1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
// Header file for this class
#include "ImplicitSolveOperator.h"
// Other ATC includes
#include "ATC_Coupling.h"
#include "FE_Engine.h"
#include "PhysicsModel.h"
#include "PrescribedDataManager.h"
using std::set;
using std::vector;
namespace ATC {
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// ImplicitSolveOperator
// --------------------------------------------------------------------
// --------------------------------------------------------------------
ImplicitSolveOperator::
ImplicitSolveOperator(double alpha, double dt)
: n_(0),
dof_(0),
dt_(dt),
alpha_(alpha),
epsilon0_(1.0e-8)
{
// Nothing else to do here
}
// --------------------------------------------------------------------
// operator *
// --------------------------------------------------------------------
DENS_VEC
ImplicitSolveOperator::operator * (const DENS_VEC & x) const
{
// This method uses a matrix-free approach to approximate the
// multiplication by matrix A in the matrix equation Ax=b, where the
// matrix equation results from an implicit treatment of the
// fast field. In brief, if the ODE for the fast field can be written:
//
// dx/dt = R(x)
//
// A generalized discretization can be written:
//
// 1/dt * (x^n+1 - x^n) = alpha * R(x^n+1) + (1-alpha) * R(x^n)
//
// Taylor expanding the R(x^n+1) term and rearranging gives the
// equation to be solved for dx at each timestep:
//
// [1 - dt * alpha * dR/dx] * dx = dt * R(x^n)
//
// The operator defined in this method computes the left-hand side,
// given a vector dx. It uses a finite difference, matrix-free
// approximation of dR/dx * dx, giving:
//
// [1 - dt * alpha * dR/dx] * dx = dt * R(x^n)
// ~= dx - dt*alpha/epsilon * ( R(x^n + epsilon*dx) - R(x^n) )
//
// Compute epsilon
double epsilon = (x.norm()>0.0) ? epsilon0_*x0_.norm()/x.norm():epsilon0_;
// Compute incremented vector x^n+1 = x^n + epsilon*dx
x_ = x0_ + epsilon * x;
// Evaluate R(x)
this->R(x_,R_);
// Compute full left hand side and return it
DENS_VEC Ax = x - dt_ * alpha_ / epsilon * (R_ - R0_);
return Ax;
}
// --------------------------------------------------------------------
// rhs of Ax = r
// --------------------------------------------------------------------
DENS_VEC
ImplicitSolveOperator::r() const
{
return dt_ * R0_; // dt * R(T^n)
}
// --------------------------------------------------------------------
// preconditioner
// --------------------------------------------------------------------
DIAG_MAT
ImplicitSolveOperator::preconditioner() const
{
DENS_VEC diag(n_);
diag = 1.0;
DIAG_MAT preconditioner(diag);
return preconditioner;
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// FieldImplicitSolveOperator
// --------------------------------------------------------------------
// --------------------------------------------------------------------
FieldImplicitSolveOperator::
FieldImplicitSolveOperator(ATC_Coupling * atc,
FIELDS & fields,
const FieldName fieldName,
const Array2D< bool > & rhsMask,
const PhysicsModel * physicsModel,
double simTime,
double dt,
double alpha)
: ImplicitSolveOperator(alpha, dt),
fieldName_(fieldName),
atc_(atc),
physicsModel_(physicsModel),
fields0_(fields), // ref to fields
fields_ (fields), // copy of fields
rhsMask_(rhsMask),
time_(simTime)
{
const DENS_MAT & f = fields0_[fieldName_].quantity();
dof_ = f.nCols();
if (dof_ > 1) throw ATC_Error("Implicit solver operator can only handle scalar fields");
// create all to free map
int nNodes = f.nRows();
set<int> fixedNodes_ = atc_->prescribed_data_manager()->fixed_nodes(fieldName_);
n_ = nNodes;
vector<bool> tag(nNodes);
set<int>::const_iterator it; int i = 0;
for (i = 0; i < nNodes; ++i) { tag[i] = true; }
for (it=fixedNodes_.begin();it!=fixedNodes_.end();++it) {tag[*it]=false;}
int m = 0;
for (i = 0; i < nNodes; ++i) { if (tag[i]) freeNodes_[i]= m++; }
//std::cout << " nodes " << n_ << " " << nNodes << "\n";
// Save current field
x0_.reset(n_);
to_free(f,x0_);
x_ = x0_; // initialize
// righthand side/forcing vector
rhsMask_.reset(NUM_FIELDS,NUM_FLUX);
rhsMask_ = false;
for (int i = 0; i < rhsMask.nCols(); i++) {
rhsMask_(fieldName_,i) = rhsMask(fieldName_,i);
}
//std::cout << print_mask(rhsMask_) << "\n";
massMask_.reset(1);
massMask_(0) = fieldName_;
rhs_[fieldName_].reset(nNodes,dof_);
// Compute the RHS vector R(T^n)
R0_.reset(n_);
R_ .reset(n_);
R(x0_, R0_);
}
void FieldImplicitSolveOperator::to_all(const VECTOR &x, MATRIX &f) const
{
f.reset(x.nRows(),1);
for (int i = 0; i < x.nRows(); ++i) {
f(i,0) = x(i);
}
}
void FieldImplicitSolveOperator::to_free(const MATRIX &r, VECTOR &v) const
{
v.reset(r.nRows());
for (int i = 0; i < r.nRows(); ++i) {
v(i) = r(i,0);
}
}
void
FieldImplicitSolveOperator::R(const DENS_VEC &x, DENS_VEC &v ) const
{
DENS_MAT & f = fields_[fieldName_].set_quantity();
atc_->prescribed_data_manager()->set_fixed_field(time_, fieldName_, f);
to_all(x,f);
atc_->compute_rhs_vector(rhsMask_,fields_,rhs_,FULL_DOMAIN,physicsModel_);
DENS_MAT & r = rhs_[fieldName_].set_quantity();
atc_->prescribed_data_manager()->set_fixed_dfield(time_, fieldName_, r);
atc_->apply_inverse_mass_matrix(r,fieldName_);
to_free(r,v);
#if 0
int n = 6;
//std::cout << "# x "; for (int i = 0; i < n_; ++i) std::cout << x(i) << " "; std::cout << "\n";
//std::cout << "# f "; for (int i = 0; i < n; ++i) std::cout << f(i,0) << " "; std::cout << "\n";
std::cout << "# r "; for (int i = 0; i < n; ++i) std::cout << r(i,0) << " "; std::cout << "\n";
//std::cout << "# v "; for (int i = 0; i < n; ++i) std::cout << v(i) << " "; std::cout << "\n";
#endif
}
void FieldImplicitSolveOperator::solution(const DENS_MAT & dx, DENS_MAT &f) const
{
DENS_MAT & df = fields_[fieldName_].set_quantity();
to_all(column(dx,0),df);
atc_->prescribed_data_manager()->set_fixed_dfield(time_, fieldName_, df);
f += df;
}
void FieldImplicitSolveOperator::rhs(const DENS_MAT & r, DENS_MAT &rhs) const
{
to_all(column(r,0),rhs);
}
} // namespace ATC
|