1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#include "FieldEulerIntegrator.h"
#include "ATC_Coupling.h"
#include "FE_Engine.h"
#include "PhysicsModel.h"
#include "PrescribedDataManager.h"
//#include "GMRES.h"
//#include "CG.h"
#include "ImplicitSolveOperator.h"
#include "MatrixDef.h"
#include "LinearSolver.h"
namespace ATC {
// ====================================================================
// FieldEulerIntegrator
// ====================================================================
FieldEulerIntegrator::FieldEulerIntegrator(
const FieldName fieldName,
const PhysicsModel * physicsModel,
/*const*/ FE_Engine * feEngine,
/*const*/ ATC_Coupling * atc,
const Array2D< bool > & rhsMask // copy
)
: atc_(atc),
feEngine_(feEngine),
physicsModel_(physicsModel),
fieldName_(fieldName),
rhsMask_(rhsMask)
{
nNodes_ = feEngine->num_nodes();
}
// ====================================================================
// FieldImplicitIntegrator
// ====================================================================
FieldExplicitEulerIntegrator::FieldExplicitEulerIntegrator(
const FieldName fieldName,
const PhysicsModel * physicsModel,
/*const*/ FE_Engine * feEngine,
/*const*/ ATC_Coupling * atc,
const Array2D< bool > & rhsMask // copy
) : FieldEulerIntegrator(fieldName,physicsModel,feEngine,atc,rhsMask)
{
}
// --------------------------------------------------------------------
// update
// --------------------------------------------------------------------
void FieldExplicitEulerIntegrator::update(const double dt, double /* time */,
FIELDS & fields, FIELDS & rhs)
{
// write and add update mass matrix to handled time variation
// update mass matrix to be consistent/lumped, and handle this in apply_inverse_mass_matrix
atc_->compute_rhs_vector(rhsMask_, fields, rhs,
FULL_DOMAIN, physicsModel_);
DENS_MAT & myRhs(rhs[fieldName_].set_quantity());
atc_->apply_inverse_mass_matrix(myRhs,fieldName_);
fields[fieldName_] += dt*myRhs;
}
// ====================================================================
// FieldImplicitEulerIntegrator
// ====================================================================
FieldImplicitEulerIntegrator::FieldImplicitEulerIntegrator(
const FieldName fieldName,
const PhysicsModel * physicsModel,
/*const*/ FE_Engine * feEngine,
/*const*/ ATC_Coupling * atc,
const Array2D< bool > & rhsMask, // copy
const double alpha
) : FieldEulerIntegrator(fieldName,physicsModel,feEngine,atc,rhsMask),
alpha_(alpha),
dT_(1.0e-6),
maxRestarts_(50),
maxIterations_(1000),
tol_(1.0e-8)
{
}
// --------------------------------------------------------------------
// update
// --------------------------------------------------------------------
void FieldImplicitEulerIntegrator::update(const double dt, double time,
FIELDS & fields, FIELDS & /* rhs */)
{ // solver handles bcs
FieldImplicitSolveOperator solver(atc_,
fields, fieldName_, rhsMask_, physicsModel_,
time, dt, alpha_);
DiagonalMatrix<double> preconditioner = solver.preconditioner();
DENS_VEC rT = solver.r();
DENS_VEC dT(nNodes_); dT = dT_;
DENS_MAT H(maxRestarts_+1, maxRestarts_);
double tol = tol_; // tol returns the residual
int iterations = maxIterations_; // iterations returns number of iterations
int restarts = maxRestarts_;
int convergence = GMRES(solver,
dT, rT, preconditioner, H, restarts, iterations, tol);
if (convergence != 0) {
throw ATC_Error(field_to_string(fieldName_) + " evolution did not converge");
}
solver.solution(dT,fields[fieldName_].set_quantity());
}
// ====================================================================
// FieldImplicitDirectEulerIntegrator
// ====================================================================
FieldImplicitDirectEulerIntegrator::FieldImplicitDirectEulerIntegrator(
const FieldName fieldName,
const PhysicsModel * physicsModel,
/*const*/ FE_Engine * feEngine,
/*const*/ ATC_Coupling * atc,
const Array2D< bool > & rhsMask, // copy
const double alpha
) : FieldEulerIntegrator(fieldName,physicsModel,feEngine,atc,rhsMask),
alpha_(alpha),solver_(nullptr)
{
rhsMask_(fieldName_,FLUX) = false; // handle laplacian term with stiffness
const BC_SET & bcs = (atc_->prescribed_data_manager()->bcs(fieldName_))[0];
solver_ = new LinearSolver(_lhsMK_,bcs);
solver_->allow_reinitialization();
}
FieldImplicitDirectEulerIntegrator::~FieldImplicitDirectEulerIntegrator()
{
if (solver_) delete solver_;
}
// --------------------------------------------------------------------
// initialize
// --------------------------------------------------------------------
void FieldImplicitDirectEulerIntegrator::initialize(const double dt, double /* time */,
FIELDS & /* fields */)
{
std::pair<FieldName,FieldName> p(fieldName_,fieldName_);
Array2D <bool> rmask = atc_->rhs_mask();
rmask(fieldName_,FLUX) = true;
atc_->tangent_matrix(p,rmask,physicsModel_,_K_);
_lhsMK_ = (1./dt)*(_M_)- alpha_*(_K_);
_rhsMK_ = (1./dt)*(_M_)+(1.+alpha_)*(_K_);
}
// --------------------------------------------------------------------
// update
// --------------------------------------------------------------------
void FieldImplicitDirectEulerIntegrator::update(const double /* dt */, double /* time */,
FIELDS & fields, FIELDS & rhs)
{
atc_->compute_rhs_vector(rhsMask_, fields, rhs,
FULL_DOMAIN, physicsModel_);
CLON_VEC myRhs = column( rhs[fieldName_].set_quantity(),0);
CLON_VEC myField = column(fields[fieldName_].set_quantity(),0);
myRhs += _rhsMK_*myField; // f = (1/dt M + (1+alpha) K) T + f
solver_->solve(myField,myRhs); // (1/dt M -alpha K)^-1 f
}
} // namespace ATC
|