File: GMRES.h

package info (click to toggle)
lammps 20220106.git7586adbb6a%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 348,064 kB
  • sloc: cpp: 831,421; python: 24,896; xml: 14,949; f90: 10,845; ansic: 7,967; sh: 4,226; perl: 4,064; fortran: 2,424; makefile: 1,501; objc: 238; lisp: 163; csh: 16; awk: 14; tcl: 6
file content (155 lines) | stat: -rw-r--r-- 3,561 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
//*****************************************************************
// Iterative template routine -- GMRES
//
// GMRES solves the unsymmetric linear system Ax = b using the
// Generalized Minimum Residual method
//
// GMRES follows the algorithm described on p. 20 of the
// SIAM Templates book.
//
// The return value indicates convergence within max_iter (input)
// iterations (0), or no convergence within max_iter iterations (1).
//
// Upon successful return, output arguments have the following values:
//
//        x  --  approximate solution to Ax = b
// max_iter  --  the number of iterations performed before the
//               tolerance was reached
//      tol  --  the residual after the final iteration
//
//*****************************************************************

#include <cmath>


template<class Real>
void ApplyPlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn);

template<class Real>
void GeneratePlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn);

template < class Matrix, class Vector >
void
Update(Vector &x, int k, Matrix &h, Vector &s, Vector v[])
{
  Vector y(s);

  // Backsolve:
  for (int i = k; i >= 0; i--) {
    y(i) /= h(i,i);
    for (int j = i - 1; j >= 0; j--)
      y(j) -= h(j,i) * y(i);
  }

  for (int j = 0; j <= k; j++)
    x += v[j] * y(j);
}


template < class Real >
Real
abs(Real x)
{
  return (x > 0 ? x : -x);
}


template < class Operator, class Vector, class Preconditioner,
           class Matrix, class Real >
int
GMRES(const Operator &A, Vector &x, const Vector &b,
      const Preconditioner &M, Matrix &H, int &m, int &max_iter,
      Real &tol)
{
  Real resid;
  int i, j = 1, k;
  Vector s(m+1), cs(m+1), sn(m+1), w;

  Vector p = inv(M)*b;
  Real normb = p.norm();
  Vector r = inv(M) * (b - A * x);
  Real beta = r.norm();

  if (normb == 0.0)
    normb = 1;

  if ((resid = r.norm() / normb) <= tol) {
    tol = resid;
    max_iter = 0;
    return 0;
  }

  Vector *v = new Vector[m+1];

  while (j <= max_iter) {
    v[0] = r * (1.0 / beta);    // ??? r / beta
    s = 0.0;
    s(0) = beta;

    for (i = 0; i < m && j <= max_iter; i++, j++) {
      w = inv(M) * (A * v[i]);
      for (k = 0; k <= i; k++) {
        H(k, i) = w.dot(v[k]);
        w -= H(k, i) * v[k];
      }
      H(i+1, i) = w.norm();
      v[i+1] = w * (1.0 / H(i+1, i)); // ??? w / H(i+1, i)

      for (k = 0; k < i; k++)
        ApplyPlaneRotation(H(k,i), H(k+1,i), cs(k), sn(k));

      GeneratePlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
      ApplyPlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
      ApplyPlaneRotation(s(i), s(i+1), cs(i), sn(i));

      if ((resid = abs(s(i+1)) / normb) < tol) {
        Update(x, i, H, s, v);
        tol = resid;
        max_iter = j;
        delete [] v;
        return 0;
      }
    }
    Update(x, m - 1, H, s, v);
    r = inv(M) * (b - A * x);
    beta = r.norm();
    if ((resid = beta / normb) < tol) {
      tol = resid;
      max_iter = j;
      delete [] v;
      return 0;
    }
  }

  tol = resid;
  delete [] v;
  return 1;
}


template<class Real>
void GeneratePlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
{
  if (dy == 0.0) {
    cs = 1.0;
    sn = 0.0;
  } else if (abs(dy) > abs(dx)) {
    Real temp = dx / dy;
    sn = 1.0 / sqrt( 1.0 + temp*temp );
    cs = temp * sn;
  } else {
    Real temp = dy / dx;
    cs = 1.0 / sqrt( 1.0 + temp*temp );
    sn = temp * cs;
  }
}


template<class Real>
void ApplyPlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
{
  Real temp  =  cs * dx + sn * dy;
  dy = -sn * dx + cs * dy;
  dx = temp;
}