest way to get
// N to work right without adding extra, arguably unnecessary
// loops, while also computing the shape functions
N(inode) *= (1.0 - pow(point(isd),2))*2;
// contribute to dNdr with the derivative of this shape function
// contribution
dNdr(idr,inode) *= point(isd)*(-4);
} else {
// otherwise, just use the "constant" contribution to the deriv
dNdr(idr,inode) *= (1.0 - pow(point(isd),2))*2;
}
} else {
// non-serendipity style contributions
if (isd == idr) {
N(inode) *= (1.0 + point(isd)*localCoords(isd,inode));
dNdr(idr,inode) *= localCoords(isd,inode);
} else {
dNdr(idr,inode) *= (1.0 + point(isd)*localCoords(isd,inode));
}
}
}
}
// serendipity corner nodes require more extra handling
if (inode < 8) {
N(inode) *= (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) +
point(2)*localCoords(2,inode) - 2);
}
for (int idr = 0; idr < nSD_; ++idr) {
if (inode < 8) {
productRule1 = dNdr(idr,inode) *
(1 + point(idr)*localCoords(idr,inode));
productRule2 = dNdr(idr,inode) * (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) +
point(2)*localCoords(2,inode) - 2);
dNdr(idr,inode) = productRule1 + productRule2;
}
}
}
}
/*********************************************************
* Class FE_InterpolateSimpLin
*
* For computing linear shape functions of simplices,
* which are rather different from those computed
* in Cartesian coordinates.
*
* Note: degenerating quads/hexes can yield simplices
* as well, but this class is for computing these
* shape functions _natively_, in their own
* triangular/tetrahedral coordinate systems.
*
*********************************************************/
FE_InterpolateSimpLin::FE_InterpolateSimpLin(
FE_Element *feElement)
: FE_Interpolate(feElement)
{
set_quadrature(TETRA,GAUSS2);
}
FE_InterpolateSimpLin::~FE_InterpolateSimpLin()
{
// Handled by base class
}
void FE_InterpolateSimpLin::compute_N(const VECTOR &point,
VECTOR &N)
{
int numEltNodes = feElement_->num_elt_nodes();
// Fill in for each node
for (int inode = 0; inode < numEltNodes; ++inode) {
if (inode == 0) {
// Fill N...the ips are serving as proxies for "dimensions"
// since we're in tetrahedral coordinates, except that
// 0th node = 3rd "dimension" (u or O_o)
// 1st node = 0th "dimension" (x or r)
// 2nd node = 1st "dimension" (y or s)
// 3rd node = 3nd "dimension" (z or t)
// and remember that u = 1 - r - s - t for tet coords
N(inode) = 1;
for (int icont = 0; icont < nSD_; ++icont) {
N(inode) -= point(icont);
}
} else {
N(inode) = point(inode-1);
}
}
}
void FE_InterpolateSimpLin::compute_dNdr(const VECTOR &,
const int numNodes,
const int nD,
const double,
DENS_MAT &dNdr)
{
// Fill in for each node
for (int inode = 0; inode < numNodes; ++inode) {
// Fill dNdr_; we want 1 if the dimension of derivative
// and variable within N correspond. That is, if N == r,
// we want the 0th dimension to contain (d/dr)r = 1. Of
// course, (d/di)r = 0 forall i != r, so we need that as
// well. This is a bit elusively complicated. Also, the 0th
// integration point contains the term u = 1 - r - s - t.
// (which map to x, y, and z). Therefore, the derivative in
// each dimension are -1.
//
// The idea is similar for 2 dimensions, which this can
// handle as well.
for (int idr = 0; idr < nD; ++idr) {
if (inode == 0) {
dNdr(idr,inode) = -1;
} else {
dNdr(idr,inode) = (inode == (idr + 1)) ? 1 : 0;
}
}
}
}
void FE_InterpolateSimpLin::compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const
{
int numEltNodes = feElement_->num_elt_nodes();
// Fill in for each node
for (int inode = 0; inode < numEltNodes; ++inode) {
// Fill N...
if (inode == 0) {
N(inode) = 1;
for (int icont = 0; icont < nSD_; ++icont) {
N(inode) -= point(icont);
}
} else {
N(inode) = point(inode-1);
}
// Fill dNdr...
for (int idr = 0; idr < nSD_; ++idr) {
if (inode == 0) {
dNdr(idr,inode) = -1;
} else {
dNdr(idr,inode) = (inode == (idr + 1)) ? 1 : 0;
}
}
}
}
} // namespace ATC
|