1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
//*****************************************************************
// Iterative template routine -- GMRES
//
// GMRES solves the unsymmetric linear system Ax = b using the
// Generalized Minimum Residual method
//
// GMRES follows the algorithm described on p. 20 of the
// SIAM Templates book.
//
// The return value indicates convergence within max_iter (input)
// iterations (0), or no convergence within max_iter iterations (1).
//
// Upon successful return, output arguments have the following values:
//
// x -- approximate solution to Ax = b
// max_iter -- the number of iterations performed before the
// tolerance was reached
// tol -- the residual after the final iteration
//
//*****************************************************************
#include <cmath>
template<class Real>
void ApplyPlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn);
template<class Real>
void GeneratePlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn);
template < class Matrix, class Vector >
void
Update(Vector &x, int k, Matrix &h, Vector &s, Vector v[])
{
Vector y(s);
// Backsolve:
for (int i = k; i >= 0; i--) {
y(i) /= h(i,i);
for (int j = i - 1; j >= 0; j--)
y(j) -= h(j,i) * y(i);
}
for (int j = 0; j <= k; j++)
x += v[j] * y(j);
}
template < class Real >
Real
abs(Real x)
{
return (x > 0 ? x : -x);
}
template < class Operator, class Vector, class Preconditioner,
class Matrix, class Real >
int
GMRES(const Operator &A, Vector &x, const Vector &b,
const Preconditioner &M, Matrix &H, int &m, int &max_iter,
Real &tol)
{
Real resid;
int i, j = 1, k;
Vector s(m+1), cs(m+1), sn(m+1), w;
Vector p = inv(M)*b;
Real normb = p.norm();
Vector r = inv(M) * (b - A * x);
Real beta = r.norm();
if (normb == 0.0)
normb = 1;
if ((resid = r.norm() / normb) <= tol) {
tol = resid;
max_iter = 0;
return 0;
}
Vector *v = new Vector[m+1];
while (j <= max_iter) {
v[0] = r * (1.0 / beta); // ??? r / beta
s = 0.0;
s(0) = beta;
for (i = 0; i < m && j <= max_iter; i++, j++) {
w = inv(M) * (A * v[i]);
for (k = 0; k <= i; k++) {
H(k, i) = w.dot(v[k]);
w -= H(k, i) * v[k];
}
H(i+1, i) = w.norm();
v[i+1] = w * (1.0 / H(i+1, i)); // ??? w / H(i+1, i)
for (k = 0; k < i; k++)
ApplyPlaneRotation(H(k,i), H(k+1,i), cs(k), sn(k));
GeneratePlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
ApplyPlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
ApplyPlaneRotation(s(i), s(i+1), cs(i), sn(i));
if ((resid = abs(s(i+1)) / normb) < tol) {
Update(x, i, H, s, v);
tol = resid;
max_iter = j;
delete [] v;
return 0;
}
}
Update(x, m - 1, H, s, v);
r = inv(M) * (b - A * x);
beta = r.norm();
if ((resid = beta / normb) < tol) {
tol = resid;
max_iter = j;
delete [] v;
return 0;
}
}
tol = resid;
delete [] v;
return 1;
}
template<class Real>
void GeneratePlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
{
if (dy == 0.0) {
cs = 1.0;
sn = 0.0;
} else if (abs(dy) > abs(dx)) {
Real temp = dx / dy;
sn = 1.0 / sqrt( 1.0 + temp*temp );
cs = temp * sn;
} else {
Real temp = dy / dx;
cs = 1.0 / sqrt( 1.0 + temp*temp );
sn = temp * cs;
}
}
template<class Real>
void ApplyPlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
{
Real temp = cs * dx + sn * dy;
dy = -sn * dx + cs * dy;
dx = temp;
}
|