1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
#ifndef FE_INTERPOLATE_H
#define FE_INTERPOLATE_H
#include "MatrixLibrary.h"
#include "ATC_TypeDefs.h"
#include <vector>
#include <map>
namespace ATC {
struct FE_Quadrature;
class FE_Element;
/**
* @class FE_Interpolate
* @brief Base class for computing shape functions, nested inside FE_Element
*/
class FE_Interpolate {
public:
FE_Interpolate(FE_Element *feElement);
virtual ~FE_Interpolate();
/** compute the quadrature for a given element type */
void set_quadrature(FeEltGeometry geo, FeIntQuadrature quad);
/** store N_ and dNdr_ (and eventually dNdrFace_) the given
* quadrature */
virtual void precalculate_shape_functions();
/** compute the shape functions at the given point;
* we use CLON_VECs */
virtual void compute_N(const VECTOR &point,
VECTOR &N) = 0;
// middle args get no names because they won't be used by some
// child classes.
/** compute the shape function derivatives at the given point;
* generic, so can work for 2D or 3D case */
virtual void compute_dNdr(const VECTOR &point,
const int,
const int,
const double,
DENS_MAT &dNdr) = 0;
/** compute both shape functions and derivatives, using the
* fastest, shortcuttiest methods available for batch use */
virtual void compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const = 0;
/** compute shape functions at a single point, given the local
* coordinates; eltCoords needed for derivatives:
* indexed: N(node)
* dN[nsd](node) */
virtual void shape_function(const VECTOR &xi,
DENS_VEC &N);
virtual void shape_function(const DENS_MAT &eltCoords,
const VECTOR &xi,
DENS_VEC &N,
DENS_MAT &dNdx);
virtual void shape_function_derivatives(const DENS_MAT &eltCoords,
const VECTOR &xi,
DENS_MAT &dNdx);
/** compute shape functions at all ip's:
* indexed: N(ip,node)
* dN[nsd](ip,node)
* weights(ip) */
virtual void shape_function(const DENS_MAT &eltCoords,
DENS_MAT &N,
std::vector<DENS_MAT> &dN,
DIAG_MAT &weights);
/** compute shape functions at all face ip's:
* indexed: N(ip,node)
* dN[nsd](ip,node)
* n(ip,node)/Nn[nsd](ip,node)
* weights(ip) */
virtual void face_shape_function(const DENS_MAT &eltCoords,
const DENS_MAT &faceCoords,
const int faceID,
DENS_MAT &N,
DENS_MAT &n,
DIAG_MAT &weights);
virtual void face_shape_function(const DENS_MAT &eltCoords,
const DENS_MAT &faceCoords,
const int faceID,
DENS_MAT &N,
std::vector<DENS_MAT> &dN,
std::vector<DENS_MAT> &Nn,
DIAG_MAT &weights);
/** compute unit normal vector for a face:
* indexed: N(ip,node)
* dN[nsd](ip,node)
* n(ip,node)/Nn[nsd](ip,node)
* weights(ip) */
virtual double face_normal(const DENS_MAT &faceCoords,
int ip,
DENS_VEC &normal);
/** compute tangents to coordinate lines
* indexed: */
virtual void tangents(const DENS_MAT &eltCoords,
const VECTOR &localCoords,
DENS_MAT &dxdr) const;
virtual void tangents(const DENS_MAT &eltCoords,
const VECTOR &localCoords,
std::vector<DENS_VEC> &t,
const bool normalize = false) const;
/** get number of ips in scheme */
int num_ips() const;
/** get number of ips per face */
int num_face_ips() const;
protected:
// owner element
FE_Element *feElement_;
// Number of dimensions
int nSD_;
std::map<FeIntQuadrature,FE_Quadrature *> feQuadList_;
FE_Quadrature *feQuad_;
// matrix of shape functions at ip's: N_(ip, node)
DENS_MAT N_;
std::vector<DENS_MAT> dNdr_;
// matrix of shape functions at ip's: N_(ip, node)
std::vector<DENS_MAT> NFace_;
// matrix of generic face shape function derivatives
std::vector<std::vector<DENS_MAT> > dNdrFace_;
// matrix of generic face shape function derivatives
std::vector<DENS_MAT> dNdrFace2D_;
};
/**********************************************
* Class for linear interpolation functions with
* Cartesian coordinates
**********************************************/
class FE_InterpolateCartLagrange : public FE_Interpolate {
public:
FE_InterpolateCartLagrange(FE_Element *feElement);
virtual ~FE_InterpolateCartLagrange();
virtual void compute_N(const VECTOR &point,
VECTOR &N);
virtual void compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double,
DENS_MAT &dNdr);
virtual void compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const;
};
/**********************************************
* Class for linear elements with
* Cartesian coordinates
**********************************************/
class FE_InterpolateCartLin : public FE_Interpolate {
public:
FE_InterpolateCartLin(FE_Element *feElement);
virtual ~FE_InterpolateCartLin();
virtual void compute_N(const VECTOR &point,
VECTOR &N);
virtual void compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double vol,
DENS_MAT &dNdr);
virtual void compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const;
};
/**********************************************
* Class for quadratic serendipity elements with
* Cartesian coordinates
**********************************************/
class FE_InterpolateCartSerendipity : public FE_Interpolate {
public:
FE_InterpolateCartSerendipity(FE_Element *feElement);
virtual ~FE_InterpolateCartSerendipity();
virtual void compute_N(const VECTOR &point,
VECTOR &N);
virtual void compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double vol,
DENS_MAT &dNdr);
virtual void compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const;
};
/**********************************************
* Class for linear interpolation functions with
* volumetric coordinates
**********************************************/
class FE_InterpolateSimpLin : public FE_Interpolate {
public:
// "Simp"ly overrides all standard shape function methods
FE_InterpolateSimpLin(FE_Element *feElement);
virtual ~FE_InterpolateSimpLin();
virtual void compute_N(const VECTOR &point,
VECTOR &N);
// middle args get no names because they won't be used by some
// child classes.
virtual void compute_dNdr(const VECTOR &,
const int,
const int,
const double,
DENS_MAT &dNdr);
virtual void compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const;
};
}; // namespace ATC
#endif // FE_INTERPOLATE_H
|